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Abstract

This is a survey of the Banach-Tarski paradox (§1-6) and a résumé of cen-
troids of spherical or hyperbolic triangles (§7).

1 The Banach-Tarski paradox
Let X be a non-empty set and G a group acting on X. Then, for subsets F, £/ C X

and an integer m > 0, E and E’ are said to be G-equidecomposable with m pieces
(denoted by E ~@ E') if there exist pairwise disjoint subsets Ey,..., E,—1 C E,
pairwise disjoint subsets Ej,..., E/,_; C E’, and ho,. .., hym—1 € G such that

E=F)---UE,_1, E' =E\UJ---UE]

m—1»

ho(Eo) = Ely, ... hy1(Em_1) = E!

m—1»

where LI means disjoint union. For a subset £ C X and integers k, £ > 0, F is said to
be G-paradoxical with k + ¢ pieces if there exist disjoint subsets A, B C F such that

E=AUB, A~LE, B~EE.

For subsets E, E' C X, we denote E <¢ F’ if there exist a subset Ej C E’ and an
integer m > 0 such that E ~% E{. The Banach-Tarski paradox is the following (AC
means that the proof requires the axiom of choice. The proof of the existence of a
free group does not requires the axiom of choice, but the proof of a paradox requires
it, in general (Theorem 10 is an exception):

Theorem 1 (AC, [BT24]). Let U, V C R3 be bounded sets with non-empty interior.
Then there exists an integer m > 0 such that U N?GS(R) V, where SG,,(R) is the
group of all orientation-preserving isometries on R™.
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Sketch of proof. 1t is enough to prove D3 LI (D3 + a) =5Gs(R) D3 for some a € R3
with |Jal| > 2. To prove it, it is enough to prove that D3 is SG3(R)-paradoxical with
k + ¢ pieces for some k, £ > 0. To prove it, it is enough to prove that S? is SO3(R)-
paradoxical with k' + ¢ pieces for some k', ¢/ > 0, where SO,,(R) is the group of all
n X n orthogonal matrices with determinant +1. To prove it, it is enough to prove
that S? \ D is SO3(R)-paradoxical with k" + ¢’ pieces for some k", £ > 0 and a
countable subset D C S?. The subgroup F of SO3(R) generated by

1 5 0 0 1 3 -4 0
f= £ 0 3 —4] and g= £ 4 3 0
0 4 3 0 0 5
is a free group, because of
ko péoko — 8 ,02 3,0 ) Lo ,€0lo — <:52 €0 0) Lo+ko ,e0lo £60ko — (0 __260 5060)
5 _(0—60—02 , DT = & o0 ) 9 g = 0 o o0/

and

0 -1 —2dp

5€m_1+km—1+"’+£0+kog€m—1€m—l f5m_1km—1 .. .gsofoféoko = (_1)m—1 (O —2em—1 E"L—l%)
0 0 0

for m > 0; k;, €; > 0; 0;, ¢, € {—1,1} (mod 5). F is F-paradoxical with 2+ 2 pieces,
where I acts on itself by left translation, because of

A= (WpU{Es, [T 2% DU W \{f7L 7% D) ~E
N (WrU{Es, fL 2 DU f- W \{f %)= F

and

B =Wy U W, ~a Wylg-Wy—1 =F,

where Wy (resp. Wp-1, Wy, W,-1) is the set of reduced words whose leftmost is
f (resp. f71, 9, g7!). Theset D = {x € §? : w € F\ {E3},w(x) = x} is
countable. Let M be a choice set of the equivalence classes (S? \ D)/ ~L. Then
S?\ D is F-paradoxical with 2 + 2 pieces, because A(M) ~% F(M) = S?>\ D and
B(M) ~% S*\ D. O

2 Without fixed points and local commutativity
Let H be a group acting on a non-empty set X.
Theorem 2 (AC, [Adab4, Dekb6a]). Then we have

(AQ) N
(a) E () Z ©,Z (d)

(AC)

for



(a) H acts on X without fixed points, i.e., all non-identical elements of H have no
fixed point in X,

(b) X has a H-Hausdorff decomposition, i.e., there exist pairwise disjoint sets A, B,
C C X such that

X=AUBUC and A~}; B~ C~fp BUC ~3; CUA ~ AUB,

(c) X is H-paradoxical with 2 + 2 pieces,
(d) the action of H on X is locally commutative, i.e., if two elements of H have a
common fixzed point in X then they are commutative.

