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ABSTRACT. In this survey article we summarize the results of [BIM] in which the authors
introduced the algebra of formal multiple Eisenstein. This algebra is motivated by the clas-
sical multiple Eisenstein series, introduced by Gangl-Kaneko—Zagier as a hybrid of classical
Eisenstein series and multiple zeta values. This algebra is an sly-algebra by formalizing the
usual derivations for quasimodular forms and extending them naturally to the whole algebra.
A quotient of this algebra is isomorphic to the algebra of formal multiple zeta values. This
gives a novel and purely formal approach to classical (quasi)modular forms and builds a new
link between (formal) multiple zeta values and modular forms.

1. INTRODUCTION

The purpose of this note is to provide a summary of the work [BIM], where the authors intro-
duced formal multiple Eisenstein and studied their derivations. These objects are formalization
of multiple Eisenstein series, which are a hybrid of classical Eisenstein series and multiple zeta
values. Multiple zeta values, which are defined for integers » > 1 and ky > 2, ko, ..., k. > 1 by

C(kay k) = > k; (1.1)

e ombr
my > >me>0 T4 .

are subject to many relations. Denote the Q-algebra of all multiple zeta values by Z. Con-
jecturally, the extended double shuffie relations of multiple zeta values provide all algebraic
relations among multiple zeta values [IKZ]. These relations are obtained (after possible reg-
ularization) from the two ways of expressing the product of multiple zeta values—the ‘usual’
(stuffle) product of real numbers, and a (shuffle) product from the iterated integral represen-
tation of multiple zeta values—which both can be interpreted as quasi-shuffle products [H]. In
this note we use the standard algebraic setup as in [IKZ] (see the introduction of [BIM] for
details) to describe these relations.

Multiple zeta values and (quasi)modular forms are connected in various ways. For example,
in the case r = 1, they appear as the constant term of the Eisenstein series. The Eisenstein
series of weight & > 2 is given for 7 € H = {7 € C |Im(7) > 0} by

—2i)* k—1_mn omiT
Gulr) = C(mﬁm;l" ’ (4= ).

For even k > 2 these series are (quasi)modular forms for the full modular group. In [GKZ] the
authors defined double Eisenstein series, which have double zeta values ((1.1) in the case r = 2)
as their constant terms, and which can be seen as a natural depth two version of Eisenstein
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series. This construction was generalized by the first author in [Bal]. Given a depth r > 1 and

integers k1, ..., k, > 2 the multiple Fisenstein series are defined! for 7 € H by
1
G ()= D S
A== A0 71 T
X €LT+L

where the order > on the lattice Z7 + Z is defined by mi7 + ny > mao7 + no iff my > my or
m1 = may A ny > no. The multiple Eisenstein series are holomorphic functions, i.e. elements
in OH). Since Gy, k(T + 1) = Gy, % (7), which can be obtained directly by the above
definition, the multiple Eisenstein series possess a Fourier expansion

Gy (1) = C(k1, oK) + > anq” (ay € Z[2ni)), (1.2)
n>1
which was calculated in depth r = 2 in [GKZ] and for arbitrary depth by the first author
in [Bal].

Based on various conjectures? regarding the relations of the g-series appearing in this Fourier
expansions, the authors of [BIM] came up with the following definition: the algebra of formal
multiple Eisenstein series G’ is defined (Definition 2.4) to be the Q-vector space spanned by
symbols G/, which are swap invariant and whose product is given by (a double indexed version
of) the stuffle product. More precisely, for r > 1, ky,... k. > 1,dy,...,d, > 0 we introduce

formal variables Gf ( i d’") and impose the relations (swap invariance)
geey U

Xi,..., X, Yi+--+Y,.,. .. Y1+ Y,V
67«(}%’ ’Y>:®T(§+X l‘l’_X 1);; _QX:) (for all » > 1), (1.3)
where &, denotes the generating series
X, .. X, LN A L Yy
: - Xkl xke—121 0 T
(’5(}1,...,3@) ka:NG(dl,...,dr) ! Tdy! d,!
1yeesRr =

