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Abstract

We establish an analogue of Hilbert’s toth Problem, which is a conjecture of Denef and Lipshitz,
for the ring of integers of some number fields of small degree, including those of the form Q(¥/n)
with n < 37. We then describe how to use the arithmetic of elliptic curves to find families of degree 6
number fields satisfying this conjecture. We also make some conjectures related to these techniques.

1 Hilbert’s 10th Problem and the Denef-Lipshitz Conjecture

The tenth problem in Hilbert’s list of 23 problems posed at the International Congress of Mathemati-
cians in 1900 asks whether there is an algorithm to determine if a polynomial f (%) € Z[z1, 2, - , 4]
has a solution f(Z) = 0 for some & € Z". *

Hilbert’s 10th problem was solved in 1970 by Matiyasevi¢ in the negative, i.e. there is no general
algorithm that can decide this [10}. The interested reader may now read the appendix for a sketch of
the ideas underlying the proof.

A natural question is to ask what happens when we replace every instance of Z above by a ring R.

Hilbert’s 10th Problem for R.

Is there an algorithm that can determine whether for a polynomial f(Z) € R[x1,- -+ ,x,] there is a
solution & € R" to the equation f(&) = 0?
| Answer || R |
No Z (original problem)
Yes C or a finite field
2? Q
No? Or = the ring of integers of a number field F

As indicated in the above table, the answer differs with the choice of R. For R = C or a finite field,
it is yes, while for R = Q, it seems unclear what to conjecture. For R = Op the ring of integers of a
number field ', Denef and Lipshitz made the following conjecture in 1973

Conjecture 1.1 (Denef-Lipshitz Conjecture {4D. Let F be a number field. Then for R = Op, Hilberts
Problem for R bas a negative solution, i.e. there is no algorithm that can decide whether a polynomial f(Z) €
Rlzy,- -, x,] admits a solution f(¥) = 0withZ € R".

"This is not exactly the original formulation, which considered multiple polynomials, didn’t use the word ‘algorithm,” and was
worded with the expectation that such an algorithm would exist!



It is customary to refer to the above conjecture as the Denef-Lipshitz Conjecture for F', although
the name “Denef-Lipshitz Conjecture for Or” would be more correct. For example, the Denef-Lipshitz
Conjecture for Q is Matiyasevic’s theorem.

The Denef-Lipshitz Conjecture (DLC) is known for the following number fields F:

* any totally real number field F, or a quadratic extension thereof, see {4, 51,

* a number field admitting one complex place, {14, 18, 19}. An important example of such a field is

* any number field F' that is not totally real and so that [F' : Q] = 4 and there is a (proper, nontrivial)
intermediate field between F' and Q {5},

* [ is a subfield of one of the extensions mentioned above; see {17]. In particular, it follows from
the Kronecker-Weber Theorem that the DLC is unsolvable when F'/Q is abelian.

* If the conjecture holds for a number field F, then it holds for certain infinite families of degree
{™-extensions L of F. More precisely, once F' has been chosen, then for all but finitely many
primes ¢ and all n > 1, the conjecture holds for infinitely many cyclic £"-extensions L of F'; see
[11, 12, See also {16} for a recent result on cyclotomic Z;-extensions.

* F belongs to an explicit family of number fields of the form Q(¥/p, v/—q);[7}. We will study this
family further.

* In{2], G. Cornelissen, T. Pheidas and K. Zahidi studied the case where F is a number field satis-
fying two specific arithmetic conditions.

* In the recent preprint of B. Mazur, K. Rubin and A. Shlapentokh {131, related questions for a large
family of Galois extensions of Q have been studied.

Here are some scenarios for which the DLC is unknown at present:

* number fields F' for which [F' : Q] = 4 and there is no intermediate field.

An example (for which we solve the DLC in the next section) is ' = Q(r) with r a solution to
z* 4 8z + 12 = 0. Note that there is no intermediate field because the Galois group A4 of the
Galois closure of F' has no subgroups of index two?.

* number fields F of the form F' = Q(/n) or F = Q(/n),
* number fields of the form F' = Q(/p, \/—q) for arbitrary primes p and ¢.

2 The relationship with elliptic curves

A combination of two theorems by Poonen and Shlapentokh connects the conjecture of Denef and
Lipshitz to the arithmetic of elliptic curves. The theorem states the following:

*We thank Karl Rubin for patiently clarifying this point. The main ingredient for deriving this from {12, Theorem 1.2} is that
the simple abelian variety can be chosen to be a non-CM elliptic curve.

