L^2 HODGE THEORY FOR COMPLEX HYPERBOLIC SPACE FORM WITH FINITE VOLUME

SEUNGJAE LEE

ABSTRACT. The goal of this article is to review a version of L^2 -Hodge theory in [6], for symmetric powers of holomorphic cotangent bundle over complex hyperbolic space forms with finite volume.

Let (X, E) be a hermitian manifold with a smooth hermitian vector bundle E over X. Let $L_2^{r,s}(X,E)$ be the L^2 space of measurable E-valued (r,s) forms for the induced metric from X and E. The Hilbert adjoint of densely defined operator $\bar{\partial}: L_2^{r,s}(X,E) \to L_2^{r,s+1}(X,E)$ is denoted by $\bar{\partial}^*$. If the dimension of L^2 Dolbeault cohomology group $H_{L^2,\bar{\partial}}^{r,s}(X,E)$ is finite, then the following L^2 Hodge decomposition holds.

Theorem 0.1. (L^2 Hodge decomposition) Let (X, E) be a hermitian manifold with a smooth hermitian vector bundle E over X. If the dimension of $H^{r,s}_{L^2,\bar\partial}(X,E)$ is finite, then

(1) $L_2^{r,s}(X,E)$ has an orthogonal decomposition:

$$L_2^{r,s}(X,E) = Im\bar{\partial} \oplus Im\bar{\partial}^* \oplus \mathcal{H}_2^{r,s}(X,E)$$

where $\Delta_{\bar{\partial}} := \partial \circ \bar{\partial}^* + \bar{\partial}^* \circ \bar{\partial}$ and $\mathcal{H}_2^{r,s}(X, E) := \ker \Delta_{\bar{\partial}}$ is the space of L^2 -harmonic (r, s) forms. This decomposition implies that the following isomorphism

$$H^{r,s}_{L^2,\bar{\partial}}(X,E) \cong \mathcal{H}^{r,s}_2(X,E)$$

(2) Let H be the projection operator from $L_2^{r,s}(X,E)$ to $\mathcal{H}_2^{r,s}(X,E)$. Then, there is a bounded linear operator G satisfying

$$\Delta_{\bar{\partial}} \circ G = G \circ \Delta_{\bar{\partial}} = I - H, \quad H \circ G = G \circ H = 0.$$

The operator G is called the Green operator.

If X is compact, then the dimension of L^2 Dolbeault cohomology group is finite by the Hodge theory. However, in non-compact manifolds, the L^2 Dolbeault cohomology group may have infinite dimension (for example, see [2]). Therefore, to guarantee the finite dimensionality of the cohomology group, we need to impose some geometric conditions to (X, E).

If X is an n-dimensional complete Kähler manifold and E is Nakano-positive, then $H^{n,s}_{L^2,\bar\partial}(X,E)$ vanishes due to the Bochner-Kodaira-Nakano inequality. However, if E is Nakano semi-positive, additional assumptions on (X,E) are needed to guarantee the finiteness of $H^{n,s}_{L^2,\bar\partial}(X,E)$: suppose that X has a complete Kähler metric. The associated Kähler form is denoted by ω . Assume that there is a smooth real-valued function φ on X such that $\omega = \sqrt{-1}\partial\bar\partial\varphi$ on the complement of a compact proper subset K of X. If the supremum of the induced norm $|d\varphi|^2_\omega$ of φ from ω is finite, then the finiteness of $H^{n,s}_{L^2,\bar\partial}(X,E)$ follows when E is Nakano semi-positive.

Unfortunately, these results cannot be used for non-Nakano semi-positive bundle: Let \mathbb{B}^n be a complex unit ball in \mathbb{C}^n and Γ be a torsion-free lattice in $\operatorname{Aut}(\mathbb{B}^n)$. Consider a smooth finite

Date: March 31, 2024.

²⁰¹⁰ Mathematics Subject Classification. Primary 32L10, 32W05, 53C55, Secondary 32Q05, 32A36.

Key words and phrases. L^2 Dolbeault cohomology, complex hyperbolic space form with finite volume, L^2 holomorphic function.

volume quotient $\Sigma = \mathbb{B}^n/\Gamma$, that is, a complex hyperbolic space form with finite volume for the induced Bergman metric of \mathbb{B}^n . Note that its holomorphic sectional curvature is of negative constant. We denote the holomorphic cotangent bundle of Σ by T_{Σ}^* . Let $S^mT_{\Sigma}^*$ be the m-th symmetric power of T_{Σ}^* and K_{Σ} be the canonical line bundle. If m is not sufficiently large, then $S^mT_{\Sigma}^*\otimes K_{\Sigma}^{-1}$ is not Nakano semi-positive.

