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Abstract

In prior research, we have examined Yi-IDg, an axiom system of second-order
arithmetic, along with its variations, to measure the determinacy strength of %9 sets
and their differences. However, the study by Tanaka [12] on the collapse phenomena
of multiple inductive definitions has prompted a need for a more meticulous discus-
sion. Therefore, we first reexamined the following conjecture proposed by Nemoto:
a transfinite iteration of ¥1-1D can be deduced from the determinacy of X9 (Conjec-
ture 3.11, [6]). Nemoto [6] showed that X1-IDTR, a full form of transfinite iterations
of ¥1-ID, implies the determinacy of (29)2 N —=(29)2. While this stronger conjecture
was proposed, the reversal has not been established until [2], [17], [18]. In this paper,
we demonstrate that 21-IDTR(or A((X9)2)-Det) is strictly stronger than $1-1D (or

39-Det). Note that we primarily consider boldface assertions with set parameters.

1 Introduction

Our study concerns the determinacy of games and the axiom systems within the
context of reverse mathematics. The first study on the determinacy of games in
reverse mathematics was conducted by J. Steel [11], who proved the equivalence
between the determinacy of open (Z?) games and ATR, an axiom system of second
order arithmetic. This result is also known as one of the earliest findings in reverse
mathematics.

Subsequently, research on stronger determinacy than that of open games and the

corresponding axiom systems of second order arithmetic was initiated by Tanaka



[13], [15], [16]. While it is impossible to cover all such studies, notable examples
include the work by MedSalem and Tanaka [4], which characterized the determinacy
of A games; the research by Welch [20] and Hachtman [1] on characterizing %9
games; the study by Montalbén and Shore [5], which clarified the “limit” concerning
the determinacy of games in second-order arithmetic; the work by Pacheco and
Yokoyama [9] on characterizing the determinacy of arbitrary finite defferences of
39 sets; and the analyses of determinacy in Cantor space conducted by Nemoto,
Tanaka, and MedSalem [7], [8]. For more information, see also [19]

In the 2009 RIMS Kokytroku [6], Nemoto demonstrated that the determinacy of
Sep(AY, %9) in the Baire space can be derived from the transfinite iteration of %} in-
ductive definitions. In the 2010 RIMS Kokytroku [2], we reported on the equivalence
of ©1-IDTR and A((X9)2)-Det. The following year, at the Computability in Europe,
we [18] presented results on determincay of the finite differences of % sets and vari-
ations of Z% inductive definitions. After a considerable period, we also contributed
detailed proofs of these results in [17]. However, in 2023 [12], it was demonstrated
that the hierarchy concerning multiple inductive definitions introduced in [2], and
used in [18], and [17] collapses. This finding indicated the necessity for a more
meticulous discussion of the inductive definitions and the corresponding hierarchy
of determinacy. Therefore, we began by reconsidering the transfinite iterations of
inductive definitions and the conjecture proposed by Nemoto in [6]: a transfinite
iteration of ¥1-1D can be deduced from the determinacy of £9. In considering this
conjecture, we speculated that Eg determinacy might imply Sep(Ag, Zg) determi-
nacy (as presented in our Proof Theory Workshop 2023 at RIMS oral presentation).
However, recognizing the error in this line of thought, we have detailed these issues
in Appendix II.

In this paper, we observe the separation of ¥1-IDy and %1-IDTRy in Theorem
4.6. Before proving it in Chapter 4, we review the relevant definitions and results
in Chapters 2 and 3. Some proofs closely related to our main theorem, which help

in better understanding, are detailed in Appendix I.

2 Preliminaries

In this section, we recall some basic definitions and facts about second order arith-
metic. The language Lo of second-order arithmetic is a two-sorted language consist-
ing of constant symbols 0,1, +, -, =, < with number variables x,v, z, ... and unary

function variables f,g,h,.... We also use set variables X Y, Z, ..., intending to



range over the {0, 1}-valued functions, that is, the characteristic functions of sets.

