Determinacy of probabilistic w-languages with strict
threshold semantics

Wenjuan Li*! and Kazuyuki Tanaka'!

1Beijing Institute of Mathematical Sciences and Applications, Beijing, China

Abstract

Probabilistic automata are a natural generalization of non-deterministic finite automata in the
sense of replacing the non-determinism with probabilistic distributions as introduced by Rabin
(1963). In this paper, we review several kinds of probabilistic automata on w-languages and
introduce our results of the determinacy strength of some probabilistic w-languages with threshold
semantics.

1 Introduction

We are interested in the determinacy strength of infinite games whose winning sets are recognized
by probabilistic automata.

Consider a Gale-Stewart game G(X), where X C A is called a winning set. Player I and player

IT select an element of A alternatively. A strategy for player I (II) is a mapping o : (J,,,, A 5 A
Player | : aq ay as as
N N SN SN S
Player Il : bo by by bs ...

(7 : Upew A" — A). Finally, they produce an infinite play x. Player I'is said to win with a play
x in G(X) if z € X. Roughly speaking we say o is a winning strategy for player I if it guarantees
that T wins when he follows Vn a,, = o(agbg - - - a,—1b,—1), while 7 is a winning strategy for player
IT if it guarantees that 1T wins when she follows Vnb,, = 7(agbg - - - a,,—1b,—1). A Gale-Stewart game
G(X) is said to be determined if one of the two players has a winning strategy. In this case, we
call the winning set X itself determined. Let I' C P(A¥), where P(A*) is the power set of A*. By
I'-Det, we denote that “Every set X € I' is determined”.

Dating back to Biichi and Landweber [1], they proved that REG,, the class of w-regular
languages, accepted by non-deterministic Biichi automata, is determined with computable winning
strategies.

*liwj@bimsa.cn
ftanaka@bimsa.cn

To increase the expressive power of finite automata, one way is to add stacks, by which the
w-languages are given by pushdown automata. Walukiewicz [17] showed DCFL,, the class of
deterministic context-free w-languages accepted by deterministic Muller pushdown automata, is
determined with computable winning strategies. Finkel [¢] proved that the deteminacy of CFL,,
context-free w-languages accepted by pushdown automata with a Biichi acceptance conditions, is
not provable in the set theory ZFC. For the determiancy of pushdown w-languages with weaker
acceptance condition, e.g., safety, reachability, Li and Tanaka [9] investigated the determinacy of
such games in the framework of reverse mathematics. Their results also hold for the w-languages
accepted by the corresponding non-deterministic/deterministic 2-visibly pushdown automata and
1-counter automata.

Another generalization of finite automata is to replace the non-deterministic transition rela-
tion with a probability distribution, namely probability automata. Rabin [15] defined probabilistic
automata on finite words. In this paper, we review the studies on w-languages accepted by proba-
bilistic automata and introduce our studies on the determinacy strength of infinite games for such
languages.

2 From non-deterministic to probabilistic

First, we brief review how a finite automaton accepts w-languages.

Example 2.1. A finite automaton with an input alphabet A = {a,b}, set of states Q = {qo,q1} is
illustrated as follows, where qq is both an initial and final state (indicated with double circle):

a a
a
wan —(o)T
b

Figure 1: A non-deterministic Biichi automaton M

A run on input word is an infinite sequence of Q). For instance, a run on the input (ab)* =
ababab - - - is as follows:

a b a b
Qo —¢@ —q " —q —q "

An input word is accepted by a Biichi automaton if there exists a run visiting a state in F(= {qo})
infinitely many times.

The infinite word (ab)¥ is accepted by M. There might be more than one run on a single input
due to the non-determinism of the automaton. The w-language accepted by M is LIM) = (abUa)*.
Note that player I has a winning strategy in the game G(L(M)) by always playing a. As we
mentioned in the Section 1, every w-language accepted by finite automata is determined [1].

As shown in Figure 1, M is nondeterministic in the sense that at state qg, by reading a, it
can simultaneously stay in state ¢y and move to ¢;. It is natural to consider a replacement of the
non-determinism with a probability distribution as in Figure 2.

