A Novel Systematic Rotation Method to Color Planar Graphs
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Abstract

The problem of finding four-colorings of plane graphs is one of the most famous in
graph theory. Alfred Kempe believed that a systematic method of exchanging colors
on what are now called Kempe chains would enable the coloring of any planar map.
While Kempe’s proof using this fact was flawed, the general premise is quite useful
in the study of plane graph coloring. Specifically, we use his idea to develop several
effective deterministic methods for coloring plane graphs. We present results on the
efficacy of our algorithms on a variety of graphs.
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1 Introduction

The Four Color Theorem was an object of intense study during the 19th and 20th centuries. The
Four Color Theorem states that the regions of a plane graph (that is, a graph drawn in the plane
with no two edges crossing) can be colored with four or fewer colors so that no two regions sharing
a boundary line have the same color. Such a coloring is a proper region coloring. Francis Guthrie
conjectured this to be true in 1852, but it took until 1976 for a proof to be widely accepted
[1,9]. Even so, all accepted proofs have major portions that necessitate the use of computers, and
therefore these proofs cannot be checked by hand. The machine-checkable proofs found in [1, §]
both translate to efficient polynomial time algorithms for four-coloring plane graphs; however
the algorithms are quite slow in practice. Further attempts like those in [7] attain near-linear
time efficiency in practice, but they are not provably correct and utilize randomness to attain
their relative efficiency. Here we will study the deterministic coloring algorithms developed in

[10, 11, 12, 14] and present new results on simulations for these algorithms.

2 Definitions

Our algorithms will make use of Kempe chains, first utilized by Alfred Kempe in [5]. An AB
Kempe chain is a maximal connected set of regions of G such that every region has color either
A or B. Given a proper region coloring (or a proper partial region coloring), exchanging the

colors A and B on an AB Kempe chain results in a new proper (partial) region coloring.



The terminology we present next is from [6], with some alterations based on further work
in [13, 14]. We will assume in the following definitions that the exterior region R is the region
we are attempting to assign a color, and that only five neighbors of R are colored. We will also
assume that the four colors appear on regions adjacent with R so that no two consecutive regions
(ignoring uncolored regions) have the same color. We will call these colored regions adjacent to

R boundary regions. Figure 1 will be used for reference.
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Figure 1: A partially colored graph where the exterior region has 5 colored neighbors, with
no two consecutive colored regions of the same color. Some of the unmarked regions may be
colored, but not those adjacent to the exterior region.

e The boundary region situated between two boundary regions of the same color is called

the top region. In Figure 1, this is the boundary region labeled R.

e A Kempe chain containing both the top region and the boundary region positioned two
spaces counterclockwise from the top region is called the left-hand circuit. If such a Kempe
chain does not exist, we will refer to the Kempe chain using these colors and starting at

the top region as a broken left-hand circuit. In Figure 1, this will be an RG Kempe chain.

e Similarly, a Kempe chain containing both the top region and the boundary region posi-
tioned two spaces clockwise from the top region is called the right-hand circuit (analo-

gously, broken right-hand circuit).

e A Kempe chain beginning at the boundary region counterclockwise to the top region and
whose other color is that of the region two spaces clockwise from the top region (in Figure
1, B and Y) is called the left-hand chain.

e A Kempe chain beginning at the boundary region clockwise to the top region and whose
other color is that of the region two spaces counterclockwise from the top region is called

the right-hand chain.



e The Kempe chain containing the two boundary regions not directly clockwise or counter-
clockwise to the top region is called the end tangent chain. In this case, this would be
a GY Kempe chain. It is possible that these two regions are not connected by a Kempe
chain; in this case, we still refer to the Kempe chain using these colors and containing at

least one of these regions as an end tangent chain.

The following operations will be utilized in our algorithms.

e ( (for left): Exchanging colors on the left-hand chain

e r (for right): Exchanging colors on the right-hand chain

ty (for top-left): Exchanging colors on the left-hand circuit (or the broken left-hand circuit)

t, (for top-right): Exchanging colors on the right-hand circuit (or the broken right-hand

circuit)

e (for end): Exchanging colors on the end tangent chain

Given a partial coloring ¢ from a subset of the regions of a graph to the colors {R, B,Y,G}
and some operation o, we will refer to o(c) as the resulting coloring after applying o to ¢. In
addition, given two operations o1, o9, we will refer to o907 as the result of applying first o1, then

g9.

As in [14], we say a coloring ¢ is at impasse if ¢, £(c), and r(c) each have a left-hand and
right-hand circuit. If a coloring is not at impasse, it can easily be used to obtain a color for the
exterior region. We also only use the operation ¢ on colorings having a left-hand circuit, and
similarly r is only applied to colorings having a right-hand circuit. Given this terminology, we

can explore several systematic approaches to plane graph coloring.