The formulas can be classified as follows:

e ¢ is bounded (1)) if it is built up from atomic formulas by using propositional
connectives and bounded number quantifiers (Vz < t), (3x < t), where ¢ does

not contain x.

e ¢ is I} if it does not contain any function quantifier. IIj-formulas are called
arithmetical formulas.

o —pis XY if p is a ITL-formula (i € {0,1},n € w).

o Vi -Vagp is 19, if ¢ is a ¥9-formula (n € w),

o Vf---Vfirpis H}LH if ¢ is a Bl-formula (n € w).

We loosely say that a formula is X¢ (resp. IIY) if it is equivalent over a base

theory (such as ACAg) to a o € X¢, (resp. I1%).

We now define some popular axiom schemata of second order arithmetic.

Definition 2.1 Let C be a set of La-formulas.
(1) C-IND: (p(0) AVz(p(z) = @(x+1))) = Vop(z),
where p(x) belongs to C.
(2) C-CA: IXVz(r € X + ¢(x)),
where p(x) belongs to C and X does not occur freely in o(r).
(3) A(C)-CA: Vz(p(x) < ¢¥(x)) = IXVz(z € X & (),
where p(x) and —p(x) belong to C and X does not occur freely in o(x).
(4) C-AC: VadXe(x, X) — IXVrp(z, X),
where o(x, X) belongs to C and X, = {y: (z,y) € X}.

The system ACAq consists of the ordered semiring axioms for (w,+,-,0, 1, <),
Y0-CA and %¢-IND. For a set A of sentences, Ag denotes the system consisting of
ACA plus A.

By A!-CA, we denote A(X!)-CA. We can easily show that for any &k > 0,

A}-CAg C X}-ACo.

Moreover, if k = 2, the above two axioms are known to be equivalent to each other.

Finally, we introduce an axiom of determinacy. For a formula ¢ with a distinct
variable f ranging over NN, we associate a two-person game G, (or simply denote
¢) as follows: player I and player II alternately choose a natural number (starting

with player I) to form an infinite sequence f € NN and player I (resp. II) wins
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ift o(f) (resp. —¢(f) ). We say that ¢ is determinate if one of the players has a
winning strategy o : NN — N in the game ¢. For a class C of formulas, C-Det is

the axiom which states that any game in C is determinate.

3 Difference Hierarchy

To separate the axiom system E%—IDTRO from other axioms, we review some def-
initions and related results of the effective version of the Hausdorff-Kuratowski
hierarchy, which is introduced to characterize the determinacy of A games in [13].
While the proof of Theorem 3.6 is also found in [17], it is included in Appendix I
for better understanding of Theorem 4.6 in this paper. See also [3], [13], [14], [17],
and [18] for further works.

Let C be a class of formulas (or inductive operators) which closed under arith-

metical quantifiers (e.g., X1 under assuming AC).

Definition 3.1 Let C and C' be classes of formulas. By C AC', C Vv C' and —C,
we denote the classes of formulas in the form o AN, o V1 and —p, respectively
(pecypel).

Definition 3.2 For k > 1, let (C)y be the class of formulas inductively defined as

follows:

(C)1=C, (C)pr=CA—(C)g—1 fork > 1.

Then, we easily calculate
e (C)a=CA—-C, —(C)2=CV-C,
¢ C)3=CA-(C)2=CA(CV-C)=(CAC)V(CA=C)=CV(C),
e <(C)3=-CV(C)2, etc.
In general, we can easily show the following.
Lemma 3.3 For any k > 1, the following hold.
e (C)ax =(C)2aV(C)2V---V(C)2 (k times),

e (Clory1 =CV (Clak, =(Clapt1=—~CV (C)as-

Definition 3.4 Let C be a class of formulas. A C-formula ¢ is also called a A(C)-
formula if there exists a —C-formula ¢’ such that ¢ and ¢’ are equivalent over an

appropriate system, e.g., ACAq. In particular, we write Al for A(XL).
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Definition 3.5 Let C,C’ be classes of formulas. For ¢ € A(C) and n,n' € C', the
following formula ¢(f) is called a A(C)-separated co-difference of C', denoted as
Sep(A(C),C),

(W) A0V (= (f) A= (£))-

Next, we see the following theorem 3.6. This theorem is proved through the following
Lemma 3.7, Lemma 3.8, and Lemmma 3.9. For the proofs of these lemmas, see [17],

or Appendix I.