For X = S" 1 and G = SO, (R), does there exist a free subgroup F' < G of rank
2 acting on X without fixed points? It holds for neither n < 2 nor odd n because
SO, (R) are commutative for n < 2 and

det(g — E,) = detgdet(E, — g~ ') =1-det(E, — ¢7) =
=det(E, — g) = (—1)"det(g — E,) = —det(g — E,,) ("g € SO,(R))

for odd n. So we have to be satisfied with the following theorem.

Theorem 3 ([Dek56b] for n = 4; [Bor83] for n = 5, n = 6, and yet another proof
of n = 6; [DS83] for another proof of n = 6). For even n > 4, SO,(R) has a free
subgroup acting on S™ ! without fived points. For odd n > 3, SO,(R) has a free
subgroup acting on S*~ ' locally commutatively.

Sketch of proof. 1t is enough to prove them for 3 < n < 6, because if the group
generated by f and g and by f’ and ¢’ are the groups for even n and even (resp. odd)
n' respectively then the group generated by f @ f/ and g ® ¢’ is the group for even
(resp. odd) n+ n'. For n = 3, the group of the proof of Theorem 1 is valid. For
n = 4, the group generated by

cos) —sinf 0 0 cos 0 0 —sin 6
sinf)  cosf 0 0 0 cos —sinf 0

0 0 cosf® —sinf and 0 sinf cos@ 0

0 0 sinf  cosf sin 6 0 0 cos 6

is valid, where cos#@ is transcendental. The proof is difficult for n = 6. For each
non-empty reduced word w of letters f, g , f~%, ¢~ ', the map

w SOG(R) X SO(;(R) — SO(;(R)
(ex. g~ f%gf: (o,7) — 1 10?10 )
is dominant (i.e., the image of w is not included in any proper subvariety of SOg(R))
because SOg(R) is semi-simple (i.e., it does not have a non-trivial connected com-
mutative normal subgroup). So the composition d o w : SOg(R) x SOg(R) — R of
dominant maps w and d : SOg(R) 5 A — det(A — Eg) € R is also dominant. Hence
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(dow)~10) C SOs(R) x SO6(R) is a proper subvariety. Baire category theorem
implies
reduced
(dow) (0) € SOs(R) x SOs(R),

w

so we can fix (0,7) € SOg(R) x SOg(R) \ U?wgdnuzgépty (dow)~1(0). Then the group gen-
erated by o and 7 acts on S without fixed points (another proof: Q(w)[X,Y]/(X3 —
7,Y3 -2, XY —wY X) is a division algebra where w = e2mV=1/ 3. which also proves it
for n = 6). The proof is also difficult for n = 5. Each non-trivial compact connected
semi-simple Lie group G has a free subgroup F' such that for closed subgroup H < G
and non-empty reduced word w € F',

w:G/H > gH w— wgH € G/H

has exactly x(G/H) fixed pts. For G = SO5(R), H = SO4(R), we can regard
G/H = S* and x(G/H) = 2 (for G = SOg(R) and H = SO5(R), we can regard
G/H =S® and x(G/H) = 0, which is yet another proof for n = 6). O

3 On rational spheres

We consider groups of matrices with rational entries acting on rational spheres, be-
cause we expect stronger results and the existences of free groups imply paradoxes
without the axiom of choice from the countability of rational spaces.

Problem 1. For even n > 4, does SO, (Q) have a free subgroup acting on S™!
without fixed points? For odd n > 3 and positive ¢ € Q, does SO, (Q) have a free
subgroup acting on S"~! locally commutatively and acting on (\/QS”_l) NQ™ without
fixed points?

It is also enough to prove them for 3 < n < 6. We have partial answers.

Theorem 4 ([Sat95, Sat97, Sat98, Sat02]). There exist free groups for the cases “yes”

of the figure below.
| vaeQ | va¢Q |

n=23 | yes (1995) | yes (1998)
n= yes (1997)
n=>5 not yet | yes (2002)
n==06 not yet

Sketch of proof. The groups generated by the following pairs are valid: For n = 3 and

q with \/q € Q,
z an Z 6 3 2],
—-36 2 -3 2 6



for n = 3 and ¢ with /g ¢ Q,

1462 0 0 1-b%2 —2b 0
L 0 1-b% —2b and —L 26 1-b2 0
1+52 1+52 )