Nevertheless, Σ has a toroidal compactification $\overline{\Sigma}$ up to a finite cover. The toroidal compactification $\overline{\Sigma}$ is a smooth compactification of Σ whose boundary divisor consists of the disjoint union of smooth Abelian varieties, each with a normal bundle (for details, see [7, 8]). Since several isomorphism theorems between a sheaf cohomology over a compact Kähler manifold X with a simple normal crossing divisor D and a L^2 -Dolbeault cohomology on X-D with a certain type of complete Kähler metric have been established (for instance, see [4]), we can expect that a similar type of theorem for $S^m T^*_{\Sigma}$ exists. If it is true, then the finite dimensionality of $H^{r,s}_{L^2,\overline{\partial}}(\Sigma, S^m T^*_{\Sigma})$ directly follows from the compactness of $\overline{\Sigma}$.

Theorem 0.2. (Main Theorem of [6]) Let $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a torsion-free lattice that has only unipotent parabolic automorphisms. If the volume of $\Sigma = \mathbb{B}^n/\Gamma$ for the induced Bergman metric from \mathbb{B}^n is finite, then for every $m, r, s \in \mathbb{N} \cup \{0\}$, there exists a holomorphic vector bundle $E_{r,m}$ over the smooth toroidal compactification $\overline{\Sigma}$ such that if r = 0, n or $m \geq n-1$, then the following isomorphism holds:

$$H_{L^2\bar{\partial}}^{r,s}(\Sigma, S^m T_{\Sigma}^*) \cong H^s(\overline{\Sigma}, E_{r,m}).$$
 (0.1)

Remark 0.3. Any torsion-free lattice has a finite index subgroup that only has unipotent parabolic automorphisms. Therefore, any complex hyperbolic space form with finite volume has a smooth toroidal compactification up to a finite cover.

Sketch of the proof of Theorem 0.2. Let $\mathcal{O}(E_{r,m})$ be the sheaf of germs of holomorphic sections of $E_{r,m}$. Let $L_{2,loc}^{r,*}(U,S^mT_{\Sigma}^*)$ be the space of measurable $S^mT_{\Sigma}^*$ -valued (r,*) forms which are locally integrable on U with respect to the induced Bergman metric of Σ and the hermitian metric of $S^mT_{\Sigma}^*$. Define a sheaf $L_{2,S^mT_{\Sigma}^*}^{r,*}$ by $L_{2,S^mT_{\Sigma}^*}^{r,*}(U) := \{\nu \in L_{2,loc}^{r,*}(U,S^mT_{\Sigma}^*) : \overline{\partial}\nu \in L_{2,loc}^{r,*+1}(U,S^mT_{\Sigma}^*)\}$ for any open set U in Σ . Note that $L_{2,S^mT_{\Sigma}^*}^{r,*}$ is a fine sheaf by the completeness of ω .

Since $L_{2,S^mT_{\Sigma}^*}^{r,*}$ is a fine resolution of $\mathcal{O}(E_{r,m})$, if the resolution is exact, then a standard homological algebra argument (for example, see Lemma 4.1 [6]) induces the isomorphism (0.1). Therefore, to establish (0.1), we need to verify the exactness of

$$0 \to \mathcal{O}(E_{r,m}) \to L_{2,S^m T_{\Sigma}^*}^{r,0} \xrightarrow{\bar{\partial}} \ker \bar{\partial}_{(r,1),S^m T_{\Sigma}^*} \to 0$$
 (0.2)

and

$$0 \to \ker \bar{\partial}_{(r,s),S^m T_{\Sigma}^*} \to L_{2,S^m T_{\Sigma}^*}^{r,s} \xrightarrow{\bar{\partial}} \ker \bar{\partial}_{(r,s+1),S^m T_{\Sigma}^*} \to 0$$

$$\tag{0.3}$$

for all $1 \le s \le n$.

Let D_j , $j=1,\dots,k$ be the boundary divisor corresponding to the cusp b_j in the Satake-Baily-Borel compactification of Σ , where k is the number of cusps of Σ . To verify (0.2), take any point p in $D_j \subset \Sigma \subset \overline{\Sigma}$. Since $\Lambda^{r,s}T_{\Sigma}^* \otimes S^mT_{\Sigma}^*$ can be trivialized near p, we can consider the Laurent expansion of a holomorphic section of $S^mT_{\Sigma}^*$ near p. Now, the exactness of (0.2) follows by some integral calculations because the induced Bergman metric on Σ is locally quasi-isometric to a ball quotient type metric near p (see section 3 in [6]).