3 Systematic Coloring Algorithms

In practice we color the vertices of maximal planar graphs instead of coloring regions of cubic
maps. By principles of plane duality, these are equivalent problems. In each of our coloring
algorithms, we begin by obtaining a smallest-last ordering of the vertices of a maximal planar
graph as described in [7]. This ensures that when coloring a vertex, at most 5 of its neighbors
have previously been colored. In terms of regions and region colorings, the smallest-last ordering
ensures that when coloring a given region, at most 5 neighboring regions have already been
colored. If the region has at most 4 colored neighbors, or otherwise if it has 5 colored neighbors

with an arrangement of colors different from that in Figure 1, we can use known methods to color



the region; see [3] for an outline of these methods. To color regions with 5 colored neighbors

situatated as in Figure 1, we used the following algorithms, also discussed in [13]:

Alogirthm 0: The Basic Rotation Algorithm. Algorithm 0 uses only operations ¢ and
ty. We start with a coloring ¢ as in Figure 1. If the coloring ¢; has a left-hand circuit, we let
¢i+1 = ¥(c;). Otherwise, we apply t; to ¢; and return this coloring, as this removes a color from
the boundary regions and allows us to obtain a coloring for the exterior region. We observe that
this algorithm is summarized as ¢; = £*(cy). Therefore, this algorithm terminates if and only
if /1(co) has no left-hand circuit for some i. Algorithm 0 is quite effective; however, there is a
historical map and coloring ¢ for which Algorithm 0 does not terminate. This map is the Errera
map, introduced by Alfred Errera in [2]. In fact, £2°(cy) = cg. The coloring cq is illustrated in

Figure 2 as presented by Kittell in [6].

equivalently:

i
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Figure 2: A coloring of the Errera map for which Algorithm 0 does not terminate, with the
uncolored region drawn as the exterior region. An equivalent drawing with the uncolored region
as the pentagon at the center is also drawn.

With this key example in mind, we will explore several different modifications of Algorithm

0 that avoid the pitfalls presented by the Errera map.

Alogrithm 1: Rotation with Errera Fix. In Algorithm 1, we run Algorithm 0 for a large
number of times. If the algorithm does not terminate, or if we return to our original coloring, we
implement the additional operations e and el. It was shown in [14] that for the Errera map and
certain variations that this resolves impasse. There are however maps and colorings for which

Algorithm 1 does not resolve impasse; an example is given in Figure 3.

Algorithm 2: Rotation with Multistart. For Algorithm 2, we use the principles of
multistart to find a pentagon which is more amenable to coloring by Algorithm 0. Let R; be
the region we are attempting to color. We use ¢ up to 20 times to color R;. If this fails, then we

apply ¢ enough times so that the top region has at most 4 colored neighbors. We call the top



Figure 3: A graph for which Algorithm 1 does not resolve impasse.

region Ro. We assign to Ry the color of Rs, and then uncolor Rs. Finally, we attempt to color
Ry with up to 20 applications of £. If we either cannot find a neighbor of Ry that has only four
colored neighbors or cannot color Ry after this exchange, then Algorithm 2 does not succeed.
While we did not encounter a graph for which Algorithm 2 failed in our simulations, there are

graphs and colorings where this is possible.

In addition to the multistart algorithm described above, we have also designed and imple-
mented a more general multistart algorithm that can change to any pentagon. However, this
necessitates obtaining a new smallest-last ordering and restarting the coloring process each time

we run into an obstacle, reducing the efficiency of this algorithm.

Algorithm 3: Alternating e and /. This last approach is motivated by a more general
consideration of Algorithm 1. In Algorithm 1, we use £ many times; if this fails we try either e or
el, noting that the final colorings in both cases are ef™(¢g) for some n. Algorithm 3 applies color
exchanges in order {e,¢,r,e,l,e, 0,1 e l,...}. This systematically tests whether each coloring
"(co) and el™(cp) is at impasse. When a coloring that is not at impasse is encountered, a
coloring of the exterior region is produced. This has not failed to color any of the graphs in our

testing suite.



4 Results

Algorithms 0 through 3 have proven effective on many graphs. The following result on Heawood’s
historical counterexample in [4] to Kempe’s color-swapping argument, here referred to as the

Heawood map, has been previously proven by Weiguo Xie in [11, 12]:

Theorem 4.1. The Heawood map can be 4-colored by Algorithm 0.

We add to this the following additional result, which was also presented in [13, 15]:

Theorem 4.2. The Errera map can be 4-colored by Algorithms 1 through 3.

We encountered in Figure 3 a graph with a coloring such that Algorithm 1 did not succeed.

However, it can be colored by other algorithms:

Theorem 4.3. The graph in Figure 3 can be 4-colored by Algorithms 2 and 3.

At this point we have tested over 175,000,000 graphs having up to 34, 110 regions generated
using the methods described in [7]. Of these, over 99.998% of graphs were successfully 4-colored
by Algorithm 0. Of those for which Algorithm 0 failed, all but 16 graphs were 4-colorable by
Algorithm 1. Notably, neither Algorithm 2 nor Algorithm 3 have failed to color a graph in our

simulations.

In conclusion, our method of systematic rotation is powerful enough to successfully four-color
a large number of plane graphs, and we believe that further insight into the algorithm and the
graphs for which certain algorithms fail will provide deeper insight into the coloring of plane

graphs.
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