ON CERTAIN SEXTIC ALGEBRAIC NUMBER FIELDS

SUMANDEEP KAUR

ABSTRACT. In this paper, we give an overview of the papers [8] and [9] which deal with
the computation of discriminant, integral basis and testing of monogenity of certain
classes of sextic number fields.

1. INTRODUCTION AND STATEMENTS OF RESULTS

The problem of computation of discriminant as well as integral basis of algebraic number
fields has attracted the attention of several mathematicians. Let K be an algebraic
number field and p be a prime number. Let Z,) denote the localisation of Z at the prime
ideal pZ and I, the integral closure of the ring Z,) in K. Then [, = {%| a € Ak, a €
Z \ pZ} is a free Zg)-module of rank equal to the degree of K. A basis of I as a
Z,-module is called a p-integral basis of K.

Clearly an integral basis of an algebraic number field K is a p-integral basis of K for
each prime number p. For an algebraic number field K = Q(6) with 6 in the ring Ax of
algebraic integers of K, if a prime p does not divide ind 6, then by Lagrange’s theorem
for finite groups, Agx C Z,[0] and hence I,y = Z,[0], i.e., {1,0,--- ,0" '} is a p-integral
basis of K, n being the degree of K. In what follows, for a prime number p, v, will stand
for the p-adic valuation of Q defined for any non-zero integer m to be the highest power
of p dividing m and m,, for the integer m/ pvr(m)

In [9], we find a p-integral basis and v,(dk) for all primes p when K = Q(6) is a sextic
field with 6 a root of an irreducible trinomial of the type 2® + ax + b belonging to Z[z]. If
a prime p is such that p° divides a and p® divides b, then 6/p is a root of the polynomial
2%+ (a/p®)z + (b/p®) having integer coefficients. So we may assume that for each prime p

either v,(a) <5 or v,(b) < 6. (1.1)
It is well-known that the discriminant D of f(x) is given by (cf. [5, Exercise 4.5.4])
D = 5%° — 6°°. (1.2)

Assuming (1.1), in [9], we have proved:

Theorem 1.1. Let K = Q(6) be an algebraic number field with 6 a root of an irreducible
trinomial f(z) = 2% + ax + b belonging to Z[z]. Let D, dx denote respectively the
discriminants of f(x) and K. Then a p-integral basis together with the values v,(D),

vp(di) are given in Tables 1 — 4 according as p equals 2 or 3 or 5 or p > 5.
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TABLE 1. 2-integral basis of sextic field K and vy(dg)

