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Abstract

This article is the write-up of what the author talked about at the RIMS workshop on automorphic
forms held in 2024, January. The main result is a theory of a Fourier-Jacobi expansion of cusp forms
generating quaternionic discrete series representations for some general class of simple adjoint groups.
This expansion respects the Heisenberg parabolic subgroup, whose unipotent radical is a Heisenberg
group. This parabolic subgroup is uniformly explained in terms of the notion of cubic norm structures.
Aaron Pollack has already given the terms of the Fourier expansion with the trivial central character,
which are contributed by characters of the Heisenberg group. We prove that every term of non-trivial
central characters for the Fourier-Jacobi expansions of cusp forms generating quaternionic discrete
series for the general class mentioned above has no contribution by the discrete spectrum of the Jacobi
group, which is a subgroup of the Heisenberg parabolic subgroup. This is obtained by showing that
generalized Whittaker functions for the Schrédinger representations are zero under some assumption
sufficient for our purpose. It is shown that such terms of the Fourier-Jacobi expansion turn out to be
sums of the translates of Pollack’s functions (generalized Whittaker functions) by the Weyl reflection
for some root.

1 Background of this study

As the arithmetic of quadratic forms motivated number theoretic studies of holomorphic Siegel modular
forms, some arithmetic studies of binary cubic forms have turned out to be significantly related to the
arithmetic of automorphic forms on the exceptional group of type G5 generating quaternionic discrete
series representations. Among discrete series representations, quaternionic discrete series can be said
to be accessible next to holomorphic discrete series. An important initiation of the studies of such
automorphic forms is due to Gross-Gan-Savin [3]. However, in spite of the impact of [3], there had been
no further essential progress for a long time. A crucial ingredient of [3] is Wallach’s multiplicity free
property of generalized Whittaker models for quaternionic discrete series representations but there had
been no realization of such Whittaker models by functions, namely generalized Whittaker functions. This
is a possible reason of such stopping of the progress. Here note that quaternionic discrete series of G5 are
known to admit no Whittaker models in the usual sense. The generalized Whittaker functions mentioned
above are attached to non-degenerate characters of the unipotent radical of the Heisenberg parabolic
subgroup, which is not a Borel subgroup.

A next essential progress has been given by Pollack [12]. Pollack has succeeded in explicitly determin-
ing generalized Whittaker functions mentioned above for any characters. More precisely he has obtained
such formula for a wide class of simple groups of adjoint type including G, which will be denoted by G.
Starting from [12] Pollack has been producing many interesting papers e.g. [13], [14], [15] and [16] and
there seems further preprints, which we can find in his website.

Now let us note that the unipotent radical of the Heisenberg parabolic subgroup is a Heisenberg group
with one-dimensional center. Along this parabolic subgroup we can consider the Fourier expansion of
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automorphic form on the adele group G(A) as follows

F(g) =Y Fe(g) (g€5(a)).

£eQ

where F¢ denotes the Fourier transformation of F' with respect to the additive character of the center of
the Heisenberg group parametrized by &. It is natural to call this expansion Fourier-Jacobi expansion.
When F generates a quaternionic discrete series, the generalized Whittaker functions determined by Pol-
lack contributes to the archimedean part of Fy. Our recent result taken up in this article contributes to
the determination of F¢ for non-zero &s. An essential ingredient is an explicit determination of gener-
alized Whittaker functions for Schrodinger representations of the Heisenberg group, which exhausts all
irreducible unitary representations of the group together with the characters.

2 Preliminaries

A fundamental paper of quaternionic discrete series representations is due to Gross-Wallach [5]. We know
that, in [5], there is the list of simple groups admitting quaternionic discrete series representations as
follows:

e Classical groups

i) SU(d,2) (type A)
ii) SO(d,4) (type B or D)
i) Sp(1,d) (type C),

e Exceptional groups

i) G2 (real rank 2)
ii) Fy (real rank 4)
iii) Eg, E7, Es (real rank 4).