3See Example 4.15 and Remark 4.16 in Keith Conrad’s write-up ‘Galois groups as permutation groups’ at
https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.pdf that discusses this field in detail.



Theorem 2.1 (Poonen {151 and Shlapentokh {181). Lez F be a number field. If there is an elliptic curve E
defined over Q so that
rank E(F') = rankE(Q) > 0,

then the Denef—Lipshitz conjecture bolds for F.
More generally, given a finite extension F' O I of a number field F for which the Denef-Lipshitz conjecture
bholds, the presence of an elliptic curve E |Q for which

rank F(F') = rank E(F) > 0
implies the Denef—Lipshitz Conjecture for F'.

This theorem suggests the following strategy for proving the DLC:
Given a number field F, find an elliptic curve E/Q so that

rank E(F') = rank E(Q) > 0.

Proposition 2.2 (Garcia-Fritz and Pasten). The Denef-Lipshitz conjecture holds for the integer ring of the
number field Q(¥/2).

Indeed, {7, Section 3.1} employs the elliptic curve of Cremona label 58ar1 to prove this.
We follow this strategy further and prove the DLC for a few new number fields.

Proposition 2.3. The Denef-Lipshitz conjecture holds for the integer rings of the number fields

1. Q(/n) withn < 37, and also with n = 39,41,43 — 47,49, 51 — 55,57 — 59,
61,62,64,66 — 71,74 — 79, 81,82,84,87,89,91 — 95,97 — 100,

2. Q(V/2), and
3. Q(r), r aroot of x* + 8z + 12.

Proof Let E be the curve with Cremona label 145a1. An equation for this curves is given by y? =
2% — 43z + 102. We let F' = Q(+/3). For these choices, we run the following SAGE code:

E = EllipticCurve(”145al”)

K.<t> = NumberField(x"5 - 3)

EK = E.base_extend(K)

r = EK.rank()

print(’The Mordell-Weil rank in ', K, ’is’, r)

This confirms that
rankE(F) = rankE(Q) =1

for this particular choice.
Running the same program with the appropriate modifications for any number field F' = Q(/n)
and elliptic curve E as shown in the table establishes the proposition.



E | some possible F’s |

145a1: 4> = x° — 43z + 102 any F = Q(/n) forn € {3,6,7, 12,15, 17, 20, 21, 23, 26,
28,30, 31,35,39,45, 51,52, 53, 54, 59, 68, 74, 76,94, 97, 98}
grar: y° +y =’ + F=Q(v2)
184br: y? = 2% — 2% — 4z +5 F =Q(V/5)
1o2ar: y? = z° — 3267z + 45630 Q(v/10), Q(v/22), Q(v/58), Q(v/62), Q(v/82), Q(v/92)
136ar: y? = 23 + 22 — 4x Q(V/14), Q(V/58) (also found via rozar) , Q(3/70), Q(~+/78)
s7ar: y* = 23 — 3024z + 70416 Q(V/18)
224ar: y* = 2% + 2% + 2z Q(V/13),Q(V/43)
224a2: y> =25 + 2% —8x — 8 Q(¥/n) with n = 11,29, 33,57, 79, 89, 93, 95, 99
238a2: y? = 3 — T7787x + 979830 Q(~/66)
312b1: 42 = 2% — 43202 — 50112 Q(¥/75),Q(¥/87)
312f1: y? = 2% + 6048z + 578880 Q(v/91)
so4er: y> = a5 — 6z +5 Q(Vv/19),Q(V/37),Q(V/47)
336er: y? = 2 + 20304z + 245376 Q(V/44),Q(v/61)
342er: y° = 25 — 4131z + 10206 Q(V/34),Q(V/46)
534a2: y?> = 23 + 33669z + 4495446 Q(V77)
545a3: y2 = 2 — 11847872 — 396834066 Q(v/69), Q(V/71)
384dr: y? = 13 — 43202 + 89856 Q(v/67)
256ar: y? = 23 — 4320z + 96768 Q(v/84)
qo0ar: y? = x3 — 50x — 125 Q(V/55), Q(V/87)
426b1: y? = 13 — 371331z + 88614270 Q(v/41)

We note that all the fields of the form Q({/n) in the statement of the proposition appear in the table,
e.g Q(21) = Q(¥18).
As for the non-quintic fields in the proposition, we use the following:
| E | r |
58ar: y2 = 2% — 19z + 46 Q(V2)
88ar: y> =23 —4x +4 | Q(r), r aroot of z* + 8z + 12

O

The moral of the proposition is that a judiciously chosen elliptic curve, such as that with Cremona
label 145a1 (which by the way also reproves the DLC for Q(+¥/2) and Q(+/18) via Theorem 2.1!) can
furnish us with many instances of the DLC. Unfortunately, there is no known method for finding an
appropriate E given an F'—one can find E in the above example by simply looking through elliptic curves
of small conductor. What is desired is a more systematic approach. The following is a proposition using
quadratic twists, and appeared first in a paper by Garcia—Fritz and Pasten {7, Proposition 3.3}

Proposition 2.4. Suppose the DLC holds for a number field F. If there is an elliptic curve E so that
1. rankE(F) = 0, and
2. rank B(Q(Vd)) > 0,

then DLC holds for F/(\/d).