Case Conditions vo(D) | va(dk) | 2-integral basis
El vo(a) =0 0 0 {1,0,6%,63, 0% 0°}
E2 | uy(b) =1,09(a) =1 6 6 {1,0,62,0%,6%,6°}
E3 | v(b) = 1,v3(a) > 2 11 11 [{1,0,0% 63 6% 6°}
B4 | ws(b) > 2, 0(a) = 1 6 1 [ {1.0,0%0%,0%,6°/2}
E5 | wy(b) > 3,ve(a) =2 12 4 [{1,0,62,0%/2,6%)2,6°/2%}
EG | v2(b) = 3,05(a) =3 | 18 6 [ {1.0,0%/2,6°/2,0% )22 0° 2"}
E7 | ws(b) =3,00(a) > 4| 21 0 [ {1.8,02)2,6°)2,6% 2%, 6° 2%}
E8 | v(b) > 4,v3(a) =3 18 4 {1,0,0%/2,0%/2,0% 2% 6°/23}
E9 | vy(b) > 5,v9(a) =4 24 4 {1,0,62/2,0%/2% 61 /23 6° 21}
E10 | va(b) = 5,09(a) =5 | 30 10 | {1.0,0%/2,0° /2%, 0% J2%,6° 2%}
EI1 | vs(b) = 5,00(a) > 6| 31 11| {1.0,6%/2,0°/2%,0°J2%,6° 2%}
E12 vo(a) =1 7 7 {1,0,0%,63,6% 6°}
b = 3(mod 4)
E13 va(a) =1 vw(D)>9] 7 [{1,0,6%6% 6%
b= 1(mod 4) odd (=55 + 20 + 2367 + 226° + 2o + 67) /225,
ve(D) odd 5(5)xo + 3b = 0(mod 2v2(2)_7)
El4 vg(a) =1 (D) >8] 4 {1.0,6%,6°, 6%,
b = 1(mod 4), even (=523 + 20 + 2362 + 226° + 2,01 + 05) /255 ),
va(D) even, 5(2)y — 2¢ + 3b = 0(mod 225,
Dy = 3(mod 4) u= W
E15 vola) =1 va(D) > 8 6 {1,0,0%,63, 0%,
b= 1(mod 4), even (—=5xj + 30 + 2302 + 230° + 120 + 05)/21]2(2)76 1,
vo(D) even, 5(§)x2 + 3b = 0(mod 2U2(2)76)
Dy = 1(mod 4)
E16 va(a) = 2 6 6 | {10,607 65,05, 0°)
b= 1(mod 4)
E17 vy(a) > 2 6 0 {1,0,0% (1+6%)/2,(0+ 6%)/2, (67 + 6°)/2}
b = 3(mod 4)
EIS | 0s(b) = 2, 0(a) = 2 6 [{10.07,0°/2,0%/2,0°/2}
E19 |vs(b) = 2,09(a) =3 | 16 6 [ {1.0,0% 072, (20 + 6927, 207 + 0°) )2}
b = 3(mod 4)
E20 | v2(b) = 2,va(a) > 4 16 4 {10,607, 2+ 63)/2%, (20 + 6%) /22, (262 + 0°) /2?}
b = 3(mod 4)
E21 | vy(b) = 2,v2(a) >3 16 8 {1,0,62,6%/2,6%/2, (26 + 6°)/2%}
b =1(mod 4)
E22 |vo(b) = 4,05(a) =4| 24 1 [{1.6,6°/2,6°/2%, (40 + 6927,
£ = 1(mod 4) (80 + 46% + 0°)/2*}
E23 | v3(b) = 4,v2(a) = 4 24 6 | {1,0,6%/2,6%/2%, (40 + 6%)/23, (467 + 6°)/2%}
£ = 3(mod 4)
E24 | 0a(b) = 4, v(a) = 26 G [ {1,0,07/2,0°/27, (40 + 0%) /2%, (4% + 0°) /277
£ = 3(mod 4)
E25 | vy(b) = 4,v2(a) > 6 26 4 [ {1,0,02/2,(4+ 6)/23,(40 + 0%) /23, (46% + 6°) /2*}
£ = 3(mod 4) 2
E26 | va(b) = 4,v2(a) > 5 26 8 | {1,0,60%/2,0%/2% (40 + 6%)/23,6°/2%}
£ = 1(mod 4)




TABLE 2. 3-integral basis of sextic field K and v3(dg)