For this article the targets of the groups are SO(d,4) and all the exceptional groups above. These
groups have maximal parabolic subgroups to be called Heisenberg parabolic subgroups. The unipotent
radicals of these parabolic subgroups is two step nilpotent groups, which are naturally referred to as
Heisenberg groups. The Heisenberg groups just mentioned are understood commonly in terms of cubic
norm structures.

We now review the notion of cubic norm structures, following [12, Section 2.1]. A finite dimensional
vector space J over a field F' with char(F) = 0 is called a cubic norm structure if it has a cubic polynomial
Ny :J — F, quadratic polynomial map f : J — J and the trace paring (x,*): J ® J — F such that

e Ny(1y)=1, 15 =1, Iy xz=(15,2) —z Vz e J.

o (2%)f = Ny(z)x Vr € J.

o (z.y)=1(1,,15,2)(15,15,9) — (1s,2.y) Yo,y € J.

o Ny(z+y) = Ny(x)+ (2%,y) + (x,9%) + Ny(y) Va,y € J,

where x xy = (z+y)* — 2% —y* and there is the unique trilinear form (x, *, ¥) satisfying (z,z,z) = 6N ().

Hereafter, by § we denote a simple group of adjoint type over Q whose real groups G(R) correspond to
the list above except for SU(d, 2) and Sp(1,d). As we have said the group § has a maximal parabolic sub-
group called a Heisenberg parabolic subgroup. Let N be its unipotent radical, which has one-dimensional
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center, say Z. This is a Heisenberg group, whose vector partW; ~ N/Z is defined as a Q-algebraic variety
characterized by the Q-rational points

Wi (Q):=QaJo® Jg ©Q,

where Jg is a vector space over Q equipped with a cubic norm structure and J(\lf the dual with respect
to the trace paring. For each case of G, J := Jg ® Rs are explicitly given in [12, Section 1.2]. For this
we note that these Js are well known examples of Euclidean Jordan algebras, whose trace parings are
positive definite.

3 Generalized Whittaker functions and Fourier-Jacobi models

In this section we work over real groups. We put G := G(R) and N := N(R) to discuss generalized
Whittaker functions and Fourier-Jacobi models for quaternionic discrete series representations.

Let K be a maximal compact subgroup of G. According to [5, Proposition 4.1], K is isomorphic to
M x SU(2)/{(e, —1)), where M is explained by [5, Table 2.6] and € is the unique element of order two in
the center of M. Let m, be a quaternionic discrete series representation with minimal K type 7, given by
the trivial extension of 2n-th symmetric tensor representation of SU(2), where we assume n > dim J + 1.

Let 1 be a weekly cyclic representation of N (for a definition see [19, Definition 2.2]). This notion
includes irreducible unitary representations of N. Let IV, be the maximal abelian subgroup of N whose
vector part is canonically isomorphic to JY G R < N/Z with JV := Jy @ R and Z := Z(R). The central
character of Z parametrized by £ € R\ {0} extends trivially to a character of N,,. We denote this by ¢
and define

Ne 1= LQ—Ind%m Ve, ng = C""’—Ind%m Pe.

The former is an irreducible unitary representation known as a Schréodinger representation while nee is
weekly cyclic but not unitary.

Definition. 3.1. For a weekly cyclic representation n of N the image of
¢ : Homg, ) (7, C>-Ind$n) — Hompg (7, C®-Ind$n)

induced by the canonical K -equivariant inclusion 1, < m, is called the space of generalized Whittaker
functions for m, with K-type 17,. On the left hand sides above we consider intertwining operators as
(g, K)-modules with the Lie algebra g of G.

Let us introduce the generalized Schmid operator D, » (cf. [19, Section 2.1]) to state the following:
Proposition. 3.2. We have a linear bijection

Im() ~ {W € C_(N\G/K) | Dy, - W =0},

Tn

where
Cr (N\G/K) = {W:G N H, RV, | W(ugk) = n(v) X 1,(k)"*W(g) Y(u,g,k) € NxG x K}.

