INVERSE SETS AND INVERSE CORRESPONDENCES
OVER INVERSE SEMIGROUPS

TOMOKI UCHIMURA

ABSTRACT. This is a summary of the author’s previous work. We in-
troduce notions called inverse set and inverse correspondence over in-
verse semigroups. These are analogies of Hilbert C*-modules and C”*-
correspondences in the C*-algebra theory. We show that inverse semi-
groups and inverse correspondences form a bicategory. In this bicate-
gory, two inverse semigroups are equivalent if and only if they are Morita
equivalent.

0. INTRODUCTION

This is a summary of the author’s previous work [Uch24b]. The theory
of inverse semigroups are closely related to the theory of C*-algebras (for
example, [Pat99, KS02, Exe08]). A C*-algebra is a complex liner space
equipped with a multiplication, an involution, and a complete norm which
is compatible with the algebraic structures. In the theory of C*-algebras,
non-commutative and infinite-dimensional C*-algebras often appear, but are
generally difficult to investigate. Therefore, we construct C*-algebras from
some mathematical objects which are relatively easy to investigate, and
study the C*-algebras through their materials. Groups, étale groupoids,
and inverse semigroups are used well as materials of C'*-algebras. Recent
researches involve a categorical approach to the constructions of such C*-
algebras by using bicategory, which is a kind of category [BMZ13, AM16].
Albandik showed that the construction from étale groupoids to C*-algebras
forms a kind of functor (bifunctor) from the bicategory &t of étale groupoids
to the bicategory Corr of C*-algebras [Alb15]. One might expect that the
construction of C*-algebras from inverse semigroups has a similar property.
However, to the best knowledge of the author, any bicategory of inverse
semigroups which corresponds to &t or Corr has not been introduced in the
theory of inverse semigroups. Therefore, the author introduced the bicate-
gory J€ of inverse semigroups modeled on the bicategory €orr in [Uch24b)].
We also proved that two inverse semigroups are equivalent in this bicategory
JC if and only if they are strongly Morita equivalent.

1. INVERSE SEMIGROUPS

A semigroup is a set with an associative multiplication. A semigroup S
is regular if for every s € S there exists an element ¢ € S with sts = s and
tst = t. Such an element ¢ is called a generalized inverse of s. A regular
semigroup S is said to be inverse if each element has a unique generalized
inverse. For an inverse semigroup S, we denote the generalized inverse of
s €S as s*.
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An element e of a semigroup S is an idempotent if ee = e holds. The set
of all idempotents of S is denoted as E(S5).

Example 1.1. A discrete group is an inverse semigroup which has the unit
as a unique idempotent.

Ezxample 1.2. For topological spaces X and Y, a partial homeomorphism
u from X to Y is a homeomorphism from an open subset D, of X to an
open subset R, of Y. For a partial homeomorphism u from X to Y, we
define a partial homeomorphism from Y to X, called an inverse of u, as the
homeomorphism u~! from R, to D, regarded as a partial homeomorphism
from Y to X. We denote this partial homeomorphism by the same symbol
u~!. For topological spaces X;, X2, X3 and partial homeomorphisms wu;
from X7 to Xo, ug from X5 to X3, we define a composition usui of u; and
ug as the partial homeomorphism from X; to X3 defined by wsuq(z) :=
ug(uy(x)) for & € Dyyyy = uy(Dy,). We denote the set of all partial
homeomorphisms from X to Y as I(X,Y). We abbreviate I(X, X) to I(X).
The set I(X) becomes an inverse semigroup with respect to the composition
of partial homeomorphisms.

A subset I of a semigroup S is a two-sided ideal if st € I and ts € I
hold for s € S and t € I. A two-sided ideal of a semigroup becomes a
subsemigroup. A two-sided ideal of an inverse semigroup becomes an inverse
subsemigroup. We can prove the following proposition which is similar to
[Pat99, Proposition 2.1.1] or [Law98, Theorem 3]:

Proposition 1.3. Let S be a semigroup and I be a two-sided ideal of S. If
I is an inverse subsemigroup of S, then for every e € E(S) and f € E(I),
ef = fe holds.