Example 2.2 (cf. [5]). The probabilistic Biichi automaton P in Figure 2 accepts the language with
a positive semantics

= 1
£>0<73) _ {aklbakzbakgb. -+t ky, ko, ks .. . N>y such that H <1 - ka) > O} .
i=1

Figure 2: A probabilistic Biichi automaton P

We can see that player II has a winning strategy in the game G(L>°(P)), by always playing b
after every a selected by player I, producing an infinite play abababab--- & L>°(P).

a a a a
NSNS NS
Il b b b b

Figure 3: A winning play of player II in G(L>°(P))

Now we give the formal definition of probabilistic automata.

Definition 2.1. A probabilistic automaton is a tuple P = (Q, A, 9, do, F, Acc), where

- @ is a finite set of states,

- A is a finite input alphabet,

- transition probabilistic distribution § : Q x A x @ — [0,1] such that for all ¢ € Q,a € A,
> oo 80,0, q) € {0,1},

- 0 : Q — {0, 1} is the initial distribution such that X,cqdo(q) =1,

- F is the set of accepting states, and

- Acc is the acceptance condition, e.q., reachability, Biichi.

The probabilistic automaton P = (Q, A4, 9, qo, F, Acc) as shown in 2.2 is equipped with (proba-
bility) transitions, do(qo) = 1, d(qo,a, qo) = %7 0(qo0,a,q1) = %, qi,a,q1) =1, and 0(q1,b,q0) = 1.

Similar as the finite automata, a run of a probabilistic automaton is a sequence of states pro-
duced by valid transitions and the acceptance of a run is determined by the acceptance condition,
for instance Biichi condition. The acceptance condition Acc we considered here include:

o Safety (or II;) acceptance condition

there is a run (g;);>0 of P on v s.t. Vi,q; € F
——

Safety(F)

Reachability (or ¥;) acceptance condition

there is a run (¢;)i>o of P on a s.t. 3i,¢q; € F
- ———

Reach(F)

(31 A I1y) acceptance condition with F,., Fy C @

there is a run (g;);>0 of P on v s.t. Reach(F,) A Safety(F})
Biichi (or IT2) condition

there is a run (g;);>0 of P on avs.t. Vidj > i,q; € F

Biichi(F)

Co-Biichi (or ¥5) acceptance condition

there is a run (¢;);>o of P on a s.t. 3iVj >4,q; € F

co-Biichi(F)

A, acceptance condition with Fj, F, C Q:

there is a run r on « satisfying Bichi(Fy) and there is a run r on « satisfying co-Buchi(F.)

Given P and an input a, let Acc(F, o) denote the set of runs of « satisfying acceptance condition
Acc, that is, Acc(F,a)= {p € Q¥ | p satisfies Acc}. The acceptance of a word « is evaluated by
the accepting measure uéffl on the set Acc(F, a) under a certain semantics. Table 1 lists several

kinds of semantics and their corresponding w-languages.

Table 1: w-languages defined by different semantics

semantics measure w-languages
positive pps >0 | L7%P) = {ar e AY | upsS, > 0}

almost-sure | ppS =1 | LZY(P) ={a € A | ppo =1}

strict threshold | %, > A | L22(P) = {a € A” | up, > A}, for A € (0,1)

threshold PS> M| L2AP) = {ae A | ppS, > A}, for X € (0,1)

O —

We define the class of w-languages accepted by probabilistic automata with acceptance Acc
and strict threshold semantics as follows

L(PAZY) = {L C A“ | there exists a probabilistic automaton P s.t. L = L7*(P)}.

Probabilistic w-languages of other acceptance condition and semantics can also be defined similarly.

Focusing on the regular property of probabilistic w-languages, some variants of probability
automata are introduced in literature, such as hierarchical probabilistic automata, simple proba-
bilistic automata.