This is stated as an injection in [19, Proposition 2.1] for discrete series representations in general
and proved to be a bijection in [19, Theorem 2.4] for discrete series with Blattner parameters satisfying
“far from the wall”. However, in [9], we can prove the above bijection for quaternionic discrete series of
Sp(1,d), which does not satisty the condition “far from the wall”. In [11] we have recently extended it to
quaternionic discrete series m, of the general class taken up in this article.

Solving the differential equations arising from D, . - W = 0 we can explicitly determine general-
ized Whittaker functions under assuming the separation of variables explained soon. By the left N,,-
equivariance and the right K-equivariance with respect to ¢ and 7,, the generalized Whittaker functions
are determined by the coordinate

(a,b) x Z(=X+v-1Y)xwe (R J) x Hy x Ry,
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where we note that N,,\N ~ R @ J, H; denotes the tube domain for the Euclidean Jordan algebra
J (corresponding to the Levi subgroup for the Heisenberg parabolic subgroup) and R~ is viewed as the
connected component for the center of the Levi subgroup of the Heisenberg parabolic subgroup.

With the standard basis {z"T”y"~" | —n < v < n} express the generalized Whittaker function W as

n+u yn—u

Z ¢1/ TI+V) m ([]EG)

v=—n

Theorem. 3.3. For each v we assume the separation of variables ¢, (a,b, X,Y,w) = F,(a,b, X, Y)H,(w).
Up to scalars we explicitly determine the generalized Whittaker function of moderate growth with respect
to w as follows:

1) Suppose £ > 0. We have ¢, =0 for —n <v <n—1 and
On = NJ(Y)_%w"“e_%w2€ exp(—2mv/—1(a>N;(Z) + a(b, Z*) + (b, bx 2))).
1) Suppose £ < 0. We have ¢, =0 for —(n — 1) <wvn and

by = Ny (V) 2w 262 exp(—2myv/—1(a2Ny(Z) + a(b, Z) + %(b, bx Z))).

Here Y denotes the imaginary part of Z € H.

Based on this result we deduce a general consequence on the Fourier-Jacobi model for m,. To define
this notion we introduce the Jacobi group

Ry =L%x N

with the connected component of the identity for the semisimple part of the Levi subgroup of the Heisen-
berg parabolic subgroup. From this explicit formula we know that there is no generalized Whittaker
functions for 7¢ since W above can not be L?(R & J)-valued. As a consequence of this we have obtained
the following result.

Theorem. 3.4. For any irreducible unitary representation pg with the central character parametrized by
& e R\ {0} we have

Hom(g K) (77717Crilood'1ndg1p£) = {O}a

where C° 4 IndRJpg denotes the representation of G with representation space given by moderate growth
sections for C'*° —IndR]pg

The notion above of the intertwining operators are naturally referred to as the Fourier-Jacobi models.
For this we cite [2], [6], [7] and [8] et al.

4 Fourier-Jacobi expansion

For this section we need to review the Weyl group of §. Regarding the G2-case, the root system of G5 has
the set {«, 8} of simple roots, where « (respectively 3) denotes the long root (respectively short root).
We let w, and wg be the simple reflections for o and /3 respectively. For a general § we refer to [17,
Section 2.2]. For this we recall that there is the Z/3-grading of the Lie algebra g; (this notation follows
[12]) defined over some general ground field (cf. [12, Section 4.2]), from which we know without difficulty
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that the algebraic group of type G5 can be embedded into a general § and that there is the sl3-factor in
the Z/3-grading. Then we see that

0 1 0
w12 = —1 0 O 6 SL3
0 01

corresponds to w, (denoted by s, in [17]). Here we can view wis as an element of §(Q) since we verify
that wis defines an adjoint action on the Lie algebra using its Z/3-grading. In fact, wio defines an
element of the Weyl group of G given by the reflection of the simple root corresponding to the root vector
Ey5 € sl3 (the Lie algebra of SL3z). There is also an element of Weyl group of G corresponding to wg in
G explicitly given in [17, p145] (denoted by sg there). This coincides with Jo given in [12, Section 2.2].
In G we also use the same notation w, and wg. In [17, Section 2.2] it is remarked that the Weyl group
of G is generated by w,, wg and the Weyl group for the automorphism groups of .J preserving the cubic
form of J up to scalars.