Case Conditions v3(D) v3(dx) | 3-integral basis
F1 v3(a) =0 0 0 {1,0,0% 6,6 0°}
F2 v3(b) = 1,v3(a) =1 6 6 {1,0,67,6% 6%, 6°}
F3 v3(0) = 1, 03(a) > 2 11 11| {1,005 0%, 0%, 0°)
F4 v3(b) > 2,v3(a) =1 6 4 {1,0,6%,0%,6%,6°/3}
F5 v3(b) = 2,v3(a) =2 12 6 {1,0,6%,0%/3,0%/3,6°/3}
F6 v3(b) = 2,v3(a) > 3 16 10 [ {1,0,6%,63/3,01/3,0°/3}
7 03(0) = 3, v3(a) = 2 12 1 {10.0%6°/3,0°/3,0° 37}
FS v3(0) = 4, v3(a) = 3 iE 1 {1.0.0%/3,6°/3,0% 32, 0° /3]
F9 03(0) = 4, v3(a) = 4 21 8 [{1.0,0°/3,0° /32, 6% /37,07 /3°)
F10 | 03(b) = 4,03(a) = 5 26 10 | {1.0,0°/3,6°/3%, 67 /3%, 0° /3°}
FI1 | 03(b) = 5,03(a) = 4 21 1 [ {10,0%]3,0° 32, 6% /3%, 6° 3%}
F12 | 03(b) = 5,03(a) = 5 30 10 | {1.0,0°/3,6°/3%, 07 /3,07 3%}
FI3 | 03(b) =5, 03(a) = 6 31 11| {1.0,0°/3,6°/3%, 67 /3,07 3%}
F14 vz(a) =1 6 6 {1,0,6,0%,6%,6°}
b = 1(mod 3)
Fi5 va(a) > 2 6 6 | {L0,0% 65,0507}
=4 or 7(mod 9)
F16 MOEP 6 2 ({10,070, (1— 02+ 093,
b = 1(mod 9) (0 —0°+6°)/3}
F17 v3(a) > 2 6 6 [ {L0,0% 65,050}
b =2 or 5(mod 9)
F18 v3(a) > 2 6 2 {1,0,6%,6°, (1 + 6%+ 0%)/3,
= —1(mod 9) (0+6°+6°)/3}
F19 b = 2(mod 9) 7 5 {1,0,6,0%, 6%,
a = +3(mod 9) (€+ 6+ € + 0% + €' + 6°)/3},
e is —1 or 1 according as a = 3 or —3(mod 9)
F20 = “1(mod 9) 7 7 [ {10,607, 6%, 0% 6%}
a = £3(mod 9)
F21 b = 5(mod 9) 8 6 {1,0,6%, 63, 0%,
a = +3(mod 9) (€+ 0+ €0 + 0% + €0* + 6°)/3},
v3(D) = 8 e is —1 or 1 according as a = —3 or 3(mod 9)
F22 b = 5(mod 9) 9 3 {1,0,0%,6%, (-1 — 0 + 0% + 0")/3,
a = +3(mod 9) (=529 + 210 + 236? + 2303 + 210" + 6°)/3%},
vg(D) =9 5(%)z1 + 2b = 0(mod 9)
F23 b = 5(mod 9) v3(D) > 10 4 {1,0,02,03,(—1 -0+ 6° + 6%)/3,
a = +3(mod 9) even (=525 + 230 + x30% + 220° + 2.0 + 95)/3%(2)4’}7
v3(D) > 10 and even 5(%)z2 4 2b = 0(mod 3Hg=e
F24 b = 5(mod 9) v3(D) > 11 3 {1,0,02,03,(—1 -0 + 6% + 6%)/3,
a = +3(mod 9) odd (=525 + 230 + 2360% + 2263 + 230" + 95)/?)%(2)75 b
v3(D) > 11 and odd 5(%)zs 4 2b = 0(mod 3=
F25 v3(b) = 3,v3(a) =3 18 6 {1,0,62/3,6%/3,0%/3%,6°/3%}
F26 v3(b) = 3,v3(a) >4 21 7 {1,0,0%/3,03/3,0% /32,
B=214 v(B°-B)=1 (62 + 3B)20/3°)
F27 21 3 | {1,0,6%/3,(6° +3B)0/3%,

(02 + 3B)?/3%, (62 + 3B)%0/3%}




TABLE 3. 5-integral basis of sextic field K and vz(dg)

