Remarks on the paper "On the infinite dimensionality of

the middle L^2 cohomology of complex domains"

Kazuhisa Miyazawa

1.Preliminaies

In this note, we will give an outline of the proof of Theorem in [Oh] and remark on the paper. Then we will describe conditions and some properties for infinite dimensionality of the middle L^2 cohomology. Let $D \subset \mathbb{C}^n$ be a domain with the smooth boundary in the n-dimensional complex Euclidean space. Then ∂D denotes the boundary of D and \overline{D} denotes the topological closure of D.

Let $\varphi \colon \mathbf{C}^n \to \mathbf{R}$ be a defining function of D satisfying $D = \{z \in \mathbf{C}^n | \varphi(z) < 0\}$. For a subset $A \subset \mathbf{C}^n$, let $C^{p,q}(A)$ be the restriction on A for the space of smooth (p,q)-forms on the complex Euclidean space. For $x \in \partial D$, let $\{U, (\zeta_1, ..., \zeta_n) \mid U \subset \mathbf{C}^n, (\zeta_1, ..., \zeta_n) \in \mathbf{C}^n\}$ be a local coordinate of x. We assume that $d\varphi \neq 0$ holds on \overline{U} . Let $\{\tau_l\}_{l=1\sim n}$ be a set of $C^{1,0}(\overline{D} \cap U)$ such that $\{\tau_k(y)\}_{k=1\sim n}$ are an orthonormal basis with respect to the complex Euclidean metric at $y \in \overline{D} \cap U$ with $\tau_1 = \partial \varphi / |\partial \varphi|_E$. Here $|\cdot|_E$ denotes the pointwise norm with respect to the complex Euclidean metric. For a differential form θ , let $e(\theta)$ be the exterior product $e(\theta) : u \mapsto \theta \wedge u$ and $e^*(\theta)$ be the adjoint of $e(\theta)$ with respect to the complex Euclidean metric.

For a smooth (p, q)-form $u \in C^{p,q}(\overline{D} \cap U)$, there are unique four differential forms $\{u_k\}_{k=1\sim 4}$ satisfying

$$\mathbf{u} = u_1 + \partial \varphi \wedge u_2 + \overline{\partial} \varphi \wedge u_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge u_4,$$

$$e^*(\tau_1)u_k = e^*(\overline{\tau_1})u_k = 0 \quad (\mathbf{k} = 1 \sim 4).$$

Moreover, the following holds.

Proposition 1 (cf: [We])

For p + q = n, we assume that Levi form $\sqrt{-1} \partial \overline{\partial} \phi$ is not non-degenerated on U. Then we have the following.

(1) For $\mathbf{w} \in C^{p,q}(\overline{\mathbb{D}} \cap U)$, there are unique four forms on $(\overline{\mathbb{D}} \cap U)$ such that $v_1 \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U), v_2 \in C^{p-1,q}(\overline{\mathbb{D}} \cap U), v_3 \in C^{p,q-1}(\overline{\mathbb{D}} \cap U), v_4 \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U)$ satisfies that

(i)
$$w = \partial \overline{\partial} \varphi \wedge v_1 + \partial \varphi \wedge v_2 + \overline{\partial} \varphi \wedge v_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge v_4$$
,

(ii)
$$e^*(\tau_1)v_k = e^*(\overline{\tau_1})v_k = 0 \ (k = 1\sim 4)$$
 hold.