Theorem 3.6 Over ACAy, a A((X2)r11)-formula is equivalent to a Sep(A% (£9)x)-

formula for n,k > 1, and vice versa.
Lemma 3.7 For1 <k <w, Sep(A(C),(C)r) € A((C)k+1)-

Lemma 3.8 Suppose k,n > 1. Two disjoint ﬁ(Eg)k—formulas o, p1 are separated
by a Sep(A, (29)._1)-formula 6, i.e., po — & — =1 holds.

Lemma 3.9 Suppose k,n > 1. For any A((X0))-formula C(f), there exist a A9-
formula ¥(f), a (29)s-formula n(f) and a (112)g-formula n'(f) such that

VIC(S) < (W) An(f) v (=e(f) An'(£)))).

Finally, we recall an effective (or ACAg) version of the Hausdorff-Kuratowski
theorem, which states that a AY set can be splitted into a transfinite difference of
119, sets. By using this result, a Sep(AY (X2);) set can be treated as a certain
combination of (X2); sets, which enables us to prove Sep(A%, (%0))-determinacy
by transfinite recursion.

Let < be a recursive well-ordering on N. We define a recursive well-ordering <*

on N x {0,1} as follows:
(z,1) <" (y,7) ff a<yV(z=yANi<j).
We say that a formula ¢(n,i, f) is decreasing along <* if and only if
Vf € NN vn¥ivmVj (((m,5) <* (n,i) A (n,i, f)) = o(m, j, f)).

Definition 3.10 Forn > 1, DgH is defined to be the class of all sets (or formally
formulas) A such that

A(f) = 3$(ﬂ¢($7 L, f) N 99(537 0, f))a

where ¢(z,4, f) (i = 0,1) is a decreasing 110 -formula along some recursive well-

ordering relation <*.



The following theorem shows that the class DY and the class A? coincide for
each n > 2.

Theorem 3.11 (Tanaka [13], [14]. See also [3]) Over ACAq, we have DY = AV
(n > 2). Strictly speaking, for each formula A € Dy, there exists a formula B € A
such that ACAg + A <> B, and vice versa.

4 Y{ Inductive Definitions and their Transfi-
nite Recursion

We begin with formalizing inductive definitions in second order arithmetic. An
operator I' : P(N) — P(N) belongs to a class C of formulas if its graph {(z,X) :
x € I'(X)} is defined by a formula in C.

A relation W is a pre-ordering if it is reflexive, connected and transitive. W is
a pre-well-ordering if it is a well-founded pre-ordering. The field of W is the set
F={x:3y (x,y) € WV 3y (y,r) € W}. An axiom of inductive definition by
an operator I' asserts the existence of a pre-well-ordering constructed by iterative

applications of operator I'. This can be stipulated as the following definition.
Definition 4.1 Let C be a set of Lo formulas. C-ID asserts that for any operator
I' € C, there exists a set W C N x N such that

1. W is a pre-well-ordering on its field F,

2.V eF W,=T(W,)UW,,,

3. T(F)CF,
where Wy ={y € F: (y,x) e W} and Wy, ={y € F : (y,z) € W and (z.y) ¢ W}.

Theorem 4.2 (Tanaka [16] , MedSalem-Tanaka [3]) Over ACAy, the follow-

g are equivalent.
(1) X9-Det.
(2) Sep(AY, X9)-Det.
(3) =1-ID.
Remark that while Tanaka ([16] and others) studied relations between lightface
statements without parameters, we here concentrate on boldface statements, since

the use of parameters makes arguments much easier (and hence the base system

weaker). Also note that with a minor change, an operator I' can also define a

6



pre-wellordering W rather than its field F'. Formally, instead of W, it suffices to de-
fine a pre-well-ordering W = {((w, z), (v, 2)) : (w,z), (y, 2), (z, 2) all belong to W}
inductively. So, we may say that I' has a fixed point W.