Case Conditions vs(D) | vs(di) 5-integral basis
a1 w(B) =0 0 0 [1.0,0%, 5,07, 0°}
G2 | vs(b) =1,v5(a) =0,
a* # 21(mod 25), 5 5 (1.0,62,6°,0°.0°)
b # a* — a®(mod 25),
a’ # (b/5)(mod 5)
G3 | vs(b) =1,v5(a) =0,
a* # 21(mod 25), 6 6 {1,0,0% 63,6 0°}
b # a? — a®(mod 25),
a’? = (b/5)(mod 5)
G4 | vs(b) = 1,v5(a) = 0, {1,0,0%,63, 0%,
a* # 21(mod 25), 5 3 (0 — a®0* + a®0° — ab* + 0°)/5}
b= a®— a®(mod 25)
G5 | vs(b) =1,v5(a) =0,
a* = 21(mod 25), 5 5 {1,6,0% 63,6 0°}
b # a® — a®(mod 25)
G6 vs(b) = 1,v5(a) =0, {1,0,0% 63,
a* = 21(mod 25), |vs(D)>7| 3 (—4a30 + 3a26* — 246> + 6*) /5,
b= a® - a(mod 25), (=5 + 230 + 230% + 220° + 20" + 0°7) /5202
vs(D) is odd azy + 6(2) = 0(mod 5“5(2)_5)
G7 | vs(b) = 1,v5(a) = 0, {1,0,6%, 6,
a* = 21(mod 25), |wvs(D) > 8 2 (—4a30 + 3a0* — 2a0° + 6*) /5,
b= a®— a®(mod 25), (=52} + 210 + 230% + 220° + 2,0 + 95)/5%2)_4},
v5(D) is even az; + 6(2) = 0(mod 505(]_27)74)
G8 vs(b) = 1,vs(a) > 1 5 5 {1,0,6%,63,0*,6°}
G9 | vs(b) > 2,v5(a) =0 5 5 {1,6,0%,63,6% 0°}
a* # 1(mod 25)
G10 | vs(b) > 2,v5(a) = 0, 5 3 {1,0,6%,63, 0%,
a* = 1(mod 25) (0 — a0 + a®0% — ab* + 0°)/5}
G | ws(b) = 2, v5(a) = 10 8 (1.0,6%,6°,0%.0°/5}
G12 | vs(b) = 2, v5(a) > 2 10 1 11.0.0%.6°/5,6/5,6° /51
G13 | vs(0) = 3, v5(a) = 1 11 9 (10,67, 65, 0%, 6° 5}
G4 | vs(b) = 3,05(a) = 2 15 7 11.0,6%,6°/5,07/5,6°/5°}
G15 | vs(b) =3,v5(a) = 3 15 3 11.0.07/5,6°75,0°/57, 0 /57}
G16 | vs(b) = 4,v5(a) = 2 17 9 11.0,6% 6°/5,07/5,0° 57}
G17 | vs(b) = 4,v5(a) =3 20 6 {1,0,62/5,0%/5,0% /52, 0° 53}
GI8 | vs(b) = 4, v5(a) = 4 20 1 {1.0,6%/5,0°/52, 0152, 0° /5
G19 | vs(b) > 5,vs(a) = 3 23 9 (1.0.0°/5,6°5,0° /5, 6 /5°}
G20 | 05(b) = 5,v5(a) =4 25 5 11.0,0%/5,0°/5%, 6* 5. 0° /5%)
G21 | vs(b) = 5,v5(a) = 5 % 5 (1.0,6%/5,0° /5%, 6757, 0° /57
Q22 | vs(b) > 6,v5(a) = 4 29 9 (1.0,.62/5,0° /5%, 6% 5, 00 /5%)




TABLE 4. p-integral basis of sextic field K and v,(dk) for p > 5

Case Conditions vp(D) | v,(dk) p-integral basis
H1 |uv,(b) =0,v,(a) >1or| 0 0 {1,0,6%,6%,0%,6°}
vp(a) = 0,v,(0) > 1
H2 vp(b) = 1, vp(a) > 1 5 5 {1,0,6%,63,0%,6°}
H3 vp(a) = 1,v,(b) > 2 6 4 {1,0,0%,0%,0%,6°/p}
H4 vp(b) = 2,vp(a) > 2 10 4 {1,0,6%,6%/p, 0% /p,0° /p}
H5 vp(a) = 2,v,(b) > 3 12 4 {1,0,0%,0%/p, 0% /p,0° /p*}
H6 v,(b) = 3,vp(a) > 3 15 3 {1,0,0%/p,63/p,0% [p?,0° /p*}
H7 vp(a) = 3,v,(b) >4 18 4 {1,0,0%/p,03/p,0% [p?,0° /p>}
H8 vp(b) =4, vy(a) > 4 20 4 {1,0,0%/p,03/p*, 61 )p*, 0° /p°}
H9 vp(a) =4,v,(b) >5 24 4 {1,0,0%/p, 63 /p%, 0% /p3,0° [p*}
H10 | w,(b) =5,v,(a) >5 25 5 {1,0,60%/p, 03 /p* 0% p>, 6° /p*}
H11 vp(ab) =0, vp(D) 0 {1,0,6%,6%,0%,
vp(D) is even (x+yb + 292 + 06 + wh* + 6°)/p™},
= (D)2,
630 = 5Ha(mod p™),
(5a)*y = (6b)*(mod p™),
(ba)?z = — (6b) (mod p™),
(5a)?v = (6b)%(mod p™),
Saw = —6b(mod p™)
H12 vp(ab) = 0, vp(D) 1 {1,0,0% 63, 6%,
v,(D) is odd (:v+y9+z92+v93+w94+05)/pm},

m = (vp(D) —1)/2,
6x = Ha(mod p™),

(5a)'y = (6b)"(mod p™),
(5a)®z = —(6b)*>(mod p™),
(5a)?v = (6b)*(mod p™),

Saw = —6b(mod p™)




