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1 Introduction

Substructural logics are logics obtained from sequent calculus LK and LJ as a result
of removing structural rules such as weakening, contraction, and exchange rules, and
sometimes adding further axioms. As an important subclass of substructural logics,
Lambek calculus, BCK logic, relevant logics, many-valued logics, fuzzy logics, and
linear logic exist. Basic literature on substructural logics include books by Bimbd
[1], Cintula and Noguera [3], Galatos et al. [4], Ono [6], Paoli [7], Restall [8], and
Schroder-Heister and Dosen [10].

Formulas [« — (o — 8)] = (o = ) and [a — (8 — )] — [(a = ) = (a —
)] are sometimes called W and S, respectively, and they are related to contraction
rule in sequent calculus LK and LJ. In substructural logics without exchange, two
types of implications, denoted by \ and / in accordance with [4], must be considered.
Therefore, several variations of W and S exist in which each — is replaced by \ or /
in such logics.

In this paper, we discuss a Gentzen-style calculus for substructural logics with
variations of W and S without assuming both associativity and exchange. Related
studies are as follows: non-associative substructural logics were partially discussed in
[1, 3, 7, 8, 10]. Galatos and Ono [5] introduced Gentzen and Hilbert-style calculi as
a non-associative version of the full Lambek calculus FL and discussed algebraizable
logic. Seki [9] introduced a slightly different Hilbert-style calculus and discussed

metacompleteness. In these studies, variations of W and S were not fully considered.

* This work was supported by JSPS KAKENHI Grant Number 19K03600. We thank Edanz
(https://jp.edanz.com/ac) for editing a draft of this manuscript.
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This paper is structured as follows: In Section 2, we present the Hilbert-style formu-
lation of the basic logic BSL in which we do not assume all structural rules including
associativity, and variations of W and S. Roughly, BSL, which originates from [9],
is obtained from SL in both [3] and [5] by removing left unitness on 1. In Section
3, we provide a Gentzen-style calculus for BSL, and variations of W and S using

consecution calculus, and discuss their cut elimination in Section 4.

2 Logics and Variations of W and S

The language of (propositional) substructural logic consists of (i) individual vari-
ables; (ii) binary logical connectives A (and), V (or), - (fusion), \ (left division), and
/ (right division); and (iii) constant 1. Formulas are defined in the usual manner and
denoted, for example, by «, §8,~,d. We adopt the convention of writing a3 for « - 3,
and in the absence of parentheses, we assume that - is performed first. Hence, for
example, af\d is a simplification of (a - B)\d.

The logic BSL is defined as follows:

(a) Axioms
Al) o\«

(b) Rules of inference

o Ba\ﬁ R2) ° 8 a\p

(\a)\(0\ )
af\o

B\(e\d) a\(6/B) a
R4) ———= R5) ——= R6 R7) —.
Ry FS @ ®e) " w
We remark that BSL is the propositional fragment of BSL in [9].
The following (1) and (2) are proved in Proposition 2.1 in [9].

(R1)

(R3)

Proposition 1~ (1) The following formulas are theorems of BSL:
(T1)  a\[(B/a)\6]  (T2) P\(a\eB)  (T3) alla  (T4) o\al.
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(2) The following rules of inference are derivable in BSL:

a8 B\ B\(a\3) o\(5/8)
af\) o\f o\f

Q220 @) ) 5o
B B A

Q@) Tonew W wangm Y GG

We consider extensions of BSL by adding the following variations (W1)—-(WS8) of
W and (S1)-(S32) of S as axioms.

(W) [a\(@\B)\(\B) (W2)  [a\(\B)\(B/ )

(W3)  [e\(B/a)\(e\B) (W4)  [a\(B/a)\(B/ )

(W5)  [(a\B)/a]\(e\B) (W6)  [(a\B)/a]\(B/e)

(W) [(B/c)/a\(e\B) (W8)  [(8/a)/cd\(B/ )