diseesdy >0

We then define the algebra of formal multiple Fisenstein series G/ as the Q-vector space spanned
by these formal symbols G/ equipped with the stuffle product (Definition 2.1), e.g.,

k k ki, k ko, k k1 + ko
() () =)+ Garan) + (G Zin)
dy do dy,ds da, dy dy + do

Ky ko, k3 ki, ko, k3 ko, ki, k3 ko, k3, k1 k1 + ko, k3 k1, ko + k3
Ao laran) = i) = o) =@ (in) =0t ana) (0 )
(d1> (dz,ds) diyda,ds) 7 \dodiids) T \dasds, i) T\ 4 doyds) T\, da o+ dy
For example, in the case r = 1 they satisfy the relation G/ (5) = (ki!l)! G (Zj) The use of double
indices is necessary to make sense of the swap invariance (1.3). But often we will be interested

in the case when dy = --- =d, = 0 and set

; _ k:lk:)
G(kl,...,kT)._Gf<O’m70 : (1.4)

Then we expect that the symbols G/(ki, . . ., k,) should satisfy the same relations as the (stuffle
regularized) multiple Eisenstein series. In fact, we will see that the G/(k) satisfy exactly the

'In the case k; = 2 one needs to use Eisenstein summation. See [Ba5] for details.
2See the introduction of [BIM] for a detailed explanation and motivation for these objects.



algebraic relations as the classical Eisenstein series (Theorem 2.7), which is quite surprising
considering the simple family of relations that we impose on G. Even though it seems like
the single indexed G/(ky,...,k,) in (1.4) just give a small portion of the whole space G/, we
conjecture (Conjecture 2.5) it is already spanned by them. This justifies calling G/ the algebra
of formal multiple Eisenstein series.

By the Fourier expansion (1.2) of multiple Eisenstein series we see that projecting onto the
constant term gives a surjective algebra homomorphism from the space of multiple Eisenstein
series to multiple zeta values. This raises the natural question of whether there is a formal
analogue of this projection onto the algebra of formal multiple zeta values Zf. We give a
positive answer to this question together with an explicit description of the kernel of this
‘formal projection onto the constant term’ as follows.

Theorem 1.1 ([BIM, Theorem 1.1)). There exists a surjective algebra homomorphism
T:G — 27,

with 7(G/(ky, ..., k.)) = ¢/ (k1,...,k.). The kernel of m is the ideal generated by all formal
multiple Eisenstein series which are not of the form

1L,.... 1k, ..k
Gf 9 y 4y vl s fop
dy,....d.0.....0)

for some r,s >0 and ky,..., k. > 1,dy,...,ds > 0.

In fact, we will define the algebra of formal multiple zeta values as the quotient by the above
ideal (Definition 2.10) and then show that this algebra is isomorphic to the classical definition
of formal multiple zeta values. Theorem 1.1 offers a new perspective on the extended double
shuffle relations. Namely, it states that these relations are equivalent to the combination of
swap invariance, the stuffle product, and the relations derived from dividing out the mentioned
ideal.

The main result of [BIM] focuses on the derivations of the algebra G/. This is motivated
by the derivations for classical (quasi)modular forms, which we recall now. For this, we first
introduce another normalization of the Eisenstein series and define

By,

Gk = (—277'2)_ka = —2—]{'

1
+ (k— 1) Z mFt g™, (By = kth Bernoulli number).
" m,n>1

As is well-known, for even k the relations

k+1 1 d
5 O = e,

Gk—2 + Z lesz ) (k > 4)

k1+ko=k
k1,k2>2 even

Ge= Y (bi—=1)(ke—1)G,Gr,,  (k>6)

k1+ko=k
k1,k2>4 even

(b + 1)k — 1)(k — 6) (1.5)

12

suffice to write every Eisenstein series Gy with k > 4 as a polynomial in G, and Gg. Moreover,
the relations (1.5) imply that the space M = Q[Gs, G4, Gg] of quasimodular forms (with rational
coefficients) is closed under the operator q%. Even more, the algebra M is an sly-algebra



(see [Z]). In general, an sly-algebra is an algebra together with three derivations W, D, 0 acting
on this algebra and satisfying the following commutator relations

(W,D] = 2D, [W,0]=-26, [5,D]=W.