(2) For $v_f \in C^{0,1}(\overline{\mathbb{D}} \cap U)$ and $u_1 \in C^{p,q-1}(\overline{\mathbb{D}} \cap U)$, we put $w = v_f \wedge u_1 \in C^{p,q}(\overline{\mathbb{D}} \cap U)$. assume that $e^*(\tau_1)w = e^*(\overline{\tau_1})w = 0$ hold. Then there exist $u_{11} \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U)$, $u_{12} \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U)$

This work was supported by the Research Institute for Mathematical Sciences, an international Joint Usage/Research Center located in Kyoto University. E-mail address: kz-miyazawa@ezweb.ne.jp

uniquely satisfying the following:

- (i) $w = \partial \overline{\partial} \varphi \wedge u_{11} \partial \varphi \wedge \overline{\partial} \varphi \wedge u_{12}$,
- (ii) $e^*(\tau_1)u_{11} = e^*(\overline{\tau_1})u_{11} = 0$, $e^*(\tau_1)u_{12} = e^*(\overline{\tau_1})u_{12} = 0$.

Especially, the form u_{11} may have a divisor v_f in general.

2. Theorem of Ohsawa

We will explain Theorem of Ohsawa and describe an outline of the proof [Oh] by using the argument of Ohsawa in view of Proposition 1.

Let ds^2 be a complete hermitian metric on a domain D with the smooth boundary and $L^{p,q}(D)$ be the space of square integrable (p,q)-forms.

From now on, we assume the following:

(i) There exist positive constants C_0 and a, b satisfying

$$C_0^{-1} ds^2 < \left(-\frac{1}{\omega}\right)^a \sum_{l=2}^n d\zeta_l \wedge d\overline{\zeta_l} + \left(-\frac{1}{\omega}\right)^b \partial \varphi \wedge \overline{\partial} \varphi < C_0 ds^2 \text{ on } D \cap U,$$

- (ii) $1 \le a, 1 \le b, a < b + 1$ hold,
- (iii) $\partial \varphi$, $d\zeta_2$, ..., $d\zeta_n$ are linearly independent on $\overline{D} \cap U$.

Then we have the following theorem about unreduced L^2 cohomology.

Theorem([Oh])

For p + q = n, we have that

$$dim_{C}\frac{\left\{u\in L^{p,q}(D)\mid \overline{\partial}\mathrm{u}=0\right\}}{\left\{\overline{\partial}\mathrm{u}\in L^{p,q}(D)\mid u\in L^{p,q-1}(D)\right\}}=+\infty$$

holds.

Proof of the theorem is as follows.

For p + q = n, we set $u = f d\overline{\zeta_2} \wedge \cdots \wedge d\overline{\zeta_q} \wedge d\zeta_2 \wedge \cdots \wedge d\zeta_{p+1}$ which is a smooth (p, q)-form on $\overline{D} \cap U$.

Then there exist four forms $\{v_k\}_{k=1\sim 4}$ uniquely from Proposition 1 satisfying

$$\overline{\partial}\mathbf{u} = \partial \overline{\partial} \varphi \wedge v_1 + \partial \varphi \wedge v_2 + \overline{\partial} \varphi \wedge v_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge v_4.$$

We put

$$w = w(u) = u - \partial \varphi \wedge v_1. \tag{*}$$

Then we have $\overline{\partial} w = \partial \varphi \wedge (v_2 - \overline{\partial} v_1) + \overline{\partial} \varphi \wedge v_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge v_4$. By calculating, the following hold.

Proposition 2

- (1) $\partial \varphi \wedge v_2 \in L^{p,q}(D)$
- (2) $\overline{\partial} \varphi \wedge v_3 \in L^{p,q}(D)$
- (3) $\partial \varphi \wedge \overline{\partial} \varphi \wedge v_4 \in L^{p,q}(D) \text{ for } b-a>-1$
- (4) $\partial \varphi \wedge \overline{\partial} v_1 \in L^{p,q}(D) \text{ for } b-a > -1$

Then the following proposition holds from Proposition 2.

REMARKS ON THE PAPER "ON THE INFINITE DIMENSIONALITY"

Proposition 3 For $w \in C^{p,q-1}(D)$ in (*), $\overline{\partial} w \in L^{p,q}(D)$ holds.