Hierarchical probabilistic automata

Given a natural number k, a probabilistic automaton H is called k-hierarchical if there is a
ranking function rk : Q@ — {0,1,--- k} with Q = |_|?:0 Q; = |_|?:0 {q € Q| rk(Q) = j} such that
for any ¢ € @, a € X, if i = rk(q), then Next(q, a) C |J,c <, Q¢ and | Next(g,a) N Q; |< 1. That
is, from any state of a certain level, reading any input symbol, the automaton can go to at most
one state of the same level and all other branches go to higher levels. We can define L(HPA})
for some probability semantics * and acceptance condition Acc.

Simple probabilistic automata

As we will introduce in Section 3, the w-languages accepted by hierarchical Biichi probabilistic
automata with non-extreme semantics (i.e., strict threshold and threshold) lose the regularity
property. In [0], a special class of such automata is defined, which is called simple probabilistic
automata in the sense that it is 1-level hierarchical probabilistic automata and all accepting states
belong to level 0. Analogously, its languages are denoted as L(SPA,).

Finite probabilistic monitors and robust probabilistic automata

Finite probabilistic monitors are a special kind of probabilistic Biichi automata with an absorbing
reject state. They can be regarded as randomized run-time monitoring algorithms or models of
open, probabilistic reactive systems with failures captured by a rejecting state. Motivated by appli-
cation questions, probabilistic monitors with various acceptance conditions, including strong/weak
acceptance and strict/non-strict cut points, are defined in [2]. Given a probabilistic monitor M
on A and A € (0,1), we can define

L (M) ={a €A |y, <A},

and L3N(M), L2(M), LZ2(M) can be defined in the same manner. Similarly, we have the

rej rej rej
classes of w-languages denoted as L((PM*)). A probabilistic monitor M with alphabet A is called
rej

z-robust for z € (0, 1) if there exists € such that for any input o € A“, | iy , —x |> e. We denote
the class of such language as Robust.

It is interesting to see that for a-robust probabilistic monitor B on alphabet A, if £>*(B) or
A% — L£>MB) is T1Y, then it is indeed w-regular. Intuitively, the w-regularity of some I1{ languages
is equivalent to the regularity of its finite prefixes. Note that notion of robustness generalize the
isolated cut-point defined in the context of finite words, and such languages of finite words are
regular [15].

Ambiguity of probabilistic automata

By considering the number of different accepting runs on an input, another kind of probabilistic
w-languages that characterize the w-regular languages can be obtained. An automaton is called
k-ambiguous if there are at most k different runs on each input for some & € N. The class of
w-languages accepted by probabilistic k-ambiguous automata is denoted as L(k-PAj). Similarly,
polynomially ambiguous and countably ambiguous automata are defined in [10], whose
languages are denoted as L(nf-PAj,) and L(Ry-PAL).

5

3 Topological complexity of probabilistic w-languages

We start with finite words accepted by probabilistic automata. The cardinality of the class of
languages of finite words accepted by probabilistic automata over real numbers equals to cadinality
of continuum [15, 14]. Then there must be some languages accepted by probabilistic automata but
not accepted by any deterministic finite machine, including deterministic finite Turing machines.
However, this is not the case when we consider restricted probabilistic distributions and thresholds
as shown below.

Theorem 3.1 ([7]). If the probabilistic automata is computable (i.e., their transition distributions
and the threshold values are computable reals), then the probabilistic languages of finite words
accepted by such automata are computably enumerable.

Now we discuss w-languages accepted by probabilistic automata and Turing machines. We
follows the definition of Turing machines in [10], in which the machines are not required to finish
reading the whole tape. Let L(TMac) (L(DTMac)) denote the class of languages accepted by
(deterministic) Turing machines with acceptance condition Acc = IIy, ¥y, Iy, 3s.

Theorem 3.2 (cf. [10]).

L(DTMy,) = L(TMp,) = II°
L(DTMg,) = L(TMy,) = X9
L(DTMy,) = L(TMy,) = 39
L(DTMy,) = 19
L(TMp,) = X!