Now, the remaining part is to verify (0.3). For this, we need to establish a version of L^2 Dolbeault-Grothendieck type Lemma for $S^m T_{\Sigma}^*$. To do this, take a point $p \in D_j$ and a sufficiently small open polydisc U_p near p. Then, the induced Bergman metric on Σ is quasi-isometric to a ball quotient type metric in U_p . Hence, we can control the curvature term of $\Lambda^{r,0} T_{U_p-D_j}^* \otimes$

 $S^mT^*_{\Sigma}\otimes K^{-1}_{U_n-D_i}$ in the Bochner-Kodaira-Nakano inequality, using a suitable weight function near p. Therefore, we can prove a local vanishing of a L^2 -Dolbeault cohomology for $\Lambda^{r,0}T^*_{U_p-D_j}\otimes$ $S^m T_{\Sigma}^* \otimes K_{U_p - D_j}^{-1}$ on $U_p - D_j$ if $s \ge 2$.

However, if s = 1, this approach does not work due to the geometry of the ball quotient type metric. When r=0 or n, Lee and Seo define a local coordinate system using the local description of ball quotient type metric near D_i to overcome these difficulties. Using this, they change the local $\bar{\partial}$ -solvability problem for $\Lambda^{r,0}T_{\Sigma}^*\otimes S^mT_{\Sigma}^*$ -valued (0,1) forms to $\Lambda^{r,0}T_{\Sigma}^*\otimes S^mT_{\Sigma}^*$ -valued (n,1) forms. If r=0 or n, then $\Lambda^{r,0}T_{\Sigma}^*\otimes S^mT_{\Sigma}^*$ is Nakano-positive, and so, in this case, the local $\bar{\partial}$ -solvability issue for (0,1) form can be solved.

Also, for the case where $r \neq 0, n$, and $m \geq n - 1$, the authors apply the argument of Chen [3] to induce a Donnelly-Fefferman type estimate, which is useful to establish a local vanishing result of some L^2 -Dolbeault cohomology near p (for details, See Lemma 4.4 and Proposition 4.5 in [6]).

The result follows directly by the compactness of Σ .

Corollary 0.4. Suppose that r = 0, n or $m \ge n - 1$, then $H_{L^2,\bar{\partial}}^{r,s}(\Sigma, S^m T_{\Sigma}^*) < \infty$.

A holomorphic ball bundle Ω over Σ is given by the quotient of $\mathbb{B}^n \times \mathbb{B}^n$ under the diagonal action

$$(z, w) \in \mathbb{B}^n \times \mathbb{B}^n \mapsto (\gamma z, \gamma w) \in \mathbb{B}^n \times \mathbb{B}^n, \quad \forall \gamma \in \Gamma.$$

Since any automorphism of \mathbb{B}^n is extended as an automorphism of n-dimensional complex projective space \mathbb{CP}^n , Ω is a relatively compact smooth domain in a certain \mathbb{CP}^n bundle over Σ .

Let $K_{\mathbb{B}^n}$ be the Bergman kernel of \mathbb{B}^n . A weighted Bergman space $A^2_{\alpha}(\Omega)$ of order $\alpha > -1$ is defined by a Kähler form

$$\omega_{\Omega} = \frac{\sqrt{-1}}{n+1} \partial \bar{\partial} K_{\mathbb{B}^n}(z,z) + \frac{\sqrt{-1}}{n+1} \partial \bar{\partial} K_{\mathbb{B}^n}(w,w)$$

and $\delta := 1 - |T_z w|^2$, where $T_z w$ is an involution automorphism in \mathbb{B}^n (for details, see [5, 6]).

Theorem 0.5. (Theorem 1.5 in [6]) Let $\Gamma \subset Aut(\mathbb{B}^n)$ be a torsion-free lattice that has only unipotent parabolic automorphisms. If the volume of $\Sigma = \mathbb{B}^n/\Gamma$ is finite for the induced Bergman metric of \mathbb{B}^n , then there exists a linear injective map

$$\Phi: \bigoplus_{m=0}^{\infty} H_{L^2,\bar{\partial}}^{0,0}(\Sigma, S^m T_{\Sigma}^*) \to \bigcap_{\alpha > -1} A_{\alpha}^2(\Omega)$$

and the image of Φ is dense in $\mathcal{O}(\Omega)$ equipped with the compact open topology.