Next step is to find conditions such that $\overline{\partial}w$ is L^2 -cohomologous to 0. We assume that there exists $w_{p,q-1} \in L^{p,q-1}(D)$ satisfying the following:

(i)
$$w_{p,q-1} = \sum_{|I|=p,|J|=q-1} w_{1IJ} d\zeta_I \wedge d\overline{\zeta_J}$$

$$\begin{split} &+\partial \phi \wedge \sum_{|K|=p-1,|L|=q-1} w_{2K\,L} d\zeta_K \wedge d\overline{\zeta_L} \\ &+ \overline{\partial} \phi \wedge \left(\partial \phi \wedge \sum_{|M|=p-1,|N|=q-2} w_{3M\,N} d\zeta_M \wedge d\overline{\zeta_N} \right) \\ &+ \overline{\partial} \phi \wedge \left(\sum_{|P|=p,|Q|=q-1} w_{4P\,Q} d\zeta_P \wedge d\overline{\zeta_Q} \right) \end{split}$$

(ii)
$$\overline{\partial}$$
w = $\overline{\partial}$ w_{n,q-1}

For a defining function φ of the domain D and t < 0, we put $D_t := \{ \varphi < t \}$ and dS_t denotes the volume element of D_t with respect to the complex Euclidean metric.

Then we have the following by Fubini's theorem.

Proposition 4

(1)
$$\liminf_{t \to 0} \int_{D_t \cap U} |w_{1IJ}|^2 dS_t = 0 \text{ for } b \ge 1$$

(2)
$$\liminf_{t \to 0} \int_{D_t \cap U} |w_{2KL}|^2 dS_t = 0 \text{ for } a \ge 1$$

By comparing $\overline{\partial}$ w with $\overline{\partial}w_{p,q-1}$, we have the following from Proposition 4.

Proposition 5

We assume that $\bar{\partial}$ w is L^2 -cohomologous to 0 with respect to the complete metric ds^2 . Then we have the following:

- (1) $\overline{\partial} \varphi \wedge (v_2 \overline{\partial} v_1) = 0$ holds on $\partial D \cap U$.
- (2) $\overline{\partial} \varphi \wedge \overline{\partial} w = 0$ holds on $\partial D \cap U$.

Here we will prove Theorem of Ohsawa by using previous propositions.

Proof of Theorem of Ohsawa

Let ρ be a real-valued smooth function which has the support in a neighborhood U of $x \in \partial D$ and

 $\rho \equiv 1$ on a neighborhood $V \subset U$. We put

$$u_k := \rho \, \overline{\zeta_2^k} \, d\overline{\zeta_2} \wedge \cdots \wedge d\overline{\zeta_q} \wedge d\zeta_2 \wedge \cdots \wedge d\zeta_{p+1} \text{ for } k \in \mathbb{N}$$

and $w_k := w(u_k)$ in accordance with (*). Then we see that $\overline{\partial} w_k - \overline{\partial} w_l$ is not to L^2 -cohomologous to 0 if $k \neq l$ from Proposition 5. Hence our claim holds.

3. Remarks

For p+q=n, we put $u=f\,d\overline{\zeta_2}\wedge\cdots\wedge d\overline{\zeta_q}\wedge d\zeta_2\wedge\cdots\wedge d\zeta_{p+1}$ which is a smooth (p,q-1)-form with the support in $\overline{D}\cap U$. Then we see that $\overline{\partial} u=\overline{\partial} f\wedge d\overline{\zeta_2}\wedge\cdots\wedge d\overline{\zeta_q}\wedge d\zeta_2\wedge\cdots\wedge d\zeta_{p+1}$ is the smooth (p,q)-form.