By Theorem 3.1 and 3.2, we can obtain

Theorem 3.3. Assume the probabilistic automata are computable. For* denoting positive, almost-
sure, threshold semantics, and Acc = 11y, 31,2,

L<PAZCC) - L<TMACC) :

and in particular for Acc = I,
L(PA},) C B(3).

For threshold semantics, we have the following nice property. Although the original proof can
be found elsewhere, e.g. [3], we here present the proof for a straightforward understanding of such
a property.

Lemma 3.4. (1) L(PAR)) = L(PA?) for any A, n € (0,1).
(2) L(PAR)) = L(PAZ") for any A, n € (0,1).

Proof. Given a probabilistic Biichi automaton P = ({qo, - ,qn-1}, A, do, 0, F) with threshold A,
we want to construct a Buchi P’ with threshold 5 such that L(P) = L(P’).

Assume A > 7. Suppose P’ = ({qo, " sqn-1,qn}, A4, 0,0", F), where P’ includes a copy of P
plus an extra state g, which is a sinking reject state and

o 0o(qi) = $00(q;) for 0 <i<n—1

® 6(/)(%1) :1_31

For any infinite word «, the accepting probability of P’ is 2Pr7*(a) > 5, and thus L(P) = L(P").

Assume A < 1. Suppose P’ = ({qo," " , Gn-1,Gn}, A, 0,0, F U {qn}), where P’ consists of a
copy of P plus an extra state ¢, which is a sinking accepting state and

o (i) = 1=%60(q:) for 0< i <n—1

e 0)(gy) =1 — 154 = 122 since J is the initial distribution and S do(q;) = 1

For any infinite word «, the accepting probability of P’ is Prp (o) = 13 + }%}Prg’\(a) > 1, and
thus L(P) = L(P). O

Notice that this property of threshold semantics also holds for other acceptance conditions.

For the relation among w-languages accepts by variants of probabilistic automata, we summa-
rize as follows, especially for II, (Biichi) condition,

(1) REG,, NIIY = Robust = L(PM=?) ¢ L(PM=*) c II9
C REG, NI ¢ L(PM<!) C L(PM=*) C 1Y, cf. [7]
(2) REG,, N Deterministic = L(SPA})) = L(SPAR)
= L(HPAp,) ¢ L(PAR}) € L(PAR), cf. [3, 7]
= L(k-PA}) = L(2"PAR]) C L(R-PAf)), cf. [10]
(3) REG, = L(HPAR)) ¢ L(PAR)) ¢ L(PAR), cf. [3, 7]
= L(k-PA) = L(Ro-PA}Y), cf. [10]
= L(k-PA;}) C L(n*-PA)), cf. [10]
(4) L(PAy,) C 113
L(PAf,) = B(L(PAf,)) € B(X9), cf. [7]
L(PA7)) C B(X9), L(PAR)) C B(ZY)

(5) L(PAR)) and L(PA%;\) are not comparable, L(HPA7}) and L(HPA%;\) arc not comparable,
L(PM=") and L(PM~*) are not comparable, cf. [6], []

where B(X) is the Boolean combination of X, REG, N Deterministic denotes exactly the class of
w-languages accepted by deterministic Biichi automata.

4 Determinacy of probabilistic w-languages of strict thresh-
old semantics

In the following, we will treat probabilistic w-languages of strict threshold semantics. Such class
of languages itself does not depend on the value of the threshold as shown in Lemma 3.4. For
simplicity, we set threshold as %

1
Theorem 4.1. There is an infinite game in]L(PA;fAHl) with only X9-hard winning strategies.

The proof is an improvement of our results in [9] and for the self-contained purpose, we re-state
some necessary part. We will construct a game associated with a universal two-counter machine
R such that the halting problem of R is computable in any winning strategy of player II, while
player I has no winning strategy.

Each counter of the (universal nondeterministic) 2-counter automaton stores a nonnegative
integer. The input is a natural number m, initially stored in one of the counters. Then by the
current state and the tests results on whether each counter is zero or not, the automaton goes
to the next state and do operations on the two counters by increasing the counter(s) by 1, or
decreasing the counter(s) by 1 if the counter is not zero.

