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1 Introduction

Let ¢ be an integer and ¢ > 2. A Latin square of order ¢ is an ¢ X g array
in which ¢ distinct symbols are arranged so that each symbol occurs in
each row and column.

The reader knows the definition of a group. Latin squares are familiar
as groups, but sets that are not groups can also be Latin squares.

In this paper, firstly, we summarize algebraic properties and group-
like structure of Latin squares etc. Secondly, we introduce classical con-
struction of Latin Squares, and discribe recent results on the properties
of Latin squares generated from this method. Thirdly, we reseach the
application of Latin squers to modern cryptography.

2  Group-like structure

A Latin square is equivalent to a quasigroup with a binary operator.
That is, there exists a bijection between the set of all quasigroups of
order ¢ with binary operators and the set of all Latin squares with a size
of ¢ X ¢. In this section, we describe about group-like structure of Latin
square etc.

Let Q be a finete set of order ¢. Let * be a binary operator in 2. We
deal with a set (£, ).

Definition 2.1 (Totality). If there exsits unique ¢ € 2 such that axb = ¢
for any a,b € €, then the set (€2, %) is said to be totality.

A set (9, %) satisfying totality is called groupoid. To do this, first,
we need to define whether operation about * are closed in a set Q.



Definition 2.2 (Divisibility). For any a,b € , if there exsits unique
x € ) such that a xx = b and exsits unique y € €2 such that y x a = b,
then the set (€2, %) is said to be divisibility.

A groupoind satisfying divisibility is called quasigroup.

Definition 2.3 (Identity). For any a € €, if there exsits e € 2 such
that a x e = e ¥ a = a, then the element e is said to be identity element,
and the set (€, *) is said to have an identity element.

A quasigroup with an identity element is called a loop.

Definition 2.4 (Associativity). If the equation (a * b) * ¢ = a * (b *c)
holds for any a, b, ¢ € €2, that is, the associative low of * holds in 2, then
the set (€, *) is said to be assobiativity.

A loop satisfying assobiativity is a group. As readers know, A set
Q that is closed under operation of * is a semigroup if it satisfies the
associative low. If a semigroup has an identity element, it becomes a
monoid. A monoid becomes a group, if any element has an inverse.
These are summarised in the following table 1:

Table 1: The summry of group-like structure
Totality Divisibility Identity Asoociativity

Groupoid - -
Quasigroup
Loop
Group
Monoid

Semigroup
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A Latin square is said to be reduced if, in its first row and column,
the symbols occur in natural order. For example, the following Latin
square L is reduced.

For example, let Q = {1,2,3,4,5}. If we consider a Latin square L as
an multiplication table for a set (€2, %), we get table 2. A multiplication
table such as table 2 obtainedfrom Latin square L is called to be a
bordered Latin square.
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Table 2: Multiplication table (bordered Latin square)
* |1 2 4 5
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The following theorems are known, and these are summarised in the
table 3:

Theorem 2.5. ([11]) Evey multiplication table of a quasigroup is a
Latin square and conversely, any bordered Latin square is the multipli-
cation table of a quasigroup.

Theorem 2.6. ([11]) Every multiplication table of a loop is a reduced
Latin square and conversely,, any bordered a reduced Latin square is
the multiplication table of a loop.

Table 3: The correspondence of set and Multiplication table

Set Multiplication table
Quasigroup Latin square
Loop Reduced Latin square

3 Classical construction and their property

Much research has been done on the construction and properties of Latin
squares. In this section. we introduce a long-known method for con-
structing Latin squares and present recent results on the properties of



Latin squares constructed from this method. We suggest that readers
who wish to learn more about Latin squares refer to [11, 12, 16].

We define the following gtimesq suare L(a, b) for integers a, b(a # b).
Each entry of this square is calculated as a congruence modulo gq.

0 a 2a (q_1>a
L(a,b) = 2b 2b+a 2b+ 2a 20+ (¢ — 1a
(g—=1b (g—Db+a (g—1)b+2a - (¢—1)b+(¢—1)a

When a,b,a + b,a — b are all relatively prime to ¢, L(a,b) is a di-
agonal Latin square of order q. Here, a diagonal Latin square is meant
a Latin square in which both diagonals contain distinct elements. This
construction of Latin square is introduced in the proof of theorem 3.1

Theorem 3.1. ([12]) If ¢ is odd and not a multiple of 3, then there is
a diagonal Latin square of order q.

Let Ly and Lo be Latin squares of the same order, We say that L, and
Lo are orthogonal if, when superimposed, each of the possible ¢ ordered
pairs occurs exactly once. Moreover, We say that a set {L1, Lo, -, L}
of t > 2 Latin squares of order ¢ is orthogonal if any two distinct squares
are orthogonal, that is if L; is orthogonal to L; whenver i # j. Such
a set of orthogonal squares is said to be a set of mutually orthogonal
Latin squares (MOLS).

For example, let L1 = L(1,2), Ly = L(1,3),L3 = L(2,1) =Ly, Ly =
L(3,1) = tLy, where ! L is the transpose of L. Then, the set {L1, L2, L3, L4}
is MOLS.

012 3 4 012 3 4
2 3450 3401 2
Ly=L(1,2)=1|4 5 1 2 3|, Ly=L(1,3)=[1 2 3 4 1|,
12341 451 2 3
3401 2 2 3450

For constructing mutually orthogonal Latin hyper cubes in higher
dimensions, there are [9, 13].



Nuida and Adachi [14] called L(a,b) a weighted-sum square, and
investigated the properties of weighted-sum orthogonal Latin squares.
We will describe their application to cryptograhy in the next section

4 Application to cryptography

A secret sharing scheme is one of the methods in cryptography, was
independently proposed by Blakley and Shamir in 1979 [5, 15]. The
most famous secret sharing scheme is a (¢, w)-threshold scheme which
was proposed by Shamir [15] in 1979. It is a method of sharing a secret
value K among a finite set P = {P;, Py, -+, P,} of w participants in
such a way that any ¢ participants can reconstruct K but no group of
t — 1 or fewer participants can reconstruct K. Each piece of information
of K distributed to each participant is called share or a shadow.

Secret sharing schemes using Latin squares are Cooper’s scheme [6]
and Stones’ scheme [17] and so on. [6, 1] is not a (¢, w)-threshold scheme,
but [17] is a (¢, t)-threshold scheme. An extension concept of MOLS is an
orthogonal array, and [8] is a (¢, w)-threshold scheme using an orthogonal
array. For an orthogonal array, we refer to [10].

Recently, Takeuti and Adachi proposed in their preprint [20] a (2, w)-
threshold secret sharing scheme, which have made [8] easier to use by
forcusing it for Latin squares. Nuida and Adachi [14] have taken a
different approach to proving secret computation in [20] by using the
features of L(a,b) in previous section. This is the same situation as
the point at infinity variant of (2, w)-threshold scheme of [15], which is
described in section 11.7 of [7]

We suggest readers who wish to learn more about cryptography using
combinatorial designs refer to [18, 19], and readers who wish to learn
more about secure multiparty computation (MPC) in cryptography refer
to [2, 3, 4].
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