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1. INTRODUCTION

This short note is based on a talk given at the RIMS conference
“Research on automorphic forms”, held at Kyoto in January 2024. It
summarizes the main results of my joint work with Raphaél Beuzart-
Plessis in [4]. I would like to thank the organizers for the kind invi-
tation. Since this is a short note, I refer the reader to [4] for some
undefined notation.

Let F' be a local non-Archimedean field of characteristic 0, G be a
reductive group defined over F'; H C G be a unimodular subgroup and
§: H(F) — C* be a smooth unitary character. Let L*(H(F)\G(F),¢)
be the space of ¢ : G(F) — C* that transform by left multiplica-
tion by H(F') according to the character & (i.e. ¢(hg) = &£(h)¢(g)
for (h,g) € H(F) x G(F)) and whose norm is square-integrable on
H(F)\G(F). The natural action of G(F) on L*(H(F)\G(F),€) by
right translation is a unitary representation and for f € C®°(G(F)),
we define by integration an operator R(f) on L*(H(F)\G(F),¢&). This
operator is associated to the following kernel function *

Ky(z,y) = (a" hy)&(h)dh, =,y € G(F).
H(F)
Formally, the trace of the operator R(f) should be given by the in-
tegral of Ky(x,x) over x € H(F)\G(F). However, neither of these
two expressions are well-defined in general. The main result of [4] is
to define some canonical regularizations of the integral of Ky over the
diagonal for certain triples (G, H, &) (essentially associated to symmet-
ric varieties that we name “coregular”) and to express the resulting
distribution on G(F') as a sum (or integral) of contributions naturally
generalizing the weighted orbital integrals of Arthur [1]. This can be

Ifor simplicity we assume the center of G is trivial in this note
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considered as the geometric side of a local trace formula for the corre-
sponding unitary representations L?(H(F)\G(F),¢). We plan to de-
velop in a subsequent paper a general spectral expansion for those trace
formulas.

In the so-called group-case, corresponding to G = H x H with H
embedded diagonally in the product, we recover the geometric side of
Arthur local trace formula [1]. We actually also consider an enhance-
ment of the previous setting where we fix an extra automorphism 6 of
the triple (G, H,&) and we formally try to compute the trace of the
composition R(f)o#. This can be more naturally formulated using the
notion of twisted spaces due to Labesse [6]. In the group-case again,
we recover the geometric side of the local twisted trace formula due to
Waldspurger [8].

2. THE TRACE FORMULA

2.1. The coregular variety.

Definition 2.1. Let X = H\G be a homogeneous G-variety with H
reductive. We say that X is coregular if there exists an non-empty
open subset U C X x X such that for every x € U, the stabilizer
G, C G of x for the diagonal action contains reqular elements.

In Section 3 of [4], we give various alternative characterizations of
coregular homogeneous G-varieties. Technically, the most important
for us is the following property (where G,s C G denotes the open locus
of regular semisimple elements and D¢, D stand for the usual Weyl
discriminants):

A homogeneous G-variety X = H\G is coregular if and only if
H N G, is nonempty and the function h € H(F) N G,s(F) — %Z—((};L))Z
is locally bounded on H(F).

In this note for simplicity we will restrict to the cases when X = H\G
is coregular and symmetric (i.e. H = (G")° for some involutation ¢ of
G). We would like to point out that in [4] we actually considered a more
general case which is the Whittaker induction of symmetric coregular
varieties. Examples of coregular symmetric varieties are the group case
(i.e. G = Hx H), Galois symmetric varieties (i.e. G = Resg/pH where
E/F is a quadratic extension) or Sp,,\GLy,. However, many other
natural examples of homogeneous varieties such as O,\GL,, GL, x
GL,\GLs, or Sogiag\(son x SO,,11) are not coregular. Examples of
Whittaker induction of coregular symmetric varieties are Shalika model
or unitary Shalika model.
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2.2. Truncation. Fix a triple (G, H, &) as in the previous subsection.
The first step is to truncate the (usually not convergent) integral

I(f):/ Ky(z,x)dx
H(F)\G(F)

in a meaningful way. For this we introduce a sequence of truncation
functions (ky )y indexed by points Y in a certain affine space 2. Roughly
speaker this affine space (denoted by Ap, ,) is the —1-eigenspace of Ap,
under the action of ¢ where Ap, := Hom(X™(F), R) and P is a minimal
t-split parabolic subgroup of G.

In Section 3 of [4], we defined a map Hx : H(F)\G(F) — Ap,,
which is an analogue of the natural map G(F') — .AJISO induced by the
Cartan decomposition in the group case. The definition of such a map
is non-trivial and we have used some results of Delorme [5] about the
neighborhoods at infinity for symmetric varieties. We refer the reader
to Section 3 of [4] for details.