Corollary 0.6. (Corollary 1.6 in [6]) Let $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a torsion-free lattice. If the volume of $\Sigma = \mathbb{B}^n/\Gamma$ for the induced Bergman metric of \mathbb{B}^n is finite, then there are no non-constant bounded holomorphic functions on Ω .

Sketch of the proof of Theorem 0.5. We identify $S^0T^*_{\Sigma}$ with the trivial line bundle $\Sigma \times \mathbb{C}$. Now, for a $\psi \in H^{0,0}_{L^2,\bar{\partial}}(\Sigma, S^0T^*_{\Sigma})$, we define $\Phi(\psi)(z,w) := \tilde{\psi}(z)$, where $\tilde{\psi}$ is given by the quotient map $\mathbb{B}^n \to \Sigma$. Since the volume of Ω is finite for the induced volume form by ω_{Ω} , $\Phi(\psi)$ is well-defined.

If $N \geq 1$, for any given $\psi \in H^{0,0}_{L^2,\bar{\partial}}(\Sigma, S^N T^*_{\Sigma})$, we define a sequence $\{\varphi_k\}$ by

$$\begin{cases} \varphi_k = 0 & \text{if } k < m_0 \\ \varphi_N = \psi \end{cases}$$

and for $s \geq 1$, φ_{N+s} is the L^2 -minimal solution of the recursive formula

$$\bar{\partial}\varphi_{N+s} = -(N+s-1)\mathcal{R}_G\varphi_{N+s-1} \tag{0.4}$$

on Σ . For the definition of \mathcal{R}_G , see [5, 6].

If the Green operator G exists in $L_2^{0,0}(\Sigma, S^m T_{\Sigma}^*)$, then the minimal solution of (0.4) exists, and so we can explicitly calculate the L^2 norm of φ_k . If Σ is compact, then the existence of the Green operator G is due to the Hodge theory. However, if Σ is not compact, the existence of G is not apparent.

To establish the existence of the Green operator G, Lee and Seo apply Theorem 0.1 and Corollary 0.4. As a result, the authors calculate the explicit L^2 norm of $\{\varphi_k\}$. Using these L^2 norm data, they construct an associated holomorphic function $\Phi(\varphi_N)$ from φ_N . Also, they show that the L^2 norm of $\Phi(\varphi_N)$ is finite and $\bar{\partial}\Phi(\varphi_N) = 0$ in the sense of distribution by following the argument in [1, 5]. Therefore, $\Phi(\varphi_N)$ is well-defined. Now, Φ is defined by extending linearly.

Acknowledgement I would like to thank all the organizers for giving me a chance to present [6] in the conference "Problems on foliations and dynamics in complex geometry," which was held at RIMS of Kyoto University in November 2023.

References

- [1] Adachi Masanori, On weighted Bergman spaces of a domain with Levi-flat boundary. Trans. Amer. Math. Soc. 374 (2021), no. 10, 7499–7524.
- [2] Chakrabarti Debraj; Laurent-Thiébaut Christine; Shaw Mei-Chi, On the L²-Dolbeault cohomology of annuli. Indiana Univ. Math. J. 67, No. 2, 831-857 (2018).
- [3] Chen Bo-Yong, A simple proof of the Ohsawa-Takegoshi extension theorem. arXiv:1105.2430v1.
- [4] Chunle Huang, Kefeng Liu, Xueyuan Wan, Xiaokui Yang, Vanishing Theorems for Sheaves of Logarithmic Differential Forms on Compact Kähler Manifolds. Int. Math. Res. Not. ranc204, 1–23 (2022), https://doi.org/10.1093/imrn/rnac204.
- [5] Lee Seungjae; Seo Aeryeong, Symmetric differentials and Jets extension of L^2 holomorphic functions, to appear in Indiana University Mathematics Journal.
- [6] Lee Seungjae; Seo Aeryeong, Cohomology isomorphism of symmetric power of cotangent bundle of ball quotient and its toroidal compactification, arXiv: arXiv:2311.01931.
- [7] Mok Ngaiming, Projective-Algebraicity of Minimal Compactifications of Complex-Hyperbolic Space forms of Finite Volume, Itenberg, Ilia (ed.) et al., (eds) Perspectives in analysis, geometry, and topology, Progr. Math. 296, pp. 331–354. Birkhäuser/Springer, New York (2012).
- [8] Wong Kwok-Kin, On effective existence of symmetric differentials of complex hyperbolic space forms, Math. Z. 290 (2018), no. 3-4, 711-733.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, DAEGU, 41566, REPUBLIC OF KOREA *Email address*: seungjae@knu.ac.kr