In the case of quasimodular forms, these derivations are given by D = qd% and the other two

derivations are determined by 0G5 = —%, 0G4y = 0Gg = 0 and WG, = kG. As one of the

main results of [BIM] (Theorem 3.1), the algebra G’ is an sly-algebra which can be seen as a
natural generalization of the sly-algebra of quasimodular forms:

Theorem 1.2 ([BIM, Theorem 1.2]). There exist derivations W, D,5 on G such that
(i) ¢ is an sly-algebra; -
(ii) the subalgebra M = Q[G(2), G/(4), G/(6)] C G’ is isomorphic to M as an sly-algebra.

We refer to MY as the algebra of formal quasimodular forms. The derivations W, D, are
given explicitly. The sly-algebra structure of G/ gives a natural definition of the space of formal
modular forms M/ = ker 5| o and a notion of Rankin-Cohen brackets. The projection 7 in

Theorem 1.1 then also naturally leads to the space of formal cusp forms &' = ker sy - These
spaces are isomorphic to their classical counterparts M and S.

Acknowledgements. The author thanks the organizers of the conference ” Algebraic Number
Theory and Related Topics 2023” for giving him the opportunity to present the result of [BIM].
This project was partially supported by JSPS KAKENHI Grant 23K03030.

2. FORMAL MULTIPLE EISENSTEIN SERIES

In this Section, we recall the basic algebraic setup of [BIM]. Define the set A, whose elements

we call [etters, by
k
A= {1z razo).

We are interested in Q-linear combinations of words in the letters of A, i.e., in elements of Q(.A).
Here and in the following, we call the monic monomials in Q(A) words. For ky,..., k. > 1 and
dy,...,d, >0, we will use the following notation to write words in Q(A):

k... k] [k k,
di,....d,| "~ |di| T ld |’
where the product on the right is the usual non-commutative product in Q{A). The space '

(defined in [IKZ] or [BIM, Introduction]) can be viewed naturally as a subspace of Q(A) via
the inclusion

9 — QA)
bl (2.)
Ty T 0,....0 |

We will extend the stuffle product defined on $* to Q(A) in the following way.



Definition 2.1. Define the stuffie product * on Q(A) as the Q-bilinear product, which satisfies
Ixw=wx*1=w for any word w € Q(A) and

e o= Lo Coe [ ) ] CLaeee) + 2o e
dy ds dy dy do dy dy + do
for any letters [Zﬂ, [Zﬂ € A and words w,v € Q(A).
This turns Q(A) into a commutative Q-algebra (Q(A),x*), as shown in [H]. The algebra

(91, %) can be viewed as a subalgebra of (Q(A),*) via (2.1). Most of the time, we will work
with the generating series of our objects. Let By(Q(A)) = Q(A) and for r > 1 set

B, = B,(Q(A) = QA)[X1,Y1,...,X,.Y;] and B=B(Q(A)) =P B.(QA)).

For r > 0 consider the family of formal power series 24 = (24,1, ...) € B, where 2, = 1 and
for > 1 one has

X0, X, LTI k—lyld1 v
A, = Xk oxke-121 e
<§q,...,n) k1§>1 Lzl,...,dj ! Tdy) d,!

di,....,dr20

Definition 2.2. We define the swap as the linear map o : B — B given by o(f,) = (o f,) with

X, ..., X, Yi+--+Y,. .. Y1+ Y,
o (1, Ly = 1+ -+ 1+ Yo, Y1 ‘ (2.2)
Yl?"'aYT XraXr—l_Xra"'aXl_XZ

Note that the swap ¢ is an involution.

Definition 2.3. By applying a map p : B — B to the power series 2l one obtains a map
[ Q(A) — Q(A) by comparing coefficients, i.e., p[kl """ k’"] is defined as the coefficient of

di,...s dr
dq d
k1—1 kr—1Y3 Y,"
Xl "'Xr’" PR dr,n! Ofpglr.