Then for YV € A;O.L that is “sufficiently positive”, we denote by ky
the characteristic function of the image in H(F)\G(F) of the set

{v e HIENG(F) | Hx(z) €Y + " Ap,}.

Note that the above set is a local analogue of the global Siegel domain.
Then the trace formula is to study the asymptotic behavior of the
expression

Iy(f) = / K¢(x,z)ky (v)dx
H(F)\G(F)

when Y 2% 0o. Note that because of the truncation function Ky the
integrand in the above expression is compactly supported and hence
the integral is well defined.

2.3. The trace formula. Let I'(H) (resp. ey (H)) be the set of regu-
lar semisimple (resp. regular elliptic) conjugacy classes in H(F'). These
two sets can be naturally equipped with measures.

For t € I'(H), that we identify with a representative in H(F), we
denote by H;, G; the neutral components of the centralizers of ¢t in H,
G respectively. Then, for ¢ in general position G; is a maximal torus
of G by the coregular assumption. For f € C*(G(F)) and Y € Ap,,,
define

I (f) = / PRACCERTT

2For the definition of our truncation functions, we do not need to assume (G, H)
is coregular. It works for all the symmetric varieties.
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where Jy (t, f) denotes some kind of “weighted orbital integral”. More
precisely, Jy (t,.) is a distribution of the form

Jy(t, ) = / Flo g vy (9)dg
Gt(F)\G(F)

where the function g — v,y (g) is a certain weight function very simi-
lar to the one appearing in the definition of Arthur’s weighted orbital
integrals as v,y (g~ 'tg) is given by the volume of the convex hull of a
certain family (—Hg,(g9) +Yq)q where ) runs over the minimal ¢-split
parabolic subgroups of G' containing t.

Remark 2.2. In the Whitaker induced case the definition of the weight
1s more complicated and in that case the weighted orbital integral is at
some singular semisimple conjugacy classes. We refer the reader to
Section 4 of [4] for the definition of the weight in this case and for
various properties of the singular weighted orbital integral. We just
wanted to emphasize one important property we proved in Theorem
4.8 of [4] which states that the singular weighted orbital integral of a
matriz coefficient of a discrete series is equal to the reqular germ of the
Harish-Chandra character of that discrete series.

Theorem 2.3. (Theorem 6.5 of [4]) Let 0 < ¢ < 1 and firx f €
CX(G(F)). Then, for any k > 0, we have

Iy (f) — Jy(f)| < N(Y)7*

for every Y € Ap,, with d(Y) > eN(Y) ®. Moreover, the function
Y € Ap,, — Jy(f) is a polynomial-exponential function in a suitable
sense (see Section 2.9 of [4]). If the variety X = H\G is tempered (see
Section 3.2 of [4]), then the same statement holds for functions f in
the Harish-Chandra Schwartz space C(G(F)).

In the group case the above theorem recovers the geometric side of
the local trace formula proved by Arthur in [1]. Also as we mentioned
in the introduction, in [4] we actually considered the case of twisted
space. Under the twisted setting, in the group case the above theorem
recovers the geometric side of the local twisted trace formula proved
by Waldspurger in [8]. Finally our results also include the Whittaker
induced case.

3Here d(Y) (resp. N(Y)) is the depth (resp. norm) of ¥ defined in Section 3.8
of [4]
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3. APPLICATIONS

3.1. A simple local trace formula and the multiplicity formula.
Most applications of our trace formula comes from a simple version
obtained by specializing it to the case of strongly cuspidal test functions.
More precisely, we recall following [10] that a function f € CX(G(F))
is said to be strongly cuspidal if for every proper parabolic subgroup
@ = LV C G we have

f(lu)du =0, for every l € L(F).
V(F)

It is then shown in [oc. cit. that the regular semisimple weighted
orbital integrals of a strongly cuspidal function f don’t depend on any
choice (except that of a Haar measure on G(F')) and that, correctly
normalized by certain signs, they define a function

O :G(F) = C

which is G(F)-invariant by conjugation and a quasi-character. For
every strongly cuspidal test function f € C°(G(F)) we set

(1) = [ L, D00 e

Theorem 3.1. (Theorem 7.2 of [4]) Let f € CX(G(F)) be a strongly
cuspidal function. Then we have

llism [Y<f) == Igeom(f)v
Y—O>oo
in particular the limit exists. Furthermore, if the pair (G, H) is tem-

pered then the same holds for strongly cuspidal test functions f €
C(G(F)).

As a corollary of the above theorem we can also obtain general inte-
gral formulas for the multiplicities
My g1 (m) = dim(HomH(F)(ﬂ,f_l)).