In [16] and [4], we have shown that $1-ID without free parameters, denoted as
E}_—ID7 is equivalent to lightface ¥3-Det, denoted as Zg_—Det, over ATRy. Note that
the both assertions are X3, and they become H% if parameters are allowed. Also,
remark that all ¥ operators and all X9 games are expressed by a single universal
Y1 operator and a single universal ¥ game, respectively.

In the following, we finally see the definition of C-IDTR.

Definition 4.3 The formal system C-IDTRq consists of ACAy and the following
aziom scheme (C-IDTR): for any well-ordering < and C-operator T, there exists a
transfinite sequence (V" : r € field(=)) such that for each r € field(=),

1. V" is a pre-well-ordering on its field F" = field(V").

2. Yz e Fr (VI =T (VI )uVZL,).

g TFY(Fy c Fr.

where VI ={y € F" 1y <yr a}, VI, ={y € F" :y <yr x}, F" = U{F" : 7/ <r}.

As stated above, the definition of C-IDTR was introduced in [6]. Intuitively, by
(C-IDTR), inductive definitions by a C-operator I' are iterated transfinitely along =<
in the following way. First apply inductive operator I'? with the empty parameter
to obtain a fixed point F", where rq is the =<-least element. Then, apply I'""° with
parameter F" to obtain a fixed point F"' with the second =<-least r;. Then, apply
[FOUF 6 obtain F™2. We iterate this procedure transfinitely along well-ordering
=, and then we obtain the sequence of pre-well-orderings (V" : r € field(=)).

We here remark that the oracle parameter F=" of operator I'" *" can be replaced
with any set G=" obtained from F~" arithmetically, i.e., G" = I'1(F") U G=" with
arithmetical I';. This is because the description of I'y may be inserted into the

description of T', which is still £1. Or we may modify T to produce a pair (F",G").

Theorem 4.4 (Yoshii-Tanaka [18], Tanaka-Yoshii [17]) Over RCAy, the fol-

lowing are equivalent.
(1) A((S9)2)-Det.
(2) Sep(AY, x9)-Det.
(3) ©1-IDTR.



For a proof of (3)=-(2) and a related issue, see the appendix II.

Now, we will show that $1-IDTR is properly stronger than X1-ID. Let ¢1 (e, m, X,Y)
be a universal ¥} formula with only the displayed free variables. Let I'X (Y) be a %1
operator defined as m € TX(Y) « ¢1(e,m, X,Y). Moreover, we define a universal
1 operator T*(Y) by (e,m) € TX(Y) + m € I')Y(Y.). Then a fixed point of
I'X(Y) is also obtained as F2X = {m : (e,m) € FX} if F¥X is a fixed point of TX(Y).
Thus, ¥1-ID is equivalent to I-ID with a single universal ¥1 operator T.

Consider the iteration of I'-ID with a universal ¥{ operator I" along the standard
order type of w, which can be carried out in Ei—IDTR obviously. Intuitively, we first
use the inductive operator I' (with the empty parameter) to obtain a fixed point
FO. Then, by ' with parameter F°, we obtain a fixed point F''. Next, by [FOwF!

to obtain F2. We iterate this procedure and finally we obtain (F™ : n € w).

Let us recall the definition of S-models in RCAg. A set M represents a c.c.
(abbr. for countable coded) w-model (N, {M,, : n € N}) of second order arithmetic.
M is called a c.c. f-model if for all e,;m € N and X, Y € {M,}, v1(e,m, X,Y) iff
M E ¢i(e,m, X,Y) (Definition VIL.2.3, Simpson [10]).

Lemma 4.5 (Lemma VII.2.9, Simpson [10]) In RCAy, for all X C N, the hyper-
Jump of X exists iff there exists a c.c. f-model M such that X € M, i.e., X = M,

for some n.

Proof. For the necessary condition, the key idea of the proof is the Kleene basis

theorem that the sets recursive in O form a basis for ${. O
Theorem 4.6 E%_—IDTRO proves there exists a c.c. B-model of Zi—ID.