In particular, we can think of the swap o : Q(A) — Q(A) as the linear map defined in the
above sense. Formal multiple Eisenstein series are objects whose generating series are invariant
under the change of variables in (2.2).

Definition 2.4. We define the space of formal multiple Fisenstein series as
o — (QUA). %),
where 7 is the ideal in (Q(A), %) generated by o(w) — w for all w € Q(A). For ky,..., k. > 1

and dy,...,d, > 0 we denote the class of the word w = [Si’:::’fl:] in ¢ by G'(w) = Gf(kl """ k:)

We define a weight grading and two filtrations on G/, as follows:
(i) Write
wt(w) = ky + -+ ko +dy + -+ d,,
wt(w) =dy + -+ d,,
dep(w) =r
for the weight, lower weight and depth of the word w respectively.
(ii) Write G/ for the subspace of G/ generated by G/(w) with wt(w) = k.



(iii) Write Fil}"* ¢/, Fil%P Gf for the lower weight and depth filtration on G respectively. We
shorten the notation when considering two filtrations at the same time, that is
Fill" ¢ = (G(w) | w e A" Iwt(w) < d)g,
Fil};f;’depgf = (F(w) | w e A", lwt(w) < d and dep(w) < r)g, etc.

In the special case lwt(w) = 0, we write

ff . f 1, y fvr
k.. k) G(O’W’O).

The space of formal multiple Eisenstein series is a commutative Q-algebra (G/, *) where each
element is swap invariant. Notice that the Q-linear map

G (%) — G

2.3
Zkl"-Zkrl—>Gf(]€1,...,]€r) ( )

is an algebra homomorphism. Even though the double indices are crucial for the defini-
tion, a non-trivial conjecture is that the space G/ is already spanned by the singles indexed
G(ky,. .., k), ie., that the mapping (2.3) is surjective. This conjecture is the formal version
of the conjectures in [Ba2, Conjecture 4.3], [BK, Conjecture 5 (B2)] and [BI, Conjecture 3.15],
of which only special cases are known (cf. [Ba2, Bul, V]).

Conjecture 2.5. The map (2.3) is surjective, i.e.
G ~ Filgwt G
A more refined version of the conjecture is that

Fily 4" g/ C Filg'yi? g/ for all d,r > 0.

Denote the generating series of the formal multiple Eisenstein series is denoted by

X,..., X, ki, ke or 1 R I

®r ’ ) _ Gf ) ) Xk Xkr 121 Zr )

(1@,...,1@) . ZI;N (dl,...,d,) ! Tdy) d,!
1yeeshr =

di,....,dr>0

Since the formal multiple Eisenstein series are swap invariant we have

& Xl?"'aXT - & Y1++Yra>}/l+y2>Yl
" Yl)"'aYr - XraXr—l_Xﬂ"'aXl_XQ ‘

On Q(A) we can define another product @ by w @ v = o(o(w) x o(v)) for w,v € Q(A). One
can easily check that since ¢ is an involution, this product is commutative and associative. Due
to the swap invariance of G/, this product is the same as the product *. This implies a large
family of relations among elements in G/, i.e., fxg— f @ g = 0 for all f, g € G/. These relations
can be seen as an analogue of the double shuffle relations for multiple zeta values. If f and g
are of depth 1, these relations are given as follows.



Proposition 2.6 ([BIM, Proposition 2.9]). For ki, ko > 1,dy,dy > 0 we have
k k ki, k ko, k ki+k

Gf( 1>Gf< 2>:Gf< 1 2>—|—Gf( 2 1>+Gf<1 2)
d; dy dy, dy dy, dy di + dy

2 e et
1 4+Hlo=k1 +ko 1= 1) \e 2 — 1/ \er €1, €2

e1tea=d;+ds

+ dlldg' (kl+k2_2>Gf<kl+k2_1>
(dy + dy +1)! ki —1 di+dy+1)°

where we sum over all ly,ly > 1 and ey, es > 0, subject to ly +1y = ki + ko and e; + ey = dy +do,
i the second expression.