(SD  [ABWINABN ] (82)  [e\(B\Y)N[(a\y)/(@\F)]
(S3) AN\ (84)  [eA\B\)NI(v/ )/ (\B)]
(55)  [a\(B\INIB/aNeA)] (S6)  [e\(B\NN(@\7)/(B/e)]
(S7)  [eAB\INB/N/)] (88)  [e\(B\Y)N[(v/e) /(5] )]
(59)  [a\(v/B)N(a\0)/(B/a)] (S10) e\ (v/B)N(B/e)\(@\7)]
(St1)  [a\(v/B)N(v/@)/(B/a)] (S12) e\ (v/B)NI(B/)\(v/e)]
(S13)  [(B\Y)/\[(B/a)\(e\V)]  (S14)  [(B\7)/a\[(@\7)/(B/e)]
(S15)  [(B\7)/e\[(B/a)\(v/a)]  (S16)  [(B\7)/a]\[(v/a)/(B/e)]
(S17)  [eA\(v/B)N(e\y)/(\B)]  (S18) [\ (v/B)\[(e\B)\(a\Y)]
(519)  [eA\(v/BIN(v/@)/(\B)] (520)  [e\(v/B)N\[(e\B)\ (/)]
(521)  [(v/B)/e\[(a\7)/(a\B)]  (S22)  [(v/B)/a\[(\B)\(\7)]
(523)  [(v/8)/e\(v/e)/(a\B)]  (S24)  [(v/B)/a\[(\B)\(7/ V)]
(525)  [(B\)/a\[(a\B\(eAW)]  (S26)  [(B\7)/a]\[(@\7)/(e\B)]
(527)  [(B\v)/e\[(a\B\(v/a)]  (S28)  [(B\7)/al\[(v/a)/(a\B)]
(529)  [(v/B)/e\[(a\7)/(B/a)]  (S30)  [(v/B)/a\[(B/e)\(e\7)]
(S31)  [(v/8)/e\(v/e)/(B/a)]  (S32)  [(v/B)/a\[(B/e)\(v/ )]

Let X be a subset of {(W1),---,(WS8),(S1),---,(S32)}. Then BSL + X denotes
the logic we obtain from BSL by adding all elements of X as axioms. In particular,
if X is a singleton set, we write BSL + (W1) instead of BSL + {(W1)}, for example.



3 Consecution Calculus

Gentzen-style calculus for non-associative substructural logics that uses the usual
sequent calculus such as LJ and FL is impossible, but consecution calculus makes it
possible. For general information on consecution calculus, see [1]. This paper uses
the notation in [2].

To introduce consecution calculus, we prepare some notions and notation. Struc-

tures are defined as follows:

(i) A formula « is a structure.

(ii) If A and B are structures, then (A; B) is also a structure.

We remark that empty structures are not allowed. For a structure A and formula «,
an expression of the form ‘A = «’ is called a consecution.

We use Greek capital letters I' and A for strings of symbols formed by truncating
a structure. These strings of symbols can be empty, a well-formed structure or a
part of a structure which is not well-formed, but would become well-formed if further
symbols are added to it.

The consecution calculus LBSL1 is defined as follows, where A and B denote

structures:

(a) Axiom a=a
(b) Cut rule
A=~y I'7yA= 5( )
'AA =96 o

(c) Rules for logical connectives and the constant

FaA =96 (A=) I'BA =6 (A=) A=a A=0
FraANpBA =9 FraNpBA =9 A=aANf

FaA =9 FBA:>5(V:>) A=« (= V) A= [
FraVvpA=9§ A= aVp A= aVp

A=a TPA=I (a;A) =
Tdopiss V) Asag !

(=A)

(= V)

=\)

A=a TBA = (4;0) = B
TG/ Abn s V7 As gja

= /)

Moy B)A =96 A=a B=p

Fa-BA:>(5(.:>) (A;B):>oz-5(:>‘)




FAA =6 MNA; DA =6

ranass ) Traass 1B

Lemma 2 If a formula « is a theorem of BSL, then a consecution 1 = « is provable
in LBSL1.

Proof. We prove the lemma by induction on the length of the proof in BSL. As an

example, we present the case (R6).

5=5 B=8

o=« (5//B§/3):>5 (\(:/>):>)
1> a\0/8)  (@a\@BiB =6
((1);8) =0
(1E)

(a;8) =6
S (-=)
_aB=0 gy
{efil) =0 (=\)

1= ap\o -

To relate consecutions to formulas, we provide interpretations I for consecutions in

terms of formulas as follows:

(i) For formulas «, I(a) = a.
(ii) For structures (A4; B), I((A; B)) = I(A) - I(B).
(iii) For structures A and formulas o, (A = a) = I(A)\I(«).

Then we can prove the following by induction on the length of the proof in LBSL1.

Lemma 3 If a consecution A = « is provable in LBSL1, then /(A = «) is a theorem
of BSL.

Thus, we have the following.

Theorem 4 A formula « is a theorem of BSL if and only if a consecution 1 = « is
provable in LBSL1.

We consider corresponding rules for (W1)—-(W8) and (S1)—(S32). Let R be a set of
rules {(r1),---,(rn)}. Then LBSL1 + R denotes the calculus obtained from LBSL1
by adding all rules that belong to R. In particular, if R is a singleton {(r)}, we write
LBSL1-+(r) instead of LBSL1 + {(r)}.