It can be easily shown that for any prime p, an algebraic number field K has a p-integral
basis of the type C = {1,791, -+ ,Ya—1}, where v;’s are of the form
Cio + ci16’ + -+ ci(i,l)Qi*I + 91
Vi = T
pki
with ¢;; € Z and k;'s are integers with 0 < k; < k;4q for 1 < ¢ < n — 1. The p-integral
basis constructed in the above theorem is of this type. We wish to point out that these
type of p-integral bases of any algebraic number field K quickly lead to an integral basis
of K in view of the following theorem which has been proved in [9].

Theorem 1.2. Let L = Q(&) be an algebraic number field of degree n with £ an algebraic

integer. Let py,--- ,ps are the primes dividing ind § and {ayg, o1, , Qpm—1)} be a p,-
(r) (r) (r) =1 i

. . . i + i £++ i(i— + .

integral basis of L, 1 <r < s with a,0 = 1, oy = Gio T ,%_CT( nt *e 1<i<n—1,
where cz(;) and 0 < k;, < k11, are integers. If ¢;; € Z are such that ¢;; = cg»)(mod pﬁi’r)

S
for 1 <r < s and if ¢; stands for prf“, then {ag, a1, -+, ,_1} is an integral basis of
r=1
. . . i—1 7
L where ag =1, a; = ciotentt tei-ns g g <i<n-1.

t;

Definition 1.5 An algebraic number field K of degree n is said to be monogenic if there
exists an algebraic integer v generating the extension K over Q such that Ax = Z[a].
In this case {1,a,---,a" '} will be an integral basis of K; such an integral basis of K is
called a power basis of K. An algebraic number field which is not monogenic is said to
be non-monogenic.

The problem of existence and construction of power bases in algebraic number fields
has been intensively studied. It may be pointed out that not all algebraic number fields
are monogenic. In 1878, Dedekind was the first to give an example of a non-monogenic
algebraic number field; in fact he showed that the cubic field Q(6) is non-monogenic when
0 is a root of the irreducible polynomial 23 — 22 — 22 — 8 over Q. Hasse raised the prob-
lem of characterizing those algebraic number fields which are monogenic. Since then this
problem has been tackeled by several mathematicians (cf. [1], [2], [6], [7], [12], [13]). In [2],
Ahmad, Nakahara and Husnine proved that the sextic number field generated by ms is
monogenic if m =2 or 3 mod 4 and m # F1 mod 9. In 2017, Gadl and Remete [7]
studied monogenity of algebraic number fields of the type Q(a'/") where 3 < n <9 and
a is squarefree.

In [8], we have given some non-monogenic classes of algebraic number fields K = Q(6),
where 6 satisfies an irreducible trinomial f(z) = 2° + az™ + b belonging to Z[x] with
1 < m < 5. Precisely stated, we have proved:
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Theorem 1.3. Let K = Q(0) be an algebraic number field with 6 a root of an irreducible
trinomial f(x) = x%4-ax™+b belonging to Z[x] with 1 < m < 5. Then K is non-monogenic
if a and b+ 1 both are divisible by either 8 or 9.

2. PRELIMINARY RESULTS

The following elementary lemma, which is an immediate consequence of Dedekind’s
theorem on splitting of primes [11, Chapter 1, Proposition 8.1], will play a significant role
in the proof of Theorems 1.3.

Lemma 2.1. Let K be an algebraic number field and p be a rational prime. For every
natural number f, let P; denote the number of distinct prime ideals of O lying above p
having residual degree f and Ny denote the number of irreducible polynomials over IF,, of
degree f. If Py > Ny for some f, then for every algebraic integer v generating the field
extension K/Q, the prime p divides ind 7.