Proposition 2.6 shows that the formal multiple Eisenstein series in depth two give a realization
of the formal double Eisenstein space introduced in [BKM, Definition 2.1], since the latter are
formal symbols satisfying the above relations. It was then shown in [BKM, Theorem 4.4], that
these relations can be used to obtain the following relations.

Theorem 2.7. For all ky, ko > 1 with k = k1 + ko > 4 even we have

(25 com)om-5 (27 ¢ (3) - a)oucts

Jj=2
jeven

1 k—3 k—3 k-1
- f
() (020) ) e

The following relations are special cases of Theorem 2.7, which will be used later when
dealing with formal (quasi)modular forms. They can be seen as the formal version of the
classical recursive formulas for Eisenstein series given in (1.5).

Corollary 2.8. (i) For even k > 4 we have

k1+ko=k
k1,k2>2 even

(ii) For all even k > 6 we have
(k+1)(k—1)(k—6)
12

Gy = D (k= 1)k — 1) Plhr) Flkr) .

ki1+ko=k
k1,ko>4 even

Due to Euler we know that for m > 1 we have

C(am) = ot (2 = — I (-4C(2)"

As an analogue, in our formal setup we can show the following.

Corollary 2.9 ([BIM, Corollary 2.12]). For m > 1 we have

B2m
c2m) = - 2(2m)!

BQm




for Qam € DM, where M = Q[G/(2), G'(4), G'(6)] is the space of formal quasimodular forms.

We now mention the connection of formal multiple Eisenstein series to of formal multiple
zeta values. Conjecturally, these satisfy exactly the same relations as multiple zeta values.
The definition in [BIM] is equivalent to the usual definition of formal multiple zeta values as
formal symbols modulo the extended double shuffle relations. The difference is that in [BIM]
the authors define the space of formal multiple zeta values as a quotient of G/. This approach
has the benefit of allowing connections to g-analogues of multiple zeta values and modular form
on a formal level, which is not directly possible with the usual approach. Define the following
two subsets of the alphabet A.

R (I A e

With this we define the following ideal in (Q(.A), ) generated by the set A*\((A")*(Ag)*)
= (AN (A (A0))) g

where for an alphabet £ by £* we denote the set of words in the letters L, i.e., the free monoid
generated by the elements in £. The generators of I are exactly those elements which are not

of the form
1,....1, kg, ...k
Gf ) ) ] y v
(i),
for some ky,..., k. > 1,dy,...,ds > 0.

Definition 2.10. The algebra of formal multiple zeta values is defined by
Zf = gf/s)'t

The justification for the name formal multiple zeta values comes from the fact that our notion
is equivalent, up to the non-vanishing of ¢/(1) in our case, to the one by Racinet [Rac] (see
Theorem 2.13 below), which consists of formal symbols satisfying the extended double shuffle
relations. In particular, we expect Z/ = Z[T]. Note that this definition does not coincide
with the definition of formal multiple zeta values in the Introduction: it is the content of
Theorem 2.13 that both definitions are equivalent.

We denote the canonical projection of the space of formal multiple Eisenstein series into the
space of formal multiple zeta values by

.G — 27, (2.4)
This projection can be seen as a formal version of the ‘projection onto the constant term’.
Proposition 2.11. The map m gy gr - Fili"* G/ — Z/ is surjective.
Proof. All non-zero elements in Z/ are linear combinations of elements of the form
1,...,1, 1,....1 Jky,...,k
_ Gf ) ) Ly 9 ) s vl ) vr 2.5
/ dy,...,ds, 0,...,0 ,0,...,0 (2:5)
\"/—/
J



with s,7 >0, 7 >0, d; > 1 and k; > 2. By induction on j one can apply the usual calculation
used for the stuffle regularization ([BI, Proposition 4.18]) to show that f can be written as

f= Z fn G mod I,
m=0

where the f,, are have the same shape as (2.5) with j = 0. Such elements can be expressed as
products Gf(di """ ;s) Gf(kl """ ]g’") modulo M. By the definition of o it is easy to see that o(Q(A')) =