On the other hand, by using four forms $\{u_k\}$ $(k = 1 \sim 4)$ with $e^*(\tau_1)u_k = e^*(\overline{\tau_1})u_k = 0$, we can uniquely describe

$$d\overline{\zeta_2} \wedge \cdots \wedge d\overline{\zeta_q} \wedge d\zeta_2 \wedge \cdots \wedge d\zeta_{p+1} = u_1 + \partial \varphi \wedge u_2 + \overline{\partial} \varphi \wedge u_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge u_4$$

from Proposition 1 (1). From now on, we will describe

$$\overline{\partial}\mathbf{f} = f_{\overline{\partial}\varphi}\,\overline{\partial}\varphi + \nu_f$$

for any smooth function f by using a (0,1)-form v_f with $e^*(\tau_1)v_f=e^*(\overline{\tau_1})v_f=0$. The we have

$$\overline{\partial} \mathbf{u} = v_f \wedge u_1 + \partial \varphi \wedge (-v_f \wedge u_2) + \overline{\partial} \varphi \wedge f_{\overline{\partial} \varphi} u_1 + \partial \varphi \wedge \overline{\partial} \varphi \wedge \left(f_{\overline{\partial} \varphi} u_2 + v_f \wedge u_4 \right)$$

On the other hand, there exist $u_{11} \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U)$ and $u_{12} \in C^{p-1,q-1}(\overline{\mathbb{D}} \cap U)$ uniquely such that $v_f \wedge u_1 = \partial \overline{\partial} \varphi \wedge u_{11} - \partial \varphi \wedge \overline{\partial} \varphi \wedge u_{12}$,

satisfying $e^*(\tau_1)u_{11} = e^*(\overline{\tau_1})u_{11} = 0$ and $e^*(\tau_1)u_{12} = e^*(\overline{\tau_1})u_{12} = 0$ from Proposition 1 (2). Especially, u_{11} may have a divisor v_f .

Then we have

$$\overline{\partial} \mathbf{u} = \partial \, \overline{\partial} \varphi \wedge u_{11} + \partial \varphi \wedge (-\nu_f \wedge u_2) + \overline{\partial} \varphi \wedge f_{\overline{\partial} \varphi} u_1 + \partial \varphi \wedge \overline{\partial} \varphi \wedge \Big(f_{\overline{\partial} \varphi} u_2 + \nu_f \wedge u_4 - u_{12} \Big).$$

We put

$$v_1 = u_{11}$$
, $v_2 = -v_f \wedge u_2$, $v_3 = f_{\overline{\partial} \omega} u_1$, $v_4 = f_{\overline{\partial} \omega} u_2 + v_f \wedge u_4 - u_{12}$.

Then we have

$$\overline{\partial} \mathbf{u} = \partial \overline{\partial} \varphi \wedge v_1 + \partial \varphi \wedge v_2 + \overline{\partial} \varphi \wedge v_3 + \partial \varphi \wedge \overline{\partial} \varphi \wedge v_4.$$

Remark 6

In our situation, both v_1 and v_2 may have a divisor v_f . Hene we should claim that

$$\overline{\partial} \varphi \wedge \left(v_2 - \overline{\partial} v_1 \right) = 0$$

holds if $\overline{\partial}$ w is L^2 -cohomologous to 0 from Proposition 5 (1).

Remark 7

In [Oh], assumptions about the claim for complete metrics is the following: " $1 \le a \le b < a + 3$ ". The condition b < a + 3 is needed for L^2 -integrability of φv_4 in [Oh] p.107. In our argument, this term does not appear.

REMARKS ON THE PAPER "ON THE INFINITE DIMENSIONALITY"

4. Infinite dimensionality of reduced L^2 cohomology

Let X be an n-dimensional non-compact complex manifold and (X, ds^2) be a complete hermitian manifolds. Let (\cdot, \cdot) (resp. $\|\cdot\|$) be the inner product (resp. norm) of (p, q)-forms on X. Let $|\cdot|$ be the pointwise norm of (p,q)-forms on X. Let $C_0^{p,q}(X)$ be the space of (p,q)-forms on X with compact supports and $L^{p,q}(X)$ be the space of L^2 -integrable (p,q)-forms on X with respect to ds^2 . Let $\bar{\partial}: L^{p,q}(X) \to L^{p,q+1}(X)$ be the $\bar{\partial}$ operator and $\bar{\partial}^*: L^{p,q+1}(X) \to L^{p,q}(X)$ be the adjoint operator. Then