To find the number of distinct prime ideals of Ok lying above a rational prime p, we
will use a weaker version of the Classical Theorem of Ore. Before stating that theorem,
we will first introduce the notion of Gauss valuation, ¢-Newton polygon, ¢-index of a
polynomial where ¢(z) belonging to Z,[z] is a monic polynomial with ¢(x) irreducible
over [, .

We shall denote by v7 the Gauss valuation of the field Q,(z) of rational functions in an
indeterminate x which extends the valuation v, of Q, and is defined on Q,[z] by

v}f(z cx') = miin{vp(ci)}, ¢ € Q,.
Definition 2.2. Let p be a prime number. Let ¢(x) € Z,[z] be a monic polynomial
which is irreducible modulo p and f(z) € Z,[z] be a monic polynomial not divisible by

o(z). Let Za, x)" with dega;(z) < deg ¢(x), a,(z) # 0 be the ¢(x)-expansion of

f(x) obtalned on dividing it by successive powers of ¢(x). Let P; stand for the point in
the plane having coordinates (i, vy (a,—i(z))) when a,;(z) # 0, 0 <7 < n. Let p;; denote
the slope of the line joining the point P; with P; if a,_;(x)a,—;(z) # 0. Let i; be the
largest positive index not exceeding n such that

poi, = min{ g | 0 < j <n, a,_j(x) # 0}.
If iy < n, let 75 be the largest index such that i; < 19 < n with

Hiyiz = min{ Hiyj ’ i <j <n, an*j@j) 7£ O}
and so on. The ¢-Newton polygon of f(z) with respect to p is the polygonal path having
segments [P, , P, P,,, ..., P, P, with 7, = n. These segments are called the edges of
the ¢-Newton polygon and their slopes form a strictly increasing sequence; these slopes
are non-negative as f(z) is a monic polynomial with coeflicients in Z,,.
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Example 2.3. Consider ¢(z) = 22 + 1. We determine the ¢-Newton polygon of the
polynomial f(z) = (22 + 1)3 + (92 + 27)(x* + 1)® + (122 + 27)(z* + 1) + 27x + 81 with
respect to 3. The ¢-Newton polygon of f(z) with respect to 3 being the lower convex hull
of the points (0,0), (1,2), (2,1) and (3, 3) has two edges; the first edge is the line segment
joining the point (0,0) with (2,1) and the second edge is the line segment joining (2,1)
with (3,3).

Definition 2.4. Let ¢(x) € Z,[z] be a monic polynomial which is irreducible modulo a

rational prime p having a root a in Q,. Let f(z) € Z,[x] be a monic polynomial not
divisible by ¢(x) with ¢(z)-expansion ¢(z)" +a,_1(x)p(x)" 1 +- - - +ap(z) such that f(x)

is a power of ¢(z). Suppose that the ¢-Newton polygon of f(x) consists of a single edge,
say S having positive slope denoted by g with d, e coprime, i.e.,

min{M | 1§i§n}:M:§

so that n is divisible by e, say n = et and vj(an_j(z)) > dj for 1 < j < ¢. Thus the

polynomial b;(z) := a"‘p;di(x) has coefficients in Z, and hence b;(a) € Z,[a] for 1 < j <.
t —_— .
The polynomial 7'(Y") in an indeterminate Y defined by T(Y) = Y*+ > b;(@)Y"7 having
j=1
~ Fylo]
= {o(2))

coefficients in F,[a] is said to be the polynomial associated to f(z) with respect

to (¢, .5).

The following definition gives the notion of associated polynomial when f(z) is more
general.