Proof The idea is to apply the theorem of Poonen and Shlapentokh to the dth quadratic twist E(® of
the elliptic curve E.

The two conditions in the proposition imply that F(v/d) # F. But the second condition implies
that 0 < rank E(F(v/d)). Now,

rank B(F(Vd)) = rank D (F(Vd)) = rank E(F) + rank B9 (F).

By the first condition, we have that rank E(F) + rank E¥(F) = rankE(?(F), so putting it all
together yields

rank B (F(Vd)) = rank B (F) > 0.

3 Results

Proposition 2.4 is amenable to families of elliptic curves satisfying the conclusions of the theorem of
Poonen and Shlapentokh. Garcia—Fritz and Pasten made use of it to addressed families of DLC as
follows:

Theorem 3.x (Garcia—Fritz and Pasten {7D. There are explicit sets P and Q of primes so that DLC bolds for

F =Q(¥/p,v—q) foreveryp € P,q € Q.
Further, the densities of the sets P and Q are given by 5(P) = < and §(Q) = 35

12°

Here, the density ¢ is defined by the Cebotarev density theorem as follows. The sets P and Q
turn out to be both Cebotarev sets, i.e. sets S of primes so that there is a Galois extension K /Q and a
conjugacy-stable set C C Gal(K /Q) so that S agrees with the set {p : Frob,, € S} up to finitely many

#C

exceptions. Because of the Cebotarev density theorem, the following limit exists and is equal to ea):

. #SN[1,z]
lim ——————
2—00 71'(1')
where 7(x) is the prime counting function. We denote this limit by 6(S), and call it simply the density

of S. Note that by construction, this density is always a rational number.
A consequence of the Denef-Lipshitz Conjecture would be the following:

Conjecture 3.2. There are sets primes P and Q, each of density 1, so that the Denef—Lipshitz Conjecture holds
for number fields of the form

F= Q(%v \/—_Q)ﬁ””em"yp € P7q S Q

In joint work with D. Kundu and A. Lei, we made some progress towards this conjecture by enlarging
the sets of primes to ones with higher densities:

Theorem 3.3 (Kundu, Lei, and the author {9D). There are sets P’ D P and Q' D Q so that the conclusions
of Theorem 3.1 hold with P replaced by P’ and Q replaced by Q', and so that

9 7

(P = 16’ Q) = 8



One may try to optimize the density of one set of primes at the expense of the other. In this
direction, we obtained the following result:

Theorem 3.4 (Kundu, Lei, and the author {9D). There are explicit sets of primes P" and Q" so that the
Denef-Lipshitz conjecture holds for number fields of the form

F =Q(¢/p,\/7xq)foreveryp e P",qe Q".

These sets bave densities

4 Discussion of the proof and open questions

To make the points in the key proposition, Proposition 2.4, work, we need to find an elliptic curve E
so that

1. rank E(Q(¢/p)) = 0, and
2. rankE (Q(\/Zl)) > 0, for appropriately chosen d (i.e. d = —q resp. d = 7q).

We then count how many times this can be done. It turns out that elliptic curves that satisfy con-
ditions (1) and (2) often enough are the curves given in Weierstrafl form and Cremona label by

v +y=a®— 2% — 268z + 1781 (E557b1),
and
yr=a% -2 —1lz — 11  (E704d1).
4.1 Ingredients for the proof

Let E be any of the two elliptic curves just discussed. We want to show that condition (1) from Propo-
sition 2.4 holds often, i.e. we want to find families of:

cubic fields F = Q(/p) satisfying rank E(F') = 0, and )
quadratic fields K = Q(+/d) satisfying rank E(K) = 1 (2

We use results going back to the work of Brau {1} to find the cubic family for 1, and results of Kriz
and Li to find the quadratic family in 2. Proposition 2.4 can then be applied to prove DLC for the

composita Q(¢/p, Vd).
For 1, the result based on that of Brau roughly says the following. Denote by (3 a primitive third
root of unity.