This proposition plays an important role for proving Theorem 3.8.

Let S be an inverse semigroup. It is clear that s = s for s € S. We
have (st)* = t*s* for s,t € S by using Proposition 1.3.

The following theorem is well-known as a characterization of inverse semi-
groups:

Theorem 1.4. A reqular semigroup S is inverse if and only if all idempo-
tents of S commute.

Proof. The only if part follows from Proposition 1.3. See [Law98, Theorem
3] for a proof of the if part. O

2. THE BICATEGORY Cotr OF C*-ALGEBRAS

A category consists of collections of objects and morphisms; the composi-
tion gf: x — z is given for each two morphisms f: x — y and g: y — z; the
identity morphism 1, is given for each object x. The following conditions
are required to these structures:

(i) the associative law, that is, h(gf) = (hg)f holds for f: z =y, g: y —
z, h: z = w.
(ii) the unit law, that is, 1,f = f = f1, holds for f: z — y.
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Two objects x and y of a category are isomorphic if there exist f: x — y
and g: y — x with gf = 1, and fg =1,.

We give two example of categories. For C*-algebra A and B, a *-homo-
morphism o: A — B is a linear map from A to B which preserves multipli-
cations and involutions. C*-algebras and *-homomorphisms form a category
C:lg with respect to the usual composition of maps and the identity maps.

For semigroups S and T', a semigroup homomorphism 6: S — T is a map
from S to 1" which preserves multiplications. If S and 1" are inverse, then a
semigroup homomorphism between them preserves the generalized inverses.
Inverse semigroups and semigroup homomorphisms form a category IS with
respect to the usual composition of maps and the identity maps. Two inverse
semigroup are isomorphic if they are isomorphic in this category IS.

A bicategory introduced by Bénabou in [Bén67] equips 2-arrows, which
are “morphisms between morphisms”, in addition to objects and morphisms.
For each two objects z and y of a bicategory, morphisms from z to y and
2-arrows between morphisms from x to y form a category. The morphisms
h(gf)and (hg)f, 1,f and f, f and f1, are required to be isomorphic through
some “natural” 2-arrows, instead of the associative law and the unit law.
Two objects z and y of a bicategory are equivalent if there exist morphisms
f:z — yandg: y — z such that gf is isomorphic to 1, and fg is isomorphic
to 1,. See [Bén67] or [Lei98] for more details of the definition of bicategories.

As mentioned in Section 0, the bicategory €Cott of C*-algebras appears
in the theory of constructions of C*-algebras. To define the morphisms of
Cotr, we see the definitions of Hilbert modules and C*-correspondences. See
[Lan95] for more details.

Let A be a C*-algebra. An A-action on a complex linear space £ is a
bilinear map & x A — A;(&,a) — &a with ((a)d’ = &(ad’) for a,a’ € A
and & € £ A Hilbert A-module £ consists of an A-action on £ and a
map (-|-)¢: & x £ = A which satisfy similar conditions to Hilbert spaces.
The map (-|-)¢ is so called A-valued inner product. If A = C, a Hilbert A-
module is nothing but a Hilbert space. In Section 3, we introduce the notion
of inverse S-set as a set equipped with an action of an inverse semigroup S
and an S-valued pairing.

For a C*-algebra A and a Hilbert A-module &, a linear map ¢: &€ — &
is adjointable if there exists a linear map ¢: & — & with (¢¥(n) [§)e =
(nle(&))e for &,m € €. The set L(E) of all adjointable maps becomes a
C*-algebra with respect to the suitable structures. For C*-algebras A and
B, a C*-correspondence € from A to B is a couple of a Hilbert B-module £
and a *-homomorphism og: A — L(€). We denote it as £: A — B.