More precisely, for 7 an irreducible representation of G(F'), let ©, be
the Harish-Chandra character. We can define an expression mgeom, ()
similar to Lyeom (f) by formally replacing ©; by ©,. Then, we have the
following.

Theorem 3.2. (Theorem 7.4 of [4]) Assume that 7 is supercuspidal
and the multiplicity my ¢ (m) is finite. Then, we have

(3.1) Mg g1 () = Mgeom,m1 (7).
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If the pair (G, H) is tempered, 7 is square-integrable and the multiplicity
muye(m) is finite, then the equality (3.1) also holds.

In the case of Galois models or the Shalika model, the above corollary
recovers one of the main results in [2] and [3] respectively. Actually
for Galois models associated to classical groups, we can also deduce
new results from the analog of the above corollary in certain twisted
situations as explained in more details below.

3.2. The local multiplicity problem for the Galois models. Let
E/F be a quadratic extension, H be a reductive group defined over F
X be a character of H(F) and G = Resp/pHp. The model (G, H, x) is
the so-called Galois model. In [9], Prasad made a general conjectural
regarding the multiplicity of Galois model. In this paper, we will study
the case when H is a classical group.

Let H be a quasi-split special orthogonal group or a symplectic group
and G' = Resg/pHg. If H is the even special orthogonal group, let
Hy be a quasi-split special orthogonal group that is not a pure inner
form of H and such that G = Resp/pHp = Resg/pHop (ie. the
determinants of the quadratic forms defining H and Hy belong to the
same square class in E*/(E*)? but belong to different square classes
in F*/(F*)?). If H = Sp,,, or SOy, let x be the trivial character on H
(and Hy if H = SOq,). If H = SOg,,11, let x € {1,n,} where n, is the
composition of the Spin norm character of SOy, 1 with the quadratic
character ng/p.

Our first result is a necessary condition for a discrete L-packet to be
distinguished.

Theorem 3.3. (Theorem 9.2 of [4]) Let H = Sp,,,,SOq, or SOg,.1,
G = ResgypH, x = 1 if H = Spy, or SOq,, and x € {1.m,} if
H = SOg,41. Let I14(G) be a discrete L-packet of G(F) and 114(G")
be the endoscopic transfer of the L-packet to the general linear group
G’ = GL4(E) (here a = 2n if H = SOy, or SOgp41 and a = 2n + 1 if
H = Sp,, ). Then the packet I1,(G) is distinguished (i.e. m(m,x) # 0
for some m € I14(G)) only if 14(G") is (H', X')-distinguished. Here
H' =GL,(F), X' =1ifx =1 and X' = 0}, := ng/r o det if x = 1.

Our second result is to compute the summation of the multiplicities
over certain discrete L-packets. Assume that I14(G’) is (GL4(F), X')-
distinguished. By Theorem 4.2 of [7], II;(G’) is of the form

He(G) = (11 X -+ X 1) X (01 X F1) X -+ X (O X Tpn)

where
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e 7, is a discrete series of GL,,(E) that is conjugate self-dual.
Moreover, if (I, x) = (SOspnt1,Mn), 7; is self-dual of symplectic
type; otherwise, 7; is self-dual of orthogonal type.

e 0, is a discrete series of GLy,(E) that is NOT conjugate self-
dual. Moreover, if (H, x) = (SO2n41,7n), 0 is self-dual of sym-
plectic type; otherwise, o; is self-dual of orthogonal type.

e 7;,0; are all distinct.

[} Zé:l a; + 2 Z;nzl bj = a.

We will consider the special case when m = 0. The general case will be

consider in our future paper. When m = 0, II4(G’) appears discretely
in the L? space of the Galois model (GL,(E), GL,(F), ).

Theorem 3.4. (Theorem 9.3 of [4]) With the notation above, if H is
the symplectic group or the odd special orthogonal group, we have

Z m(m,x) = 27%

7T€H¢,(G)

If H 1is the even special orthogonal group, we let Hy be another even
special orthogonal group as above. We use mo(m, x) to denote the mul-
tiplicity for the model (G, Hy, x). Then we have

> mlm,x) 4+ mo(m, x) =27
TFEH¢(G)

Remark 3.5. By Theorem 1 of (2|, the above two theorems also hold
if we replace H (and Hy if we are in the even orthogonal group case)
by the non quasi-split classical group.

We also proved similar results for the unitary Shalika model. We
refer the reader to Theorem 8.3, 8.4 and 8.7 of [4] for details. The idea
of the proof is to compare the local trace formula for the pair (G, H)
with the local twisted trace formula for the pair (G', H'), and then
apply the theory of twisted endoscopy.
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