In addition we introduce a Q-algebraic group R; with the group R ;(R) = R of real points. This is to
be called a Jacobi group, which is given by the semi-direct product of N with the connected component
L ; of the identity for the semisimple part of the Levi subgroup of the Heisenberg parabolic subgroup of
G. We also need the Q-subgroup N,,, of N whose vector part is defined by J&{ ®Q — W, (Q).

4.1 Fourier-Jacobi expansion of general automorphic forms

Let F' be an automorphic form on G(A). For a character x of N(Q)\N(A), F, denotes the Fourier
transformation of F' by x. We note that x is parametrized by («, 8,7,0) € Q® Jg ® Jé e Q=W,(Q).

Theorem. 4.1. Let F¢ be the {-term of the Fourier-Jacobi expansion of a general automorphic form F
for £ € Q\ {0}. We have

=3 Y Fy (wan((v,0,0,0), Zo,,
veQ xi

with
exg (9) = Z Fxg (wa9),
YENM (Q\N(Q)

where x; (respectively x¢ ) runs over characters of N(Q)\N(A) parametrized by (€, 3,7,6) € W;(Q) (re-
spectively (£,0,v',0") € W;(Q)). The function Oy above is left R;(Q)-invariant.

The proof of this begins with the expansion of F¢ by characters of Ny, (Q)\N,(A) as follows:

ZZ (b) V 0700))9)7

veQ wéb)

where

. wéb) ranges over characters of N,,,(Q)\N,,(A) parametrized by (0,3,0,0) € W;(Q) and ¢ with
ﬁ‘e ']Qv
o I ® denotes the Fourier transformation of F' with respect to wéb).
g

We now note that the w,-conjugate of N exchanges the center of N and the last entry of W; and that
waNpw,t =Ny, Let us introduce another character wéi of Ny (Q)\N, (A) defined by

V&) (u) == Yib) (wauwyt)  (Yu € Ny (A)).
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We then see that F, o) (wag) = E o (g) is trivial on the center Z(A) of N(A) and that this admits the
3 & a

expansion with respect to the characters of N(Q)\N(A). We therefore reach the expansion of F¢ as in the
theorem. The left R ;(Q)-invariance of ©,~ is based on a fundamental property of theta series attached
to the Weil representations (cf. [18]), which is naturally exteded from the Schrédinger representations as
is well known.

4.2 Fourier-Jacobi expansion for the case of cusp forms quaternionic discrete
series

Now recall that W;(Q) is equipped with a symplectic form (cf. [12, Section 2.2]). We can define the

symplectic group Sp(W) over Q and the meteplectic group Mp(W ), i.e. the non-split two fold cover of

Sp(W ). We can then consider the pull-back £; of £ by the covering map Mp(W;) — Sp(W), where

note that £ preserves the symplectic form on W; and can be thus regarded as a subgroup of Sp(W ).
Let LE(RJ(Q)\RJ (A)) be the space of square-integrable functions on R ;(Q)\Rs(A) with the character

of Z(A) (i.e. central character) parametrized by £ € Q \ {0}. It is shown that we have a decomposition

LE(Rs(@\Rs(4)) = L*(£5(Q)\Ls(A)) © LEN(Q\N(A)),
where
. LE(N(Q)\N(A)) denotes the L2-space of N(Q)\N(A) with the central character parametrized by
§£€Q\ {0}, and
. L%E}(Q)\E}(A)) denotes the space of square-integrable functions on EJ(Q)\EJ(A) having the

multiplier system coinciding with that of the restriction of the Weil representation to £ ;(A), which
can be genuine or ordinary depending on £ .