A 2-counter automaton is a tuple R = (Q,0,¢n, '), where @ is a finite set of states, § C
Q x{0,1}?2x Q x {—1,0,1}* a transition relation, g, an initial state and F a set of halting states.
A configuration of 2-counter automata is (¢, m,n), where ¢ € @, and m, n are nonnegative integers
in the two counters. For any input natural number m of R, the initial configuration is (gin, m,0).

We code a configuration (g, m,n) of a 2-counter automaton as ga™b"™. A run for a natural
number m on a 2-counter automaton R is a sequence of configurations such that ¢,a™°b™ —x
q1a™ 0" R qea™? 0™ i - -+ Where g, is the initial state, mg = m, ng = 0 and 5 is defined
by the transition relation 0 of R. A run is halting if it reaches a halting configuration.

We define a number m € L(R) if and only if there exists a run on m such that ¢,a™b™ —g
q1a™b™ =g - g.a™e b, where ng = 0 and ¢, € F. It is known that a 2-counter automaton,
even a deterministic one, is equivalent to a Turing machine [11, 12]. Thus the halting problem
for a certain (universal deterministic) 2-counter automaton is ¥{-complete. In the following, by
2-counter automata, we mean deterministic 2-counter automata unless stated otherwise.

Proof. We construct a game where player I (male) can choose any natural number m and ask
whether such a number can be accepted by the universal 2-counter automaton R while player II
(female) can choose the ¥ or 3 role such that she always wins but player I has no winning strategy.
We consider the case where player II plays an 3 role: she challenges to find player I's error after
she answers no as shown below.

Player I m € L(R)? Qoa™b"™ > -+ > qa™ib" > g a ™
Player II: yes Or no

In order to win, player II needs to find the error in the sequence of configurations of a halting run
of R with input m provided by player 1.

That is, player II checks whether player I has obeyed the following rules.

(r0) player I has no intension to produce infinite many “1”s in the first round,

8

(rl) the sequence of configurations provided by player I is a sequence in the form of ga™b™ and
connected by > (for simplicity > is the code of —x),

(r2) the sequence starts with the initial configuration,
(r3) any two consecutive configurations constitute a valid transition of R, and

(r4) the sequence of configurations is ended with a halting configuration.

The rules (0), (1), (2), and (4) are easy to check with ¥, conditions by finite memory (namely,
player I loses with II;). For (3), it requires to guarantee the correctness of every pair of successive
computations.

The key of the proof for Theorem 4.1 lies in using probabilistic automata to mimic the computa-
tion process of R, and in particularly constructing a probabilistic automaton accepting w-language
in the form of L = {a"0"ta: n € N, € {a,b}*} as in the following example.

Example 4.2. A weak equality test (Freivalds [1981], Condon and lipton [1989]) is introduced
to show how probability automaton accepts L = {a"b"fa : n € N,a € {a,b}*}, which provides
a probabilistic way using finite bounded memory to check whether two input sequences are of the
same length.

When we treat a', we conduct the following three experiments:

X2 =True if 2i coins are all heads.

X =True if i coins are all heads.

X =True if another i coins are all heads.

and similarly for b, we have X7, Xi and Xi*.

Let A= XV XY and B = <Xé/\Xg> % (X2+ /\XgJ“). As in [0], we define the following events:

(1) & if BA-A,

(2) & if AA-B, -

(3) Enntonds if X2 A XA X AXP AX]AX]T, and
(4) Eotners if none of the above cases hold.

Proposition 4.3. The following hold.

° Pr(gl) > Pr(gAllHeads)-
o Ifi=j, then Pr(&) = Pr(&;). Note that this value may be less than ;.

o Ifi+j, Pr(&) — Pr(&) > 3Pr(Eanmeads)-

1

The remaining part is to construct a probabilistic automaton B such that ﬁ;f/\nl(l’a’) = L via

imitating the weak equality test. To carry out the test, the automaton needs to memorize the
following:

(1) when reading a, it needs to record the value of X2, X! and X+ (3 bits)
(2) when reading b, it needs to record not only the value of X2, X!, X* but also XZ, X}, X;*
(6 bits)

which requires 23 + 26 states in total.