Definition 2.5. Let ¢(x),« be as in Definition 2.4. Let g(x) € Z,[z] be a monic poly-
nomial not divisible by ¢(z) such that g(x) is a power of ¢(x). Let A\; < -+ < A\ be
the slopes of the edges of the ¢-Newton polygon of g(z) and S; denote the edge with
slope A;. In view of a classical result proved by Ore (cf. [4, Theorem 1.5], we can write
g(x) = g1(z) - - - gx(x), where the ¢-Newton polygon of g;(z) € Z,[x] has a single edge,
say S/, which is a translate of S;. Let T;(Y") belonging to I, [@][Y] denote the polynomial
associated to g;(z) with respect to (¢, S;) described as in Definition 2.4. For convenience,
the polynomial 7;(Y") will be referred to as the polynomial associated to g(x) with respect
to (¢, 5;). The polynomial g(x) is said to be p-regular with respect to ¢ if none of the
polynomials 7;(Y') has a repeated root in the algebraic closure of F,, 1 < i < k. In
general, if F(x) belonging to Z,[z] is a monic polynomial and f(z) = ¢,(z) -+ - ¢, (x)*" is
its factorization modulo p into irreducible polynomials with each ¢;(z) belonging to Z,[z]

monic and e; > 0, then by Hensel’s Lemma there exist monic polynomials fi(z),- -+, fi()
belonging to Z,[z] such that f(z) = fi(z)--- f.(x) and f,(z) = ¢;(x)% for each i. The
polynomial f(x) is said to be p-regular (with respect to ¢y, -, ¢,) if each f;(x) is p-

regular with respect to ¢;.
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The following theorem is a weaker version of Theorem 1.2 of [10].

Theorem 2.6. Let L = Q(&) be an algebraic number field with £ satisfying an irre-
ducible polynomial g(x) € Z[z] and p be a rational prime. Let ¢,(x)% ---¢,.(x) be the
factorization of g(x) modulo p into powers of distinct irreducible polynomials over F,
with each ¢;(x) # g(z) belonging to Z[x] monic. Suppose that the ¢;-Newton polygon of

g(z) has k; edges, say S;; having slopes \;; = iﬂ with ged (d;j, e;;) =1 for 1 < j <k,
ij
If g(x) is p-regular with respect to ¢y, - - - , ¢, and the associated polynomials 7;;[Y] with
respect to (¢;, S;;) are irreducible for 1 < j < k;, then
r k;
pOL = H H pze;]7
i=1 j=1

where p;; are distinct prime ideals of Oy, having residual degree deg ¢;(x) x degT};[Y].

3. PROOF OF THEOREM 1.2

Recall that Z,) stands for the localisation of Z at pZ. Clearly «; is integral over Z,)
for all primes p not belonging to the set {py, -, ps} for each 7. Also in view of the choice
of ¢;; we see that each q; is integral over Z, for p belonging to the set {pi,pa, - ,ps}.
So each «; is integral over Z. Therefore if I' denotes the subgroup of C defined by
I'=Zag+ Zoy + -+ + Zay, 1, then Z[{] CT' C Ap. Further by virtue of a basic result
(cf. [3, Chapter 2, Section 2, Theorem 2] ) the index of the subgroup Z[¢{] in I' being

the absolute value of the determinant of the transition matrix from {ag, aq, -+, a1} to
n—1

{1,&,--- &1} equals Hti‘ Since vy, (ind §) = ki, + -+ + kp_1, for 1 < r <s. By

i=1
hypothesis py,- -+, ps are the only primes dividing ind £. Therefore

s n—1 s n—1
y — k r+"‘+kn— | — kL —
ind ¢ = [t = Tk = T
r=1 i=1 r=1 i=1

Since ' C Ay and [I" : Z[¢]] = [AL : Z[€]], it follows that A, = I" and hence {ag, a1, -+ , 1}
is an integral basis of L.

4. PROOF OF THEOREM 1.3

Firstly we will consider the case when a and b + 1 both are divisible by 8. In this
case f(z) = (22 + 2+ 1)?(x + 1) mod 2. Set ¢1(z) = 2> + z+ 1 and ¢y(z) = = + 1.
One can easily see that the ¢j-exapansion of f(x) is given by the following equations
corresponding to each m.