We give an example of C*-correspondences. For a C*-algebra B, the
linear space B becomes a Hilbert B-module with respect to the B-action
defined by the multiplication from the right side, and the inner product de-
fined by (b|b') 5 := b*b for b, b’ € B. For every b € B, the multiplication of b
from the left side is an adjointable map A, on the Hilbert B-module B. The
C*-algebra B can be regarded as a C*-subalgebra of L(B) through the map
A: B — L(B);b+— \,. Thus a s-homomorphism o: A — B induces a C*-
correspondence consisting of a Hilbert B-module B and a #*-homomorphism
o: A — B C L(B). In this sense, C*-correspondences can be regarded as a


HP
長方形

HP
テキストボックス
3


TOMOKI UCHIMURA

generalization of x-homomorphisms. We call the C*-correspondence associ-
ated with the identity *-homomorphism on A the identity correspondence.
In Section 4, we introduce adjointable maps on an inverse S-set U by using
the S-valued pairing, and show that the set L(U) of all adjointable maps
becomes an inverse semigroup. For inverse semigroups S and 7', the notion
of inverse correspondence U is introduced as a couple of an inverse T-set
U and a semigroup homomorphism 6;,: S — L(U) in Section 4. This is an
analogy of C*-correspondences in the theory of inverse semigroups.

Let A; be a C*-algebra with ¢ = 1,2,3,4, and &;: A; — A;11 be a C*-
correspondence with ¢ = 1,2, 3. For C*-correspondences £ and &, we can
define the C*-correspondence & ® & from A; to As called (interior) ten-
sor product. C*-algebras, C*-correspondences, the tensor product, and the
identity correspondences satisfy almost all of the conditions required to bi-
categories. However, they do not form a bicategory as discussed follows:
The C*-correspondences (€1 ® &) ® &3 and & ® (2 ® &3) are isomorphic
through the “natural” bijection (§; ® &) ®&s — &1 @ (§2®E&3). This map is a
2-arrow which corresponds to the associative law. The C*-correspondences
E1®As and &7 are isomorphic through the “natural” bijection &1 ®ag — &1as.
This map is a 2-arrow which corresponds to one of the two unit laws. The
“natural” map A1 ® & — &1;a1 ® & — a1€y is injective, preserves the
structures of C*-correspondence, but is not surjective in general. This be-
comes an isomorphism if and only if & is non-degenerate, that is, it satisfies
& ={og(a1)(&1) | a1 € A1, & € &1} By restricting the collection of mor-
phisms to all non-generate C*-correspondences, we obtain the bicategory
Cotr of C*-algebras. In Section 4, we introduce the property called non-
degenerate for inverse correspondences, and show that inverse semigroups
and non-degenerate inverse correspondences form a bicategory. We denote
this bicategory as J€.

Rieffel introduced the equivalence relation between C*-algebras called
strong Morita equivalence [Rie74]. Two C*-algebras are equivalent in the bi-
category Cort if and only if they are strongly Morita equivalent [EKQRO6].
Steinberg introduced the equivalence relation between inverse semigroups
also called strong Morita equivalence [Stell]. He showed that the construc-
tion from inverse semigroups to C*-algebras preserves strong Morita equiv-
alence through the theory of groupoids and their C*-algebras. The author
showed that two inverse semigroups are equivalent in the bicategory J€ if
and only if they are strongly Morita equivalent [Uch24b]. In forth coming
paper [Uch24al, we will show that the construction from inverse semigroups
to C*-algebras forms a bifunctor from J€ to €orr. Because of these result, we
can give another proof of the fact proved by Steinberg since every bifunctor
preserves equivalences in bicategories.

3. INVERSE SETS AND INVERSE SEMIGROUP L(U/) OF ADJOINTABLE MAPS

In this section, we introduce inverse sets and adjointable maps on them.
Let S be an inverse semigroup.

Definition 3.1 ([Uch24b, Definition 2.2]). A regular S-set U is a set U
equipped with a right S-action (that is, a map U x S — U; (u, s) — us with
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(us)s’" = u(ss’) for s, s’ € S and v € U) and a map (- |-);,: U xU — S called
a (right) pairing on U which satisfy that
(Rei) {uw/s)y = {u o)y,

(R-ii) (u|u'); = (u'|u)y,
(R-iii) u(u|u), = u,

for every u,u’ € U and s € S. An inverse S-set U is a regular S-set which
satisfies that

(R-iv) w(u'|u),, = v and v/ (u|v')y, =« imply v = o’

for every u,u’ € U.