$$\mathcal{H}^{p,q}_{(2)}(X) \coloneqq \{ \varphi \in L^{p,q}(X) \mid \, \bar{\partial} \varphi = 0, \, \overline{\partial}^* \varphi = 0 \}$$

denotes the L^2 harmonic space with degree (p,q). We put

$$N^{p,q}_{\overline{\partial}}(X) \coloneqq \big\{ u \in L^{p,q}(X) \, \big| \, \bar{\partial} u = 0 \big\}, \, R^{p,q}_{\overline{\partial}}(X) \coloneqq \big\{ \bar{\partial} u \in L^{p,q}(X) \, \big| \, \, u \in L^{p,q-1}(X) \big\}$$

and

$$H^{p,q}(X) := N_{\overline{\partial}}^{p,q}(X) / \overline{R_{\overline{\partial}}^{p,q}(X)}$$

, where $\overline{R^{p,q}_{\overline{\partial}}(X)}$ denotes the topological closure of $R^{p,q}_{\overline{\partial}}(X)$ in $L^{p,q}(X)$. Let $H^{p,q}(X)$ denotes the reduced L^2 cohomology with degree (p,q). These are isomorphic to each other.

In general, it is well known that the following holds for the closedness of $R^{p,q}_{\overline{\partial}}(X)$.

Proposition 8 ([H]) For any $\varphi \in C_0^{p,q}(X)$, there is a constant C > 0 such that the following holds:

$$\left\|\bar{\partial}\phi\right\|^2 + \left\|\bar{\partial}^*\phi\right\|^2 > \, C\|\phi\|^2.$$

Then $R^{p,q}_{\overline{\partial}} \subset L^{p,q}(X)$ and $R^{p,q+1}_{\overline{\partial}} \subset L^{p,q+1}(X)$ are closed subsets.

Infinite dimensionality of the middle L^2 cohomoloy has been investigated by many articles. It is expected that this property will play important roles in various situations. If an n-dimensional complex manifold satisfies Kähler hyperbolicity([Gr]) or strictly Kähler convexity([Mc]), it is well known that Proposition 8 holds for $p + q \neq n$.

In 2006, B. Y. Chen had claimed that infinite dimensionality of the middle L^2 cohomoloy holds for any noncompact Kähler hyperbolic manifolds([Ch]). However, unfortunately, the claim has counterexamples in the case of finite volumes and bounded curvatures([Ye]).

5. Localization

For nonvanishing L^2 cohomoloy, it is known that the following holds.

Proposition 9 (cf: [G-T] Proposition 8.4)

Let Xe a complete hermitian manifold. Let α be an element of $N^{p,q}_{\overline{\partial}}(X)$. We assume that there exist a $\gamma \in$ $N^{n-p,n-q}_{\overline{\partial}}(X)$ such that $\int_X \alpha \wedge \gamma \neq 0$ holds. Then $\alpha \notin N^{p,q}_{\overline{\partial}}(X)$ holds. Especially, the L^2 cohomolog

KAZUHISA MIYAZAWA

 $H^{p,q}(X)$ is nonvanishing.

For the unit ball $B = \{(z_1, z_2) \in \mathbb{C}^2 \mid ||z|| < 1\}$, we will induce a complete hermitian metric ds_{φ}^2 satisfying the following conditions by using a differential automorphism φ :

- (i) For $p = (1,0) \in \partial B$ and a sufficiently small neighborhood $p \in U \subset \mathbb{C}^2$, we put $ds_{\varphi}^2 = ds_{hyp}^2$ on U, where ds_{hyp}^2 denotes the Poincaré metric of B. This metric satisfies conditions in Theorem of Ohsawa.
- (ii) We put $ds_{\varphi}^2 = ds_E^2$ on the hemisphere $B_{-} = \{z \in B \mid Re \ z_1 < 0\}$, where ds_E^2 denotes the complex Euclidean metric of \mathbb{C}^2 .