Proof. Let I'* (Y) be a universal ¥} operator. By iterating the inductive definition
I’ along w, we obtain (F" : n € w). Let M be ((F"). : n,e € w). Then for any
X € M, the fixed point of IT'X belongs to M, and the hyperjump of X is also
included in M. Therefore, M is a c.c. f-model of %}-ID. [J

Corollary 4.7 S1-IDTRy is properly stronger than ¥1-I1Dg. Hence, A((X9))-Det is
properly stronger than £9-Det over RCA.

5 Appendix I
Here, the proofs of the lemmas from Chapter 3 are recorded.
Lemma 3.7 For 1 <k <w, Sep(A(C), (C)r) € A((C)k+1)-
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Proof. Take a A(C)-formula ¢. We show by induction on & that for n € (C); and
n' € =(Clk, 0= (b ANV (= AN) is A((C)k+1)-

First suppose k = 1. Then obviously, (1) An) V (= A7) is CV =C, i.e., =(C)a.
Its negation =6 can be written as (¢ A =) V (=) A =), which is also =(C)2, and
thus 6 is A((C)2).

Take a (C)gsq formula n = o Ay with o € C, m1 € =(C)g, and a —=(C)g41
formula ' = 7V ny with 7 € =C, 0} € (C)k. By the induction hypothesis, 0; =
(Y Am) V(= Any) is A((C)x). We easily observe that

0= (A Am))V (=Y A(TVn))

< (L Aa) V=) AOL) V(= A ).
Since ((Y Ao) V1) A6 is CA(C)g and so (C)g, and ~p Am is =C, € is =(C)g41. Sim-
ilarly, we can show that —0 is also (C)g+1. Hence, 0 is A((C)g+1), which completes
the proof. [J
To prove Sep(AY, (%)) 2 A((Z9)r41), we first need the following lemma.
Lemma 3.8 Suppose k,n > 1. Two disjoint —(X0)s-formulas ¢g, ¢1 are sepa-

rated by a Sep(AY (£0),_1)-formula 6, i.e., g — § — =1 holds.

We abbreviate (a1 — ag)A(ag = as) A A1 — ;) as ap — ag = -+ — q;.

Proof. Suppose k = 1. Let ; = Vaf; with 6; € X0 . Assume that g and ¢; are
disjoint. So, = V =1 always holds.
Now, let 0 = Jz(—=60; AVy < 26p). Then, it is easy to see

=0 <> Ja(—0p A Vy < zb6y).

Thus, § is AY. Also, it is clear that § — =1 and =6 — —o. Hence, § separates ©g
and 1.

Suppose k > 1. Let ¢; = m; V; with m; € H% and 1; € (Z%)k_l. Assume ¢g and
1 are disjoint. Then 7y and m; are also disjoint, and so by the above argument,
there exists 6 € A such that 79 — § — —mp holds. Now let 6 = (5 A —)1) V 9o,
i.e., (A =b1)V (=8 Adg). So, § € Sep(A%, (£2)x_1). Then, noticing 7; and 1) _;
are disjoint, we have mgp — =11 and so g = (7o V ¥0) — (6 A =tb1) V ¢hg[= 6] —

(=1 V 1hg) = =1, since @1 and 1 are also disjoint. Thus & separates ¢g, 1. O
Now, Sep(AY (¥9),) O A((X9)k11) is straightforward.

Lemma 3.9 Suppose k,n > 1. For any A((X0)g)-formula ¢(f), there exist a Al-
formula ¢(f), a (29)-formula 7(f) and a (I12)x-formula n’(f) such that

V) < (@) An(f) vV (= () An' ()
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Proof. If ¢ is A((£2)z), then ¢ and —( are disjoint (£9);. So, by the above lemma,
there exists a Sep(AY, (X9),)-formula 9 such that ¢ — ¢ — ==(, i.e., ( <> . O

6 Appendix II

We will first present a proof of Sep(Ag,Zg) determinacy from Z%—IDTR in this
appendix. Then, at first glance, Sep(AY, £9) determinacy seems to be also derivable
from 2(2) determinacy (or E%—ID). However, in the final remark, we will explain why

it cannot be proved from ¥1-ID.