0 2b 1-b2
-6-30
3

20 -3 -6

1 2 0 1({02 -6 3

7( 0 2 6) and7<36 2 o>’
36 2 6-30 2

for n =5 and ¢ with /g ¢ Q,

1462 0 0 0 0 1-b6%2 —2b 0 0
0 1-v2 —2b 0 0 26 1-b2 0 0

for n = 4,

WO N

1 1

o O oo

- 2 2

o 0 2 1-b 0 , O and e 0 0 1-b —2b2 ,
0 0 0 1-b% —2b 0 0 26 1-b
0 0 0 2b 1-b2 0 0 0 0 1+4b2

where ¢ can be square-free integer and b (with prime p) is s.t. (%) =—1,p|1+b?
for the case of /g ¢ Q. For

& - 0
0 n—1
(b = E T X E c SOn (R),
n—1 n—1
0 . ¢n—1
the vector
n—3
2
(14s(2r+1)) mod n (14s(2r)) mod n
Z sgn s H (¢(1+5(27‘)) mod n _¢(1+5(27‘+1)) mod 'n)
s€6, 1 r=0
aX(¢) = % . c R™

n—3
2
(n+s(2r+1)) mod n (n+s(27)) mod n
Z sgn s H (¢(n+5(27‘)) mod n _¢(n+5(27‘+1)) mod 'n)
5€6n—1 r=0

is the axis of ¢, in general, where n is odd. For example, for

b5 ¢ 6%
o= ¢ o1 ¢35 | € SO3(R),
P2 97 b2

the vector
T —b3
ax(¢p) = | ¢9—¢2
bo—dY
is the axis of ¢, in general, and, for
o0 9 9 ¢ oY
Do 1 5 O D)
O =| o5 3 03 43 3 | € SO5(R),
o5 5 ¢3 o3 o
bo b1 ¢35 b3 b4

)



the vector

(67 —03)($5— ) — (7 —03) (03— 03)+(d1— 1) (65 —¢3)
(3—b3)(p3—b0) —(d3—3) (¢35 —¢5) + (b — ) (b5 — %)
ax(¢) = | (420D (dh—¢9) —(#5—83) (05 —d )+ (b5 —3) (85— i)
(9—00)($7—d3)—(d1— 1) (b —B3)+ (3 —b3) (b5 —¢Y)
(=) ($3—03)— (d5—09) (67 —d3)+ (5 —62) (67 —¢3)

is the axis of ¢, in general. They are useful to prove the theorem. O

4 Low dimensional case

The Banach-Tarski paradox does not hold for n < 2, because of the following theorem
(see after Theorem 13, precisely).

Theorem 5. G3(R) does not have a free subgroup of rank 2, where G,(R) is the
group of all isometries on R™.

Proof. For arbitrary f, g € G2(R), their squares f2, g2 are in SG2(R) and their
commutators ¢~ 2f2¢%2f2 and g~ *f~*¢* f* are translations, so their commutator
/2 B ) R (/e B/ ) R B Rl Bl
is the identity. U
But, by expanding the group, we have a new paradox.

Theorem 6 (AC, [Neu29]). Let U, V C R? be bounded sets with non-empty interior.
Then there exists an integer m > 0 such that U ~S45(R) V', where SA,(R) is the
group of all orientation and area-preserving affine transformations on R™.

Sketch of proof. 1t is essentially enough to find a free subgroup of SA3(R). For ex-
ample, the group generated by

(53),(39) (€ SLa(R) C SAz(R)),

where SL, (R) is the group of all n x n matrices with determinant +1. O
The group SAz2(R) satisfies the following theorems.
Theorem 7. SA3(R) has no free subgroup acting on R? without fized points.

Proof. Assume that the group generated by f, g € SA3(R) acts on R? without fixed
points. Then neither f, g, nor gf has a fixed point, so tr f = tr f = trgf = 2, hence
matrix parts of f and g commute, so the matrix part of g~ ' f~1gf is identity, hence
g 1f7lgf is a translation. In a similar fashion, g=2f~2¢2f2 is also a translation. So,

(9 2f 2@ (g fraf) g i 2P g f g
is the identity. O



Theorem 8 ([Sat03]). SA3(R) has a free subgroup acting on R? locally commuta-
tively.

Sketch of proof. The group generated by
()= (3102) ()= (5) and (5) = (31%2) () = (10)

is the group as desired, where 0 is transcendental. Ol

There exist paradoxes on the line R!.

5 Some topics
There exists a paradox on the hyperbolic space.

Theorem 9 (AC, [Myc89, MT13]). Mycielski barrel, the set of points whose distances

from real and imaginary azes of Poincaré disc H? = {z € C : |z| < 1} are less
than arsinh(1/4/ -5 — 2) including left and lower boundaries, is (isometries of H?)-

paradozical with k + £ pieces for some k, £ > 0, where 0 < o < \/2v/3 — 3.
The following paradox does not depend on the axiom of choice.