-----

,,,,,

in Z7 which is an element in FilgWt g O
Definition 2.12. For ki, ..., k, > 1 we define the formal multiple zeta value (/(ky, ..., k,) by
k. k) = m(Gky, . K))

The Q-linear map defined on the generators by
¢ ot — 2/

(2.6)
Zhy 2, ke, k)

is an algebra homomorphism with respect to the stuffle product *. This follows from the
fact that (2.3) is an algebra homomorphism and from the definition of (/(ky,...,k.). The
justification for calling ¢/ formal multiple zeta values comes from the following theorem, stating
that they conjecturally satisfy the same relations as ( *-regularized) multiple zeta values, namely
the extended double shuffle relations (cf. [IKZ, Rac]). Notice that, in contrast to [Rac|, we
have ¢/(1) # 0.

Theorem 2.13 ([BIM, Theorem 2.17]). The formal multiple zeta values ¢* satisfy exactly the
extended double shuffle relations, i.e. the kernel of the map (2.6) is the ideal generated by
wxv—wlov forw € H and v € H°.

3. DERIVATIONS FOR FORMAL MULTIPLE EISENSTEIN SERIES

Now we introduce the sly-structure on ¢. For this, the authors in [BIM, Section 3] introduced
various families of derivations on quasi-shuffle algebras, which are o-equivariant. We will leave
out the details and just give the definition of the derivations explicitly.

An algebra A is called an sly-algebra if there exists a Lie algebra homomorphism sl —
Der(A). More explicitly, there exist three derivations D, W, € Der(A) such that (D, W,?)
forms an sly-triple. This means that the satisfy the commutator relations

(W,D] =2D, [W,8]=—25, [5,D]=W.

The algebra of quasimodular forms Q[Gs, G4, G4] is our main example of an sly-algebra. The
differential operator
14 d
©o2widr qdq
preserves the space of quasimodular forms. Besides D, an important differential operator on
quasimodular forms is the operator ¢ defined by Gy = —% and 0G4 = 6Gg = 0. Lastly, ones
defines the operator W by W(G}.) = kG for k = 2,4,6. The algebra of quasimodular forms is

an sly-algebra with respect to these three operators.



We will now introduce three derivations D,W and § on G/ giving it the structure of an
sly-algebra. These can be seen as natural extensions of the derivations on quasimodular forms
described above. This is supported by the fact that there is a sly-subalgebra of G/ isomorphic
to the sly-algebra of quasimodular forms. This algebra of formal quasimodular forms will be

defined in the next section. For motivation of the definitions of the following operators, we
refer to [BIM, Section 4.4]).
The derivations W and D on G/ are given as the Q-linear maps defined on the generators by

ki,... k - k... k:i+1,... K
D f I ) fvr — ]{3 f I ) vy I y vy
G(dl,...,dr> ; JG(dl,...,dj+1,...,dT)’
ki, ... k.

f
WG(dl,...,dr

ki,.... Kk,
::(k1_|_..._|_]{;r_|_d1_|_..._|_dr) L ’ .
dy, ... d,

The definition of 4 is in comparison much more complicated. Its discovery is based on extensive
numerical experiments done by the authors of [BIM]. We write it as a sum of five derivations
as follows

1
5::51—5(52+63+54+55),
where &7 : Q(A) — Q(A) (1 < j <5) are the linear maps defined on the generators by
ki,...,k d ky,....k;j—1,...k
51 9 s v — 1 d Y A Y ) v

[dl,...,dr] ; ks>l J[dl,...,dj—l,...,dj

r—1

1 kv, ... kj kivo,... K,

= 1. _ d ) s gy vg+2 9
2; kjr1=1 &j+1 ldla'--adj+dj+1_ladj+2a--->drl

r—1
N _Zlkal d; { kiR ki, K }7

2j=1 dl,...,dj_l,dj+dj+1—1,...,d7«
ok, ... k] ki,..., k.1 1 ki,..., k._o
02 ) ) 1 _ ) I o _1 o I I ’
dy,d] T TE {dl, .,dT_l] 2 0 =i {dl,...,d,«_g}
_kl Ce k’r- kfl . kr—l
53 9 Y _1 _ Y 9
_dla' '>d7”_ g:—i |:d1> 'adr—l ’
salkok] g . {kl,,,,,kj_l—1,kj+1,...,kT}
i de] TP i g,