A proof of (3) X1-IDTR = (2) Sep(AY, X9)-Det of Theorem 4.4.

Assume (3) and let o(f) be a Sep(AY, 29)-game. Then, there exist a AJ-formula

P, a Hg—formula no and a 28—formula 1 (with parameters undisplayed) such that

VE@(f) < (W) A o))V (=4 (f) A (m(£)))-
Since 1(f) is a A9-formula, there are A{-formulas 6y(y), 01 (y) such that
VI(((f) < Yndm > nbo(flm])) A (m(f) < VnIm > nb(f[m]))).

Without loss of generality, we may assume —3s(0(s) Af1(s)) and 6y(()) holds. Note
that () is the empty sequence.

Now, we define a recursive tree T" as follows:
T={se(NT)N:s50)Cs(1) -G s(ls| = 1A

Vk < |s|( if k is even, then Oy(s(k)), else 61(s(k))}

Clearly, T" does not have an infinite path. Let < be the Kleene-Blouwer ordering
on T. Since T is a well-founded tree, for any f € NV there exists the <-least x € T
such that Uz = z(Jz| — 1) C f. So, we define a II{-formula £(z, f) as follows:

Ex,fl)ereTAUr C fFAVY@YET AUy C f —x =y).

Then, it is easy to see

W(f) ¢ Fz(|z| is odd A &(z, f)), —(f) <> Tx(|z| is even A &(x, f)).

Now, we define n)(z, f,Y) and 7} (z, f,Y) with parameter Y as follows:
77(/)(957 f?Y) = (6(3:7 f) A 770(f)) \ Eln(f[n] € Y)7
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m(z, £,Y) = (@, f) Am(f) Vv In(fln] € Y).

Clearly, the formula 7 is 19 and 7} is X9. Thus, their determinacy is deduced from
Z%—ID. More precisely, the set of sure winning positions for player I (IT) in a 23
(ITY) game can be defined by boldface $1-ID from Theorem4.2.

By using E%—IDTR, we inductively define the set of sure winning positions for

player I in the game ¢ as follows: if |z| is odd then

W,={s¢ NN Uz C s and II has a winning strategy in no(z, f, W<,) starting at s},
and if |z| is even then

W, = {s € N¥: Uz C s and I has a winning strategy in 7} (x, f, W,) starting at s},

where W_, = (J{W, : y < x, yiseven} U U{W; cy <z, yis odd}. We may
identify W, as W;
We set W = |J{W, : x € T'}. Then, we can easily prove the following:
() € W — 1 wins the game ¢(f), and
() ¢ W — II wins the game ¢(f).

This completes (3)=(2).

Remark. At first glance, the above proof seems to be improved to a proof of E%—ID
= (2) in the following way. Since X3-Det is deducible from ¥1-ID, we define the
sets Wy, Wi of I's winning positions for I13-game 79 and %9-game 7, respectively,

ie., fori=0,1,
W; = {s € NV : T has a winning strategy in 7;(f) starting at s},
Then, we define the following game G.
G(f) <> Jz(|x| is even A &(x, f) Nz € Wy) V Fz(|z| is odd A &(z, f) Az € W7).

This is 39 with parameters Wy, W1, and so it is determinate, too.

Now, suppose I has a winning strategy o for G. Let f be a play consistent with o.
If 1 (f) holds, then Jz(|x| is even A&(x, f)) holds and so Fz(|z| is even AE(x, f)Ax €
Wo), since G(f) holds. Hence at such a position z, I may switch to a winning
strategy for 7o(f) and then we may assume that f satisfies ¢¥(f) A no(f), that is,
o(f). If =(f) holds, then Jz(|x| is odd A &(x, f) A x € W) must hold. At such
a position z, I may switch to a winning strategy for n1(f) and then f satisfies
=(f) Ani(f), that is, ¢(f). Suppose II has a winning strategy 7 for G. Letting f

be a play consistent with 7, we similarly show that —o(f).
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A deficiency of this argument lies behind a fact that &(x, f) and Uz C g does
not imply £(z, g), although for each f, there exists a unique z such that £(z, f).
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