Rules (w1)—(w8) are defined as follows:

['(A;(A;B))A =6 I'(A;(A;B))A =6

A BAss B AAss 2
I'(A;B); A)A =6 5 I'((A;B); A)A =6

rABAss W) rBAAss
I'(A;(B;A)A =6 I'(A;(B;A)A =

A BAss ) rBAAss 0
I'((B;A); A)A =9 (w7) I'(B;A); A)A =6 (w8).

I'(A;B)A = 6 ['(B; A)A = 6

Theorem 5 Fori=1,---,8, a formula « is a theorem of BSL + (W3) if and only if
a consecution 1 = « is provable in LBSL1 + (wi).

Proof. We prove the case ¢ = 1. For ‘if’ part:

o=« 6 =7

o=« (o;a\B) = p

(a; (s a\(a\B))) = B
(o a\(a\B)) = B
a\(\B) = a\B

(a\(a\B);1) = a\B

1= [e\(a\B)\(a\B)

For ‘only if’ part, we show only the simplest case, where «,3,0 denote
I(A),I(B),I1(6), respectively:

\=)
\=)
(wl)
=\

(10)

=\

a(af)\o
aB\(a\d) G({ézl) (W1)
B\le\ (a\d)] [a\(a\d)]\(a\9)
(QL).
B\(a\d) (Q2)
af\d . u

Rules (s1)—(s16) are defined as follows.

I'((4; B); (A;C)A =6
['(A;(B;C)A =0

I((4;B); (4;,C)A =6
['(A;(C;B)A =6

(s1)

(s2)

['((4;B); (4;,C)A =0
I'(B;C); A)A =0

['((A;B); (4;,C)A =0
I'(C;B); A)A =6

(s3)

(s4)



L((B;A); (4;0)A =0
['(A;(B;C)A =06

(s5)

L((B;A); (4;C)A =0
I'(B;C); A)A =6

(s7)

I'((A;B); (C; A)A =0

[((B;A); (A;C)A =6

I'(A;(C;B)A =0

[((B;A); (A;C)A =6

(s6)

I'(C;B); A)A =6

T'((A;B); (C; A)A =6

TA (B oA &Y [(A; (C;B)A =0
I'((A;B); (C;A)A =6 11 I((A;B); (C;A)A =6
F(B:C) A)A s Ot T((C;B); AA = o
P((B;4);(C;A)A =06 . L((B;A); (C;A)A =0
T4 (B.ONA =5 o) T(A; (C; BY)A = 0
L((B;A); (C;A4)A =0 (s15) L((B;A); (C;A)A =0

I'(B;C); A)A =0

Theorem 6 For i =1,---,16, the following are equivalent:

(i) A formula « is a theorem of BSL + (S7).
(ii) A formula « is a theorem of BSL + (Sj), for j =i + 16.
(iii) A consecution 1 = « is provable in LBSL1 + (si).

Proof. We prove the case i = 1. From (i) to (iii):

B =p Y=
(B; B\) = v 0 if)
a =« CHCE a\(ﬁ\’y))) = 0\ =)
((a; 2\B); (s a\(B\7))) =
(o (@\B; 0\ (B\7))) = v
(@\B;\(B\7)) = a\v
a\(B\7) = (a\B)\(a\7)
(\(B\7);1) = (a\B)\(a'\7)
1= [a\(B\V)N\[(@\B)\(a\V)]

From (ii) to (iii) is similar.

o=

(sl
(=\
\

I

)
)
=\
)

(1
=\

I'((C; B); A)A =

J

(s8)

(s10)

(s12)

(s14)

(s16).



From (iii) to (i)

, we show only the simplest case, where «,(,7v,0 denote
I1(A),I(B),I(C),1(9), respectively:

(12)
(@8)(a1)\3 (s1) B\(@\a8)
@) ' eI @\adN\@\D] TN NA@] |y
N\ (@B\D)] AN @d] o
ENEITCT.
Br\(a\6) (Q3)
apmna
From (iii) to (ii) is similar. m

4 Cut Elimination Theorem

We consider the cut elimination theorem for the calculi LBSL1 with at least one
of (wl)—(w8) and (s1)—(s16). Basically, we can prove it by following the method
described in [1, 4].

The cut elimination theorem for LBSL1, in which neither (w1)—(w8) nor (s1)—(s16)
contains, is proved in a well-known manner, namely by double induction on the degree
and rank; however, it is not necessary to introduce alternative rules, such as the mix
rule. Roughly speaking, we eliminate cut, which is one of the uppermost applications
of cut in the proof, by either pushing the cut up (reducing the rank) or replacing the
cut formula with a simpler formula (reducing the degree).

We prove the cut elimination theorem for the calculus containing (wl)—(w8) or
(s1)—(s16) by eliminating the following multiple cut rule, abbreviated by m-cut, which

is essentially the same as the cut rule:

A=~ B{y)=96
B(A) =9

(m-cut).