The initial value of the above flag variables are set as True, which means that no tails have been
seen. When some tail appears in the experiment in the scope of some flag variable, say X2, X2
will change to False and never change to True. Note that the value of X2, X!, X+ X2 X} X[t
can only be sequentially changed. Such a process can be captured by finite states with a hierarchical
structure. The automaton can be roughly illustrated in Figure 4.

e - 1
A€ Allheads

—+~
(90
o
=+
=
@
-
N =]] =

Figure 4: A schematic diagram of B

If the weak equality test outputs E1, B goes to qace with probability 1.

If the weak equality test outputs &, B goes to que; with probability 1.
If the weak equality test outputs € gAyiHeads; B g0€s to qacc with probability 1.

In all other cases, B goes to qacc and grej with probability %

Then the accepting probability is Pr(Eanneads) + Pr(&E1) + %Pr(é'others) and the rejecting probability
Pr(&) + 5Pr(Estner). By Proposition 4.3, if i = j, the accepting probability > 5.

Back to the proof, the winning plays can be accepted by a variant of the above probabilistic
automaton as we explain below. To treat (rl), essentially, the probabilistic automaton can accept
the sequence including segment like: g;a™b™ > q;11a™+1™+! such that

e Mm; =myy1 Or m; =m;1+ 1 or m; =m;;; — 1, and
e Ny =N 0rn; =n,1+1lorn,=ngq—1

The difference from the above example is that we compare the length of two appearances of “a”
and also compare the length of two appearances of “b”. More specifically, the automaton compare
both the length of two “a”-segments and two “b”-segments while scanning from left to right once,
and the two “a”-segments (“b”-segments) are not consecutive. To this end, the desired probabilistic
automaton just needs a finite memory to store and update the corresponding flags variables.

Now assume that player II has a winning strategy 7, then the halting set for R is

L(R) = {m: player II follows 7 and answers “yes” with m in a PA;f/\H1 game }.

Since the halting problem of R is X{-complete, any winning strategy for player IT is ¥9-hard. O

By similar argument, we have the following reverse mathematical results. Note that our re-
sults on probabilistic automata of strict threshold can also hold for the hierarchical probabilistic
automata of strict threshold. The latter is less expressive than the former.

10

Theorem 4.4. The following diagram holds.

L(PA;?)Det « ATR, — L(HPA?)Det

1 1
L(PA Z;) Det — AJ-Det — L(HPAZ;) Det
L(PA ;anl) Det « ACA, — L(HP ;EAHI) Det
L(PAS,) Det < WKL, « L(HPA) Det

where WKLy (weak Konig lemma) states that every infinite binary tree has an infinite path, ACAg
allows the existence of all arithmetical sets, and ATR asserts the existence of a transfinite hierarchy
produced by iterating arithmetical complexity along a given well-order, all of which are popular
subsystems of reverse mathematics.

5 Future work

We studied determinacy of probabilistic w-languages of strict threshold semantics, which is an
extension of our previous results on the determinacy of pushdown w-language in lower arithmetical
hierarchy in [9]. As we illustrated in Figure 5, the determiancy of w-languages with a Biichi or
Muller have been well investigated, where the classes of w-languages below the dotted line is
determined while the ones above are not. Our next goal is to pin down the determinacy strength
of w-languages with a Biichi condition of other semantics, such as positive, almost sure and strict
semantics, as indicated in the grey part of Figure 5

i =L(TMy,)

7 A

2VPL, CFL,
(O N S
2DVPL,, - VPL, DCFL, -> B(z9)
4
PN, Z. N
> >=
)/ DVPL L(PA?) L(PAZ)
/ + A 4
N REG,, = L(HPA ?) > L(PAZ) = B(L(PAR}))