As a first example, we regard an inverse semigroup S as an inverse S-set.

Ezample 3.2. We set a right action of S on S as the multiplication from the
right side and define a map (-|-)g: S xS — S by (s|s')g := s*s' for every
s,s' € S. Tt is clear that this map satisfies (R-i) and (R-ii). The map (- |-) g
satisfies (R-iii) by the definition of the generalized inverse and satisfies (R-
iv) since S is inverse. Thus S is an inverse S-set with respect to the above
structures.

Ezample 3.3. We define a right action of I(X) on I(X,Y’) by the composition
from the right side and a pairing on I(X,Y’) by

—1
(w1 ’U2>1(x7y) = Uy U2
for ui,up € I(X,Y). We can see that the set I(X,Y) becomes an inverse
I(X)-set with respect to the above structures.

Let U and V be regular S-sets.

Definition 3.4 ([Uch24b, Definition 2.9]). A map p: U — V is an S-map
if p(us) = p(u)s foru e U and s € S.

Definition 3.5 ([Uch24b, Definition 3.1]). A map ¢: U — V is said to be
adjointable if there exists a map 1: V — U such that

(h(v) [u)y = (v]e(u))y
holds for every u € U and v € V. Such a map ¥ is said to be an adjoint of

. We denote the set of all adjointable maps from U to V as L(U,V). We
abbreviate L(U,U) as L(U).

We can easily see that the set L({/) becomes a semigroup with respect to
the composition of maps. We give examples of adjointable maps:

Definition 3.6 ([Uch24b, Definition 3.4]). For u € U and v € V, we define
a map wy: U =V by

weu(u') == v{u ‘ u'>u
for ' € U. We denote the set {wy, | v € U, v € V} as K(U,V). We
abbreviate K (U,U) as K(U).

For u € Y and v € V, the map w,,, is an adjoint of wy,. Thus K(U,V) is
a subset of L(U, V).
Let U, V, and W be regular S-sets. We can see

/
P Wou = We!(v)uy  Yw,wP = Wy yp(v)
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forueU,veV,weW, e LU,V), ¢ € L(V,W), where 9 is an adjoint
of ¢. These imply that K (U) is a two-sided ideal of L(Uf).

The following proposition plays an important role in the proofs of Theo-
rem 3.8, 3.9, and Proposition 4.6:

Proposition 3.7 ([Uch24b, Proposition 3.12]). For a regular S-set U, the
following are equivalent:
(1) uw(u'|u)y, = u and v (u|u'), = v imply v = o' for every u,u' € U
(that is, U is an inverse S-set),
(ii) (ulu), = (W |u)y, = (u|u'), implies uw =" for every u,u’ €U,
(iii) u(u|u'),, = ' (W |u), (u|u), for every u,u’ €U,
(iv) Wy and wy » commutes for every u,u’ € U,

We give the properties of adjointable maps between inverse S-sets (see
[Uch24b, Section 3]). Let U, V be inverse S-sets and ¢: U — V be an
adjointable map. We can show that an adjoint of ¢: U — V is unique. We
denote the adjoint of ¢ as ¢f. We can also see that ¢ becomes an S-map.
For an inverse S-set U; with « = 1,2, 3 and an adjointable map ¢;: U; — U; 11
with ¢ = 1,2, we have goJ{T = ¢y and (1)t = goJ{gog. An element ¢ € L(U)
is said to be self-adjoint if ¢ = o' holds.

Theorem 3.8 ([Uch24b, Theorem 3.19, 3.30]). For an inverse S-sets U,
the semigroups K(U) and L(U) are inverse.

Sketch of proof. We can obtain E(K(U)) = {wy,u | v € U} by using Propo-
sition 3.7 (ii). By Proposition 3.7 (iv), we see that all elements of E(K (U))
commute. Thus K (i) is inverse by Theorem 1.4.