Lemma 4.x. ({9, Theorem 3.51, building on [1, Proposition 5.21)
If a list of conditions concerning the bebavior of the prime 3 relative to E is satisfied, of which the most important
one is that rank E(Q((3)) = 0, then

rank E(Q(¥/p, (3)) = rank E(Q(¥/p)) =0
forevery p € P(E), where
P(E) = {good reduction primesp : a,(E) #2 (mod 3),Vp|pin Q((3)}.



The densities 1—96 in Theorem 3.3 and 192 in Theorem 3.4 come about as follows. Estimating the

density of the primes in P(E) with the indicated (mod 3) condition is the same as estimating the
corresponding Frobenius element Frob, € Gal(Q(E[3])/Q). The improvement from the estimate -
in Theorem 3.1 to 1—96 in Theorem 3.3 reflects several relaxations on the conditions concerning the prime
3—in{7l, the analogue of the above lemma was slightly weaker, relying on some Iwasawa-theoretic tools.
To obtain the much higher density of 133 in Theorem 3.4, we count primes that satisfy the conditions

of the lemma for any of the fwo elliptic curves mentioned before: We have rank E(Q(¢/p)) = 0 for any
p € P(E557b1) U P(ET04d1).

For 2, the result of Kriz and Li says the following

Lemma 4.2. Let E/Q be an elliptic curve so that tank E(Q) = 0 (and E bas trivial 2-torsion). Let K be an
imaginary quadratic field. Put

Q(K) := {primes q # 2 of good reduction and split in K so that a; =1 (mod 2).}

Then under an appropriate condition on a Heegner point (and anotber condition on the Tamagawa number at 2), we
bave

o Ap < 0implies that rank B\ 9x)(Q) = 1, and
* Ap > 0andd < 0imply that rank E(9(Q) = 1,
for every d supported on Q(K ), and where A i; denotes the discriminant of E.

The densities for §(Q) come about when counting the corresponding Frobenius elements Frob, €
Gal(Q(E[2])/Q) with the desired trace condition. In Theorem 3.1, the density 1 was obtained when

applying the above lemma to K = Q(v/=7). The density %z in Theorem 3.3 came about when consider-
ing multiple auxiliary imaginary quadratic fields, Q(v/—7), Q(+/—79), and Q(+/—127), resulting in the

primes ¢ being allowed to be in the larger set
Q(Q(vV=T7)) U Q(Q(vV/=T79)) U Q(Q(v/—127)).

The reason for the much lower density 35 in Theorem 3.4 is that we need the Mordell-Weil ranks of
the two elliptic curves to increase under base change simultaneously. Translating this into the conditions
of the lemma, this is asking for szmultaneous conditions for the traces of Frobenius in both elliptic curves,
thus cutting down the density.

4.2 Anopen question

‘We compare the densities in Theorems 3.1,3.3 and 3.4. We call the set of primes used in constructing
the number fields that satisfy DLC simply P and Q uniformly.
‘We summarize the densities from Theorems 3.1, 3.3, 3.4 in the table below:

Thm3.x | Thm3.3 | Thm3.4 | “Thmn” | lim,_,oc Thmn
9

9 103 374" 1
16 128 23nT 1

5(P)
5(Q) 12 18 3 1X3m 0
‘We were able to improve Theorem 3.1 by considering multiple auxiliary quadratic fields. The differ-
ent densities in Theorem 3.3 and Theorem 3.4 came about because we considered two elliptic curves.

[-&ler




If we extended the methods and found n elliptic curves instead, one should be able to use the methods
of Theorem 3.4 to find a “Theorem n,” where the densities should transform as shown — in the limit,
one could thus prove part of Conjecture 3.2.

Remark 4.3. The density O in the last entry is not too belpful. It seems reasonable to expect that the densities
0(Q) could be bounded from below, so that in the limit, they should have positive density. We would like to make the
following conjecture:

Conjecture 4.4. Denote by Q the set of primes that satisfy the conclusion of Proposition 2.4 simultaneously for
n appropriate elliptic curves. Then there is a constant 6’ > 050 that §(Q) > ¢'.

In particular, &’ > § x 3 for sufficiently large n, so that the lower right entry in the table should
be improved to §'.
Acknowledgments. We would like to thank the organizers for a wonderful conference.

5 Appendix

We sketch the ideas behind Matiyasevic’s proof, which completes a strategy originally due to M. Davis.
A particularly simple scenario that Hilbert had in mind is the family of polynomials in two variables
given by
2+ y2 —Mn.