For the complex Euclidean metric (\mathbf{C}^2, ds_E^2) , it is well-known that $H^{p,q}(\mathbf{C}^n, ds_E^2) = \{0\}$ holds for $0 \le p \le n$, $0 \le q \le n$ ([Lo], p345). Therefore $H^{1,1}(\mathbf{B}, ds_{\varphi}^2) = \{0\}$ holds. Then the following claim holds by using Proposition 9. It is a Serre duality-like proposition.

Proposition 10

Let $\alpha \in N_{\overline{\partial}}^{1,1}(B, ds_{hyp}^2)$ be a representative of non-zero L² cohomology with $supp \ \alpha \subset \overline{U}$ and γ be an element of $N_{\overline{\partial}}^{1,1}(B, ds_{hy}^2)$ such that $\int_X \alpha \wedge \gamma \neq 0$. Then $supp \ \gamma := \overline{\{z \in \overline{B} \mid \gamma(z) \neq 0\}} \not\subset \overline{U}$ holds.

6. Examples

We will give examples which have infinite dimensionality of the middle L^2 cohomology by Theorem of Ohsawa.

Example 11 Let $D = \{z \in \mathbb{C}^n | |z| < 1\}$ be the unit ball and ds_D^2 be the Poincaré metric. Then (D, ds_D^2) satisfies conditions for Proposition 8 and any point of ∂D has a neighborhood satisfying conditions for Theorem of Ohsawa. Therefore $dim_C H^{p,q}(D) = +\infty$ holds.

Example 12 Let $D = \left\{ Z = \begin{pmatrix} z_1 & z_2 \\ z_2 & z_3 \end{pmatrix} \middle| I_2 - Z \,^t \bar{Z} > 0 \right\} \subset \mathbb{C}^3$ be the bounded symmetric domain and ds_D^2 be the Bergman metric of D. Then(D, ds_D^2) satisfies conditions for Proposition 8 ([Do]) and almost everywhere point of ∂D has a neighborhood satisfying conditions for Theorem of Ohsawa. Therefore $dim_C H^{p,q}(D) = +\infty$ holds.

References

[Ch] B. Y. Chen, Infinite Dimensionality of the Middle L^2 —cohomology on Non-compact K¨ahler Hyperbolic Manifolds, Publ. RIMS, Kyoto Univ., 42 (2006), 683–689.

[Do] H. Donnelly, L_2 cohomology of the Bergman metric for weakly pseudoconvex domains, Illinois J. Math., 41 (1997), 151-160.

[Gr] M. Gromov, Kähler hyperbolicity and L^2 -Hodge theory, J. Differential Geom. 33 (1991), 263-292.

REMARKS ON THE PAPER "ON THE INFINITE DIMENSIONALITY"

[G-T] V. Gol'dshtein, and M. Troyanov, Sobolev Inequalities for Differential Forms and $L_{q,p}$ -Cohomology, The Journal of Geometric Analysis Volume 16, Number 4, 2006.

[H] L.Hörmander, An introduction to complex analysis in several variables, North Holland 1973.

[Lo] J Lott, The zero in the spectrum question, 42 (1996), 341-376.

[Mc] JD. McNeal, L^2 harmonic forms on some complete Kähler manifolds."Mathematische Annalen 323.2 (2002), 319-34

[Oh] T. Ohsawa, On the infinite dimensionality of the middle L^2 cohomology of complex domains, Publ. RIMS, Kyoto Univ., 25 (1989), 499-502.

[Ye] N. Yeganefar, L^2 -cohomology of negatively curved Kaehler manifolds of finite volume, Geometric and Functional Analysis GAFA, Volume 15, pages 1128-1143, (2005)

[We] A. Weil, Introduction à l'étude des variétés kählériennes, Hermann, 1958.