ON THE CONJECTURES OF BEILINSON-TATE FOR SIEGEL
SIXFOLDS

ANTONIO CAUCHI

ABSTRACT

These are the (extended) notes of a talk given by the author at the conference Algebraic
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1. AUTOMORPHIC L-FUNCTIONS

Let G be a reductive group over Q. The definition of an automorphic L-function requires
two data:
e A cuspidal autormophic representation 7 of G(Ag), say ™ = 7o ® (X);, Tp, Where m,
is unramified at p € S, for a finite set S of places containing oco;
e A finite dimensional complex representation r of the Langlands dual group *G of G.

From these data, we can form an Euler product

LS(s,m,r) == H Ly(s,m,r),
peS

where, if s; denotes the Frobenius conjugacy class of m, (a.k.a. its Satake parameters),
then

Ly(s,m,7) :=det (I — r(sﬂp)p_‘g)_l

The Euler product L% (s, 7, r) converges absolutely for Re(s) >> 0.

Conjecture 1.1 (Langlands). We can define factors at every place in S so that the resulting
completed L-function A(s,m,r) has meromorphic continuation to all C and it satisfies a
functional equation with s = 1/2 as center of symmetry.

The author was financially supported by the JSPS Postdoctoral Fellowship for Research in Japan.
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Suppose now that 7 is tempered everywhere, i.e. m, is tempered at every place v, then
A(s,m,r) converges absolutely (and so it is holomorphic, non-zero) for Re(s) > 1. This
fact together with the conjectural functional equation poses some mystery on the values of
A(s,,r) in the strip 3 < s < 1 (equivalently 0 < s < 1). It turns out that the behaviour
of the partial L-function L°(s,7,r) (which might coincide with the one of A(s,,7) if we
know how to control the Euler factors at places in S) contains information of analytic and
arithmetic nature. For instance, on the analytic side (see [GJS10| for a nice survey on this)
the location of poles of L°(s, 7, r) is often linked to the non-vanishing of certain periods for
7 and to the realization of Langlands functoriality. Precisely, one might expect to relate the
following three facts:
(1) The L-function L°(s,w,) has a pole.
(2) A certain period for cusp forms in 7 is non-zero.
(3) The cuspidal representation 7 is a (weak) functorial lift with respect to the embed-
ding H < G, with H being the stabiliser of a generic point of the representation
T.

Often, theta correspondence has been used to realise functorial lifts, so one might replace
(3) by the existence of such a correspondence.

On the arithmetic side, the behaviour of L° (s,m,r) at s = 1 contains rich arithmetic
information. When L (s, 7, ) is motivic, the conjectures of Beilinson link the trascendental
part of the leading coefficients of these L-functions to regulators of motivic cohomology
classes, while the conjectures of Tate relate the residues of these L-functions to the existence
of algebraic cycles.

1.1. Some examples of L-functions and their pole at s = 1.

1.1.1. The eaterior square L-function. Let A% : GL4(C) — GLg(C) denote the exterior
square of the standard representation Vj of GL4(C); it is an irreducible representation of
GL4(C) with highest weight (1,1,0,0) (being the second fundamental weight for GL4(C)).
We seek a subgroup H — GL4(C) such that

Nlg=1®p,

with 1 the trivial representation of H and p a five dimensional irreducible representation of
H. Let Sp, be the symplectic group of genus 2. Precisely, if Iy denote the identity 2 x 2

matrix and let J := <_12 IQ), then

Sp,(C) = {g € GL4(C) : tgJg = J}.

Note that Vj defines also the standard representation of Sp,(C). Moreover, J defines a
symplectic pairing .J : V4 x V4 — C and hence a Sp,(C)-equivariant map J : A2V; — C. Its
kernel is the 5 dimensional irreducible Sp,(C)-representation of highest weight (1,1). Using
the exceptional isomorphism Sp,(C) ~ Spins(C), we can view p; 1 := ker(J) as a Spins(C)-
representation. It coincides with the representation obtained by taking the composition
of the standard representation of SO5(C) with the projection Spins(C) — SO5(C). We
therefore have the desired decomposition

N2(Vy) =Cepry.

This can be upgraded to a decomposition for representations of the group of symplectic
similitudes GSp,, but we won'’t need to get into that at the cost of restricting to automorphic
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representations with trivial central character. Now suppose that 7, is a spherical admissible

representation of GL4(Q,) with Satake parameters at p which belong to Sp,(Q,), then
L(s, Ty A2) = det(T = A2(sg, )p~*) !
= (1—p~*) - det(I — p1a(sx,)p~%) "

This implies that, if 7 is a tempered automorphic representation of GL4(Aq) with trivial
central character, unramified outside a finite set S of primes, and with Satake parameters
in Sp, at every prime not in S, we then have a decomposition of partial L-functions

L3(s,m,A%) = L¥(s, 7, p1,1)¢ (5),

with L%(1, 7, p11) # 0, and thus L®(s, 7, A?) has a simple pole at s = 1. One can show that
this is equivalent to 7w being the transfer from a cuspidal generic automorphic representation
of GSp,(Aq) with trivial central character. Moreover, these facts are also equivalent to
asking that IT has non-trivial Shalika periods (c¢f. [JS90]). Shalika periods have shed profound
insights into the Langlands program and their arithmetic significance has been explored for
instance in [GS23] or [SDW21].

1.1.2. The Asai L-function and base-change. Let F/Q be a quadratic field extension and
let us consider H = PGLz and G = Resp,q(PGLz). The L-group of G is

"G = (SLy(C) x SL2(C)) x Gal(F/Q),

where the non-trivial element 7 of Gal(F'/Q) acts by permuting the SLy(C) factors. Note
that the diagonal embedding induces a map BCp/q : LH — LG, The map BCp/q realizes
the base change lift from automorphic representations of H to automorphic representations
of G, in the sense that the Langlands parameters of a base change lift will factor through
BCp/q almost everywhere. Let V2 denote the standard representation of SLy(C) and let
Vi = Vo ® Va; identify GL(Vy) ~ GL4(C). We also have a map

Asaip/q : "G — "GLy

which on pure tensors is defined by

g1 v ®go-vg ify=1

Asai 192, 7) (V1 ® v2) 1=
F/Q(gl 92,7)(v1 2) {gl vy ®go-vp  