We next prove that L(U) is regular. Fix ¢ € L(U) and u € U. We already
obtain that the two-sided ideal K (i) of the semigroup L(I/) is inverse. Thus
every idempotent of L(U) and w,,, commute by Proposition 1.3. By using
this fact and the fact that gngowu,u and w%ugngo are idempotents, we see
that o' and Wy, commute. Since ¢ is an S-map, we have

o) = plu) (plu) | o)y = ¢ (ulp(w) | ()y) = @ (u(u] o) )
= p(wuuple(u) = p(eTownu(u)) = pelp(ulu|u)y,) = pplp(u).
Thus we have ¢ = pplp. By taking the adjoints, we obtain plppl = .
Hence ¢! is a generalized inverse of .

We finally show that L(U/) is inverse. Let ¢ be an element of L(U) and
11, P2 be adjoints of . We can easily see that @)1, pibo, 11 and e are
idempotents. By using Proposition 1.3, we can prove that every idempotent
of L(U) is self-adjoint. This implies that

1 = roPn = (Y1) 1 = (Yroap) i
= (429) (V19) 11 = apnpin = dapir.
We also have 1y = 12¢1)1 in a similar way. Thus ¥ = 2 holds. ([

We can show the following theorem in a similar way to the proof of The-
orem 3.8:
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Theorem 3.9 ([Uch24b, Theorem 3.31]). For inverse S-sets U and V, the
set LU, V) becomes an inverse L(U)-set with respect to the right L(U)-action
defined by the composition from the right side and a pairing (- | '>L(u,V) s LU, V)%
LU,V) = LU) defined by (@)@ = olp. The set K(U,V) becomes

an inverse K(U)-set with respect to the same structure.

4. INVERSE CORRESPONDENCES AND THE BICATEGORY JC€

We introduce inverse correspondence between inverse semigroups with the
theory of C*-correspondences in mind. Let .S, T be inverse semigroups.

Definition 4.1 ([Uch24b, Definition 4.1, 4.5]). An inverse correspondence U
from S to 7" is a couple of an inverse T-set U and a semigroup homomorphism
02 S — L(U). We denote it as U : S — T. An inverse correspondence U is
said to be non-degenerate if U = {0y(s)(u) | s € S,u € U} holds.

Definition 4.2. Let I/ and V be inverse correspondences from S to T.
A map ¢: U — V is an isomorphism if it is a bijective S-map such that
(o) [0}y = (u] ')y and (Bu(s)(w) = Oy(s)(p(u)) hold for s € S
and u,u’ € U. We say that U and V are isomorphic if there exists an
isomorphism between them.

We give three examples of non-degenerate inverse correspondences.

Example 4.3. Let S,T be inverse semigroups and 7: .S — T be a semigroup
homomorphism. We obtain an inverse T-set T" as in Example 3.2. We can
see that the subset U, := {7(s)t | s € S,t € T'} of T becomes an inverse T-
set with respect to the same structures. We define a map 6y, : S — L(U-) by
O (s)(u) := 7(s)u. We can see that 6y, is a semigroup homomorphism and
that the couple U and 6, becomes a non-degenerate inverse correspondence
from S to T'. We call the inverse correspondence Uq, from S to S associated
with the identity map idg on S the identity correspondence. This will be
regarded as the identity morphism in the bicategory J€ later.

Ezample 4.4. For topological spaces X,Y, we obtain the inverse I(X)-set
I(X,Y) as in Example 3.3. The operation 0;(x,y)(v) to compose v € I(Y")
from the left side is an adjointable map on /(X,Y’). The map 0r(xy): v+
Or(x,y)(v) is a semigroup homomorphism from I(Y) to L(I(X,Y)). We
can see that the couple of the inverse I(X)-set I(X,Y) and the semigroup
homomorphism 6;(x y) form a non-degenerate inverse correspondence from

I(Y) to I(X).