Noting L? (E(Q)\E;(A)) decomposes into a direct sum of the discrete spectrum Li(E(Q)\E](A)) and
the continuous spectrum L2(£;(Q)\ £ s(A)). We then see that Lg(fRJ(Q)\fRJ(A)) admits a decomposition
LE(R(Q)\Rs(A)) = LE 4(R1(Q\Rs(A)) ® LE (R (Q)\Rs(A))

with
L2 (R (Q)\R(A)) = LE(£(Q)\£s(A)) ® LEN(Q)\N(A)),
LZ(R(Q\Rs(A)) = LULS(Q\Ls(4)) © LEN(Q@)\N(A)

Definition. 4.2. The space Lg’d(fRJ(@)\RJ(A)) (respectively L2?C(RJ(Q)\:RJ(A))) is called the discrete
spectrum of LE(R,I(Q)\R,](A)) (respectively the continuous spectrum of LE(R;(Q)\R;(A))).

)
)

Theorem. 4.3. Suppose that F' be a cusp form generating a quaternionic discrete series representation
at the archimedean place. Let € € Q\ {0}.

i) We have
Fe(g) = > Py (wan((v,0,0,0),0)g),

veQ xe

where x¢ ranges over characters of N(Q)\N(A) parametrized by (&,8,7v,0) € W;(Q) of rank four
satisfying the negativity with respect to Freudenthal’s quartic form (cf. [12, Corollary 1.2.3]).

ii) Suppose that F generates a K-type (7,V) of the quaternionic discrete series as a K-module. For
each fized g € G(A), as a function in h € G;(A), we have

(Fe(hg),v) € Lg o(Rs(Q)\Rs(A))

for v e V with the K-invariant inner product (x,%) of V.
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The first assertion is a consequence of Theorem 4.1 and an explicit formula for the generalized Whit-
taker functions by Pollack [12, Theorem 1.2.1]. The second assertion is proved based on Theorem 3.4.
In fact, if F¢ has non-zero contribution from the discrete spectrum, what this causes to the archimedean
component implies the non-zero existence of the moderate growth Fourier-Jacobi model for a quaternionic
discrete series representation 7,, which contradicts to Theorem 3.4.

5}
i)

ii)

iii)

Concluding remarks

The full detail of this write-pu is included in [11]. Beside it [11] proves that cusp forms constructed
by Pollack [14] generate quaternionic discrete series representation, and takes up the non-adelic
formulation of the Fourier-Jacobi expansion.

The idea to use an element of the Weyl group to understand the Fourier-Jacobi expansion is also
found in [10]. This deals with the Fourier-Jacobi expansion of general cusp forms on Sp(2,R),
including generic cusp forms. Recently the author has rewritten the paper so that it also includes
the adelic formulation of such expansion.

As for the cases of SU(d, 2) and Sp(1, d) we refer to [4] and [9]. It can be remarked that automorphic
forms generating quaternionic discrete series for these two cases have unique features, which should
called Kocher principle for the case of Sp(1,d) (cf. [9]) and the anti-Kécher principle in terms of
signature for the case of SU(2,2) (cf. [4]). We can say that Theorem 4.3, particularly its second
assertion has added another unique feature for automorphic forms generating quaternionic discrete
series representations. In fact, Fourier-Jacobi coefficients of holomorphic Siegel cusp forms are
Jacobi cusp forms, which are naturally considered to sit inside the discrete spectrum of a Jacobi
group (indeed this is proved in [1, Section 4] for the case of degree two). By [10] dealing with
the case of the symplectic group of degree two, we have known that, in order to understand the
Fourier-Jacobi expansions of cusp forms, we need to study the continuous spectrum as well as the
discrete spectrum for the square-integrable automorphic forms on a Jacobi group. However, the
case of this write-up need only the continuous spectrum as we have seen above. This is totally
beyond our expectation.
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