] p A

Deterministic N REG,, = L(HPAR!) > L(PAT)) -> 1S

Figure 5: The inclusion relation among several classes of w-languages with Biichi (Ily) acceptance
condition (except that DCFL, and DVPL, are defined with a Muller condition), where A — B
means A C B. (D)CFL, denotes the class of w-languages accepted by (deterministic) pushdown
automata. (2/D)VPL,, denotes the class of w languages accepted by (2-stack/deterministic) visibly
pushdown automata. The visibly pushdown automata is a special kind of pushdown automata in
which the input alphabet is partitioned according to the operation on the stack.

11

Acknowledgement

The work was supported by the Natural Science Foundation of Beijing, China (Grant No. 1234038,
[S23001). This work was presented at RIMS workshop: New frontiers of proof and computation
held in the Research Institute for Mathematical Sciences, an International Joint Usage/Research
Center located in Kyoto University.

References

[1] J.R. Biichi and L.H. Landweber, Solving sequential conditions by finite-state strategies.
Trans. Amer. Math. Soc. 138 (1969) 295-311.

[2] Chadha, Rohit, Sistla, A. Prasad, Viswanathan, Mahesh (2009). On the expressiveness and
complexity of randomization in finite state monitors. Journal of the ACM, 56(5), 1-44.

[3] Baier Christel, Grosser Marcus, Bertrand Nathalie, 2012. Probabilistic w-automata. Journal
of the ACM (JACM), 59(1), 1-52.

[4] K. Chatterjee, T.A. Henzinger, 2010. Probabilistic Automata on Infinite Words: Decidability
and Undecidability Results, in: Bouajjani, A., Chin, W.-N. (Eds.), Automated Technology
for Verification and Analysis, Lecture Notes in Computer Science. Springer, Berlin, Heidel-
berg, pp. 1-16.

[5] Chadha, R., Viswanathan, M., 2011. Power of Randomization in Automata on Infinite
Strings. Log. Methods Comput. Sci , 7(22:3), 1-31. Logical Methods in Computer Science

[6] Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic Biichi automata with non-extremal
acceptance thresholds. In: International Workshop on Verification, Model Checking, and
Abstract Interpretation. pp. 103-117. Springer (2011)

[7] Phan Dinh Diéu (1971). On the Languages Representable by Finite Probabilistic Automata.
Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 17 (1):427-442.

[8] O. Finkel, The determinacy of context-free games. J. Symb. Log. 78 (2013) 1115-1134.

9] W. Li, K. Tanaka, The determinacy of context-free games. RAIRO Inform. Théor. Appl.
51 (1), 2017, 29-50.

[10] C. Loding, A. Pirogov, Ambiguity, Weakness, and Regularity in Probabilistic Biichi Au-
tomata. FOSSACS 2020, LNCS 12077, pp. 522-541, 2020.

[11] M.L. Minsky, Recursive unsolvability of Post’s problem of tag and other topics in theory of
Turing machines. Ann. of Math. (1961) 437-455.

[12] M.L. Minsky, Computation: finite and infinite machines. Prentice-Hall, Inc. (1967).

[13] T. Nemoto, M.Y. Ould MedSalem and K. Tanaka, Infinite games in the Cantor space and
subsystems of second order arithmetic. MLQ Math. Log. Q. 53 (2007) 226-236.

[14] A. Paz Introduction to probabilistic automata, Computer Science and Applied Mathematics,
1971.

[15] M.O. Rabin, Probabilistic automata, nformation and Control. 6 (3): 230-245, 1963.

[16] L. Staiger, w-languages, in Chapter 6 of the Handbook of Formal Languages, vol. 3, edited
by G. Rozenberg and A. Salomaa, Springer-Verlag, Berlin (1997) 339-387.

[17] 1. Walukiewicz, Pushdown processes: Games and model-checking, in International Confer-
ence on Computer Aided Verification Springer Berlin Heidelberg (1996) 62-74. Inform. and
Comput. 164 (2001) 234-263.

12