Ezample 4.5. Let U,V be inverse S-sets. We obtain the inverse L(Uf)-set
L{U,V) as in Theorem 3.9. The operation 01,)(1) to compose 9 € L(V)
from the left side is an adjointable map on L(U,V). The map 0 v): ¥+
O, (¥) is a semigroup homomorphism from L(V) to L(L(U,V)). We
can see that the couple of the inverse L(U)-set L(U,V) and the semigroup
homomorphism 60,y form a non-degenerate inverse correspondence from
L(V) to L(U).

Let S; be an inverse semigroup with ¢ =1,2,3 and U : S; — S5, V: Sy —
S3 be inverse correspondences. We introduce the inverse correspondence
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UV: 5 — S3 as follows: We define the set U ® V as the quotient of
the direct product & x V by the minimum equivalence relation ~ such that
(usg,v) ~ (u, By(s2)(v)) holds for u € U, s3 € S and v € V. We denote the
equivalence class of (u,v) as u ® v. We define a right action of S5 on U @ V
as

(u®v)sg :=u® (vs3)
and a map (-|-)ygy: URV) x (U®V) — 93 as
(W@ |u® U>Z/I®V = (| Oy ((u' | u>u)(v)>v
for u,u’ € U, v,v' €V and s3 € Ss.

Proposition 4.6 ([Uch24b, Proposition 4.11]). The set U @V becomes an
inverse Sg-set with respect to the above structures.

Sketch of proof. We can easily see that the Ss-action and the pairing de-
fined above are well-defined, and that & ® V is a regular S3-set. By using
Proposition 3.7, we can prove that I/ ® V is an inverse S3-set. O

For s; € S1, we define a map Oygy(s1) on U ® V as
Oz (s1)(u @ v) == Oy (s1)(u) @ v.

for u € U and v € V. We can see that this is an adjointable map on U ® V
and that the map Oygy: S1 — LU ® V);s1 — Oygy(s1) is a semigroup
homomorphism.

Definition 4.7. For inverse correspondences U : S1 — S and V: Sy — S3,
we call the couple of the inverse S3-set U ® V and the semigroup homomor-
phism Oyxy: S1 — LU @ V) the tensor product of U and V.

We can see that the tensor product of two non-degenerate inverse corre-
spondences is non-degenerate.

Theorem 4.8 ([Uch24b, Theorem 5.12]). Inverse semigroups and non-
degenerate inverse correspondences form a bicategory with the tensor product
as composition and the identity correspondences as identity morphisms. We
denote this bicategory as JC.

Sketch of proof. We only see that there exist isomorphisms which correspond
to the associative law and the unit law. Let S; be an inverse semigroup with
i=1,2,3,4and U;: S; — S;11 be an inverse correspondence with i = 1,2, 3.
The map a: (U ® Us) ®Us — Uy @ (U © Us) defined as

a((u1 ® ug2) ®uz) =11 ® (ux ® ug)
and the map \: Uy ® So — U; defined as
AMug ® s2) 1= uy82
are isomorphisms. The map p: 51 ® Uy — U; defined as
p(s1 ®uy) := sjug
is an isomorphism since U; is non-degenerate. (]

We give an example of a kind of functor (bifunctor) to this bicategory J€:
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Example 4.9. Let S; be an inverse semigroup with ¢ = 1,2,3 and 7;: 5; —
Si+1 be a semigroup homomorphism with ¢+ = 1,2. We obtain the in-
verse correspondences U, : S1 — Se and Ur,: So — S3 as in Example
4.3. The tensor product U;, ® U,, of these inverse correspondences is iso-
morphic to the inverse correspondence Ur,r, associated with the composi-
tion of the semigroup homomorphisms 7 and 75 through an isomorphism
Uy, @ Uy — Uryry;ur @ ug — To(u1)ug. The construction from semigroup
homomorphisms 7 to the associated inverse correspondences U, form a bi-
functor from the category IS to the bicategory JC.

The following theorem is one of the main results of [Uch24b)].

Theorem 4.10 ([Uch24b, Theorem 5.16]). Two inverse semigroups are
equivalent in the bicategory JC if and only if they are strongly Morita equiv-
alent.

We can prove this theorem in a similar way to [EKQRO06, Lemma 2.4].
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