The notation () indicates at least one, but possibly several occurrences of the formula
v being selected in the structure B, each of which is replaced by A in the lower
consecution.

To prove m-cut elimination, to enable the tracking of each occurrence of the formulas
in a consecution in the proof, we use parametric ancestors as in [1]. The detailed
definition is as follows:

An occurrence of « in the upper consecution of a rule is the immediate ancestor of
an occurrence of « in the lower consecution of a rule according to one of (1)—(7), as

appropriate.



(1) In the rules (A =), (V =) and (- =), the elements of I', A and the ¢ in the
upper consecutions are immediate ancestors of the matching formulas in the
lower consecution;

(2) In the rules (= A), (= V), (=), and (= /), the elements of A in the upper
consecutions are immediate ancestors of the matching formulas in the lower
consecution;

(3) In the rules (\ =), (/ =) and (1I), the elements of A, I'; A and the ¢ in the
upper consecutions are immediate ancestors of the matching formulas in the
lower consecution;

(4) In the rule (= -), the elements of A and B in the upper consecutions are
immediate ancestors of the matching formulas in the lower consecution;

(5) In the rule (1E), the elements of I', A, A and the 1 and J in the upper conse-
cutions are immediate ancestors of the matching formulas in the lower conse-
cution;

(6) In the rules (wl)—(w8), the elements of I';, A, two A’s, B and the ¢ in the upper
consecutions are immediate ancestors of the matching elements of I') A, A, B
in the lower consecution;

(7) In the rules (s1)—(s16), the elements of I', A, two A’s, B, C' and the ¢ in the
upper consecutions are immediate ancestors of the matching elements of I', A,

A, B, C in the lower consecution.

The parametric ancestor relation is the transitive closure of the immediate ancestor
relation.

Thus, parametric ancestors of an occurrence of « in a consecution are intuitively
all matching occurrences of « in its upper consecutions in the proof. Therefore, the
principal formula has no parametric ancestors.

We slightly modify the definition of the rank of the m-cut. In the above m-cut, (1)
the left rank is the length of the path for consecutions with + as the succedent of the
consecution in the proof ending A = 7, (2) the right rank is the maximal length of
any paths containing parametric ancestors of v in the proof ending B{(v) = §, and

(3) the rank is the sum of the left rank and right rank.

Theorem 7 For any subset (including emptyset) X of {(wl),---,(w8),(sl),---,(s16)},
the cut elimination theorem holds in LBSL1 + X.

Proof. We prove the theorem by double induction on the degree and rank. The case

in which the rank is equal to 2 is proved in the usual manner. For the case in which



the left rank is greater than 1, the m-cut is moved upward. Finally, we consider the
case in which the right rank is greater than 1. We only show the following cases:
Case 1.
FAA(y) =9
D=~ F(A;1)A(y) =6
I'(A;1)A(D) =6
If we can write the end consecution I'(A4; 1)A(D) = § as I'(A; D)A(D) = §, then ~

must be 1 and the transform is as follows, where the ranks of both m-cuts are smaller

(1T)

(m-cut)

than that of original m-cut; in particular, the rank of the second m-cut is equal to
the left rank plus 1 because the second m-cut formula -, which is 1, is the principal
formula of (1I):

D=~ FAA(y) = ¢
TF'AA(D) = ¢ ()
D =~ (A 1)A(D) =6 (m-cut):
I'(A; D)A(D) = ¢ ’

(m-cut)

otherwise, the transform is as follows, where the rank of the m-cut is smaller than
that of orginal m-cut:
D=~ FTAA(vy) =9
F'AA(D) = §
I'(A;1)A(D) =9

(m-cut)

(11).

Case 2.
F(A; DA(y) =6
D=~ FAA(y) =6

IF'AA(D) = §

(1E)

(m-cut)

Then the transform is as follows, where the rank of the m-cut is smaller than that
of original m-cut. We remark that the consecution I'(A4;1)A(D) = § must not be
written as I'(A; D)A(D) = ¢:

D=~ (A 1)A(y) =6
I'(A;1)A(D) = o
el

(m-cut)

Case 3. Let X contain (sl).
T((4; B); (4;C)A{y) = 4§
D=~ I'(A; (B; C)A{y) =0

['(A;(B;C)A(D) =6

(s1)

(m-cut)

Then the transform is as follows, where the rank of the m-cut is smaller than that
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of original m-cut.

%
1

[2

~N

—_— — o —
L I S =S

10

D=~  T((AB);(4C)A ()2‘5
)

I'((4; B); (4;€))AD) =
[(A;(B;C))A(D) = &

(m-cut)
(Sl) m
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