Theorem 10 ([DF94]). Let X be a Polish space, F a free group generated by home-
omorphisms f : X — X and g : X — X such that F acts on a comeager subset
Xo C X without fized points. Then, there exist pairwise disjoint reqular open subsets
Ao,..., As C X, pairwise disjoint reqular open subsets Aj, Ay, A, C X, pairwise
disjoint regular open subsets Ay, A}, At C X such that

X=AyV---VAs5, X=A VA VA, X=A,vA VA, A ~p A (0<i<5),

where AV ---V B s the interior of the closure of the union AU --- U B.

In the classic Banach—Tarski paradox, the pieces could be moved continuously so
that they remained disjoint throughout the transformation.

Theorem 11 (AC, [Wil05]). Let U, V C R3 be bounded sets with non-empty interior.
Then, there exist an integer m > 0, pairwise disjoint subsets Uy,..., U,_1 C U,
pairwise disjoint subsets Vy,..., Vi1 C V., and continuous maps &g,..., Qm_1 :
[0,1] = SG3(R) such that

U=UyU ---UUp_1, V=VU- - UV, 1,
6&2<0) :idRS, dl(l)(Ul) =V f07’ 0<1 <m,



6 Non-existence of paradoxes

Until the previous section, we have considered a lot of paradoxical cases. On the
contrary, in this section, we will consider a non-paradoxical case. A group G is
said to be amenable if there exists p : 2¢ — [0,1] such that p(gA) = p(A) and
(AU B) = u(A)+ p(B) for disjoint subsets A, B C G and g € G and u(G) = 1. The
amenability means the existence of a left-invariant measure, which is not necessarily a
right-invariant measure, but we can construct a left and right-invariant measure from
it. We have the following theorem for an amenable group.

Theorem 12 (AC, [Ban23]). If G is an amenable group of isometries of R™ (resp.
Sn=1), then there exists a finitely additive and G-invariant extension of Lebesgue
measure \ to all subsets of R™ (resp. St~ 1).

The theorem above implies the following.

Theorem 13 (AC). Lebesgue measure on R? has an isometry-invariant and finitely
additive extension to all subsets.

Sketch of proof. G2(R) is solvable, so it is amenable. So we can apply Theorem 12. [

We used the axiom of choice to get Theorem 1, the Banach-Tarski paradox for
SG3(R) and R3, but we also use the axiom of choice to get Theorem 13, which implies
the impossibility of the Banach-Tarski paradox for SGo(R) and R%. In [TW16],
‘Taking these facts and theorems into account, Mycielski [Myc06, MTocb] suggested
that the theory ZF + DC + AD + V=L(R) is a reasonable axiomatization of set theory
(and hence mathematics) for use in science. Severely counterintuitive results such as
the Banach-Tarski Paradox are false in this theory because all sets are Lebesgue
measurable; there is enough choice so that Lebesgue measure works as expected;
the universe does not contain any “unnecessary sets”: It contains only the sets that
must exist given that all reals and all ordinals are present; and all sets have the
Property of Baire’, where DC is the axiom of dependent choice and AD is the axiom
of determinacy.

7 Centroids of spherical or hyperbolic triangles

In this section, we will discuss the current research of the author. The centroid of
Fuclidean triangle satisfies many properties:
(a) it is the concurrent point of 3 medians,
(a’) it is the minimizer of the sum of (distances to vertices)?,
(b) it is the gravity center,

(c) it is the area-trisecting point by connecting it to 3 vertices,
(d) it is the concurrent point of 3 pseudo-medians,

where a median is a line passing through a vertex and bisecting the opposite edge and
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a pseudo-median is a line passing through a vertex and bisecting the area. For a spher-
ical (resp. hyperbolic) triangle, (a) = (a”) but points (a), (b) [Sat2023, Sat2024a],
(c) [Sat2024b], and (d) [Ako2009, Cas1889, Hor2015, Sat2024b| are pairwise disjoint,
in general, where (c) is the same as above, in (a) and (d) the word “line” is replaced
with “geodesic” in definitions of “median” and “pseudo-median”, and

(a”) the minimizer of the sum of 1 — cos(distances to vertices) (resp. cosh(distances
to vertices) — 1),

(b) the normalized (resp. pseudo-normalized) point of the gravity center of the tri-
angle in Euclidean space R? (resp. Minkowski space R? x R).

Centroids (a) = (a”) and (b) can be considered in higher dimensional simplex.
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