A well-known theorem by Fermat furnishes us with Hilbert’s desired algorithm when n is prime. In
this case, a possible algorithm may be simply:

“Output YES if n = 2 or n = 4k + 1 for an integer k;

Output NO if n = 4k + 3.7

Fermat began to give a criterion for composite n as well, see e.g. {8, Exercise 5.31, and one may
formulate appropriate algorithms in those cases as well. Using this algorithm, we find that the set of
n for which the output would be YES is {0,1,2,4,5,8, - - - }. (For arbitrary quadratic equations in two
variables, an algorithm is due to Gauf}, quadratic reciprocity.)

From the wording of Hilbert’s problem, it seems that Hilbert was hoping for a general algorithm
that would vastly generalize these results of Fermat and GauS8.

However, Matiyasevi¢ proved that such an algorithm does not exist. How does one prove such a
theorem? Three ideas played a key role, Diophantine sets, two types of sets coming from algorithms
(computable and listable sets), and conjecturing that listable sets are Diophantine.

5.1 Diophantine Sets

Recall that Hilbert’s 1oth Problem asks for a solution (of a certain type) of a polynomial. The first idea
is to turn the problem around, i.e. given a set of integers, are they a solution set for a polynomial?
A concrete example is the set

{0,1,2,4,5,8,---} = {n such that z* + y* = n has a solution with =,y € Z}

from above. This is an example of a Diophantine set. The polynomial equation 2> + y* — n is the
associated Diophantine equation.

Definition 5.x. A set S of integers is Diopbhantine if there is a polynomial P with coefficients in 7. (¢he asso-
ciated Diophbantine equation) so that

nesS < P(n,z1,%2, -, Tm) = 0bas an integral solution (z1,-- - , Tpm,).



5.2 Computable and listable sets

Roughly speaking, computable sets .S of integers are the best to process for a computer, while listable
sets are “second best.”

A set S of integers is computable if there is an algorithm that decides which integers are in S and
which are not.

By contrast, a set S of integers is listable if there is a Turing machine program, or more informally
a (mechanical) method inferior to algorithms, that furnishes us the following:

n €S <= Outputis YES.

Note, however, that the program may run arbitrarily long to arrive at the conclusion that n € S.
n ¢ S = Output is NO, or program keeps running forever.

The problem is that while the program is running, we don’t know whethern € S.

The set of integers {0,1,2,4,5,8,---} above is listable. Indeed, we may fix some enumeration of
all 3-tuples of integers. Given any such tuple (z,y, 2), compute 2> + y* — n. If this is = 0, put n on the
list (n may appear multiple times.)

A similar argument shows that any Diophantine set is listable. It turns out that the set {0, 1,2,4,5,8, - - -

is in fact computable, but this is not always true: There is alistable set K that is not computable.

5.3 Davis’s Dream: Listable sets are Diophantine

In the 1930’s, Martin Davis began to suspect that any listable set L was Diophantine, i.e. had a Diophan-

tine equation Py, for which it became a Diophantine set. (In our recurring example L = {0,1,2,4,5,8, - - -

we would have P, = 22 + y? — n.)
If this were true, there would be a Diophantine equation Pg for the set X from the last sentence
of the previous section, so that

Py = 0 has a solution (21, ,2,,) € Z™ (forgivenn € Z) <= n € K.

A consequence would be that given n, there is no algorithm for telling if Px has a solution in
1, -+ ,Tm (and n).

The reason for this is that if there were such an algorithm, we could use it to decide if n € K, i.e.
K would be computable — but it is not!

5.4 Realization of Davis’s dream

Davis couldn’t realize their dream. However, Julia Robertson in the 1950’s developed techniques shed-
ding light on Diophantine sets which increased in an exponential fashion. In 1960, Robertson col-
laborated with Hilary Putnam and Martin Davis to show if just one Diophantine equation could be
found whose solution increased exponentially, this would imply Davis’s dream. An example of a set of
numbers that grow exponentially is the set of Virahanka numbers:

1,1,2=141,3=1+2,5=2+3,8=3+5,13=5+8,21 =8+13,---

(Virahanka numbers are also known as Fibonacci numbers.) Matiyasevi¢ found a Diophantine equa-
tion whose solutions were (appropriately related to) Virahanka numbers, so that ultimately the following
theorem was proved:



Theorem 5.2 (Davis—Putnam—Robinson—Matiyasevi¢). Every listable set of integers is Diophantine.
Corollary 5.3. Hilberts 10th Problem has a negative solution.

For further reading which this appendix merely summarizes, see {6} and {3}.
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