_Tz_ilk-—l [kl,...,kj_l,kjﬂ—1,...,1@}
- dla---adj—ladj+dj+1>---adr 7

10



55[1@1,...,/@1 :=ri1k._2[ R W T ]
dla---adr =1 - dla-"’dj—bdj+dj+l>"'adr
Til { kv, ook ko, Ky }
- kj =2
st + dl,...,dj+dj+1,dj+2,...,dr
r—2
1 Kook gk
oY Ly ke [ 7
2; Fir1=hki+a=l di,....dj+djy +djro,djys, ... d,
r—2
1 ki,.... ki1, kiyo, ... k.
D IR P s |
e Lyeoos@jo1,05 + Qjp1 + Ajyo, ..., Ay
Theorem 3.1 ([BIM, Theorem 4.12]). With the maps D, W,d defined above, the space G is

an sly-algebra.

On the single indexed G the derivation ¢ has the much easier form

1 1
SGky, ... k) = —5lh= Glky, .. k) + Z1k1:k2:le(k3, k)
1 r—1
+5 > gt Gk ko ki — 1, k)
j=1 kjt1>1

> gt Gk, ko = Lk, k).

1
2 j=2 kj_1>1

Moreover, following the same proof as in [BB, Proposition 6.30 and Corollary 6.31] one has
the following nice expression for the operator D

DG(ky,... k) = Gf(22 K Zgy t ot 2y — 2o LU Zg, - --zkr).
This leads to the following:

Proposition 3.2 ([BIM, Proposition 4.15)). The subspace Fili"* G is an sly-subalgebra of G/ .

4. FORMAL QUASIMODULAR FORMS

In this section, present the definition of formal analogues of classical quasimodular forms as
a subalgebra of the space /.

Definition 4.1. We define the algebra of formal quasimodular forms M’ as the smallest slo-
subalgebra of G/ which contains G/(2).

Combining all the results proven for formal multiple Eisenstein series, the authors of [BIM]
obtain the following.

11



Cforollary 4.2 ([BIM, Corollary 5.5]). The Ramanujan differential equations are satisfied in
g, ie.,
DG(2) = 5GI(4) — 2G/(2)?,
DGI(4) = 14G7(6) — 8GY(2) G/(4),
1
7
Theorem 4.3 ([BIM, Theorem 5.4]). We have M/ = M as sly-algebras.

DG(6) GI(4)* — 12G7(2) GY(6) .

Corollary 4.4. The algebra of formal quasimodular forms M satisfies:
(i) GAf/(k:) e M for all even k > 2.
(i) M = Q[¢(2), ('(4), ¢/(6)] = Q[F(2), DG(2), D*C(2)].
(iii) The Chazy equation is satisfied, i.e.,
D3G/(2) + 24 GY(2) D*GY(2) — 36(DG(2))* = 0.
Definition 4.5. We define the algebra of formal modular forms by M/ = ker 5‘ o Write MJ;
to denote the space of all formal modular forms of weight & > 0.

Proposition 4.6. We have M/ = Q[G/(4), G(6)] 2 M.
Recall the projection 7 : ¢/ — Z/ given by (2.4).

Definition 4.7. We define the algebra of formal cusp forms by & = ker Tae - Write 8£ to
denote the space of all formal cusp forms of weight £ > 0.

The first example of a non-zero formal cusp form appears in weight 12 = lem(4, 6).
e(4)® — e(6)
o188
where we write e(k) = —%Gf(k) for even k > 2. These elements correspond to the Eisenstein
series F., which all have constant term 1.

Proposition 4.8. We have Al € S},, DA = ¢(2)AT and M, = QG/(k) © S..

AF = = 2400 - 6! - G/(4)* — 420 - 7! - G(6)?,
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