m=1:¢} —3z¢] + (20 —2)¢y +ar + b+ 1. (4.1)

m=2:¢}—3x¢] + (2r+a—2)¢ + (—ar +b+1—a).
9



m=3:¢} —3x¢] + ((a+2)x — (a+2))p +a+b+ 1. (4.3)
m=4:¢} — (3r—a)p: + (2(1 —a)x — (a+2))¢1 + (ax + b+ 1). (4.4)
m=5:¢; — ((3—a)x+2a)¢; + ((a+2)x + 3a — 2)¢; + (—ax +b—a+ 1). (4.5)
Keeping in mind the definition of Gauss valuation and the fact that ve(a) > 3, ve(b+
1) > 3, it can be easily seen that the ¢1-Newton polygon of f(x) for 1 < m <5 has two
edges, say S, and Sy of positive slopes. The polynomials attached to f(x) with respect
to (¢1, S1) and (¢1, S2) are linear. Now we will write the ¢o-expansion of f(x). For each
m, 1 < m <5, let ¢, denote the integer (—1)"a+ b+ 1. It can be easily verified that the
¢o-exapansion of f(x) is given by the following equations corresponding to each m.

m=1:¢5 — 605+ 15¢5 — 2045 + 1563 + (a — 6)¢o + c;. (4.6)
m=2: ¢35 — 645+ 15¢5 — 2005 + (a + 15)¢5 — 2(a + 3) g + ca. (4.7)
m=3: ¢y — 605 + 150, + (a — 20)d; + 3(5 — a)¢} + 3(a — 2)¢s + c3. (4.8)
m=4:¢5 — 605+ (a+ 15)py — 4(a +5)d3 + 3(2a + 5)¢5 — 2(2a + 3)d2 + 4. (4.9)

m=>5:¢5+ (a—6)¢3 —5(a—3)ds + 10(a — 2)¢3 + 5(3 — 2a)$3 + (5a — 6)¢2 + ¢5. (4.10)

It is easy to check that the ¢o-Newton polygon of f(z) for 1 < m < 5 has two edges, say
S, and S} of positive slope. The polynomial associated to f(z) with respect to (¢2, S7)
is linear for ¢ = 1, 2. Thus f(z) is 2-regular with respect to ¢;, ¢2. Hence, Theorem
2.6 is applicable. Using this theorem, we see that there are two prime ideals of O with
residual degree two that lies above 2. But there is only one irreducible polynomial over
Fy of degree 2. So by Lemma 2.1, 2 will divide ind ~ for every generator v € Og. Thus
K is non-monogenic.

Now we will consider the case when both a and b+1 are divisible by 9. In this situation,
flz) = (x —1)3(x +1)® mod 3. Set ¢(x) =z — 1 and ¢o(z) = v + 1. We will write
the ¢1-expansion of the polynomial f(z). Let ¢ denote the integer a + b+ 1. It is easy to
check that the ¢;-expansion of f(z) is given by the following equations corresponding to
each m.

m=1:¢%+ 645+ 1541 + 2092 + 15¢% + (a + 6)¢p; + c. (
m=2:¢% +64) + 1541 + 2093 + (a + 15)¢7 + 2(a + 3)¢; + c. (4.12
m=3:¢%+6¢> + 15¢1 + (a + 20)¢3 + 3(5 + a)¢? + 3(a + 2)¢, + c. (
m=4: ¢ +6¢; + (a+15)¢] +4(a+ 5)¢} + 3(2a + 5)¢7 + 2(2a + 3)d1 + c. (
m=5:¢7+ (a+6)¢; +5(a+3)¢] +10(a+2)¢7 + 5(3 + 2a)¢T + (5a + 6)dy +c. (4.15

By virtue of the fact that vs(a) > 2, v3(b+ 1) > 2, it can be easily seen that the
¢1-Newton polygon of f(z) for 1 < m < 5 has two edges, say 51, and Sy of positive slope.
The associated polynomials to f(x) with respect to both (¢1, S1) and (¢, S) are linear.
Recall that for each m, 1 < m < 5, if ¢,, denote the integer (—1)"a + b+ 1, then the
¢o-exapansion of f(z) is given by the Equations (4.6)—(4.10) corresponding to each m.
One can check that ¢o-Newton polygon of f(z) for 1 < m <5 has two edges of positive

slopes. The polynomials associated to f(x) with respect to ¢, corresponding to these two
10



edges are linear. Hence f(z) is 3-regular with respect to ¢1, ¢o. So by Theorem 2.6, we
see that there exist four distinct prime ideals of O lying above 3 with residual degree one
each. Since there are only three irreducible polynomials of degree 1 over F3, by Lemma
2.1, K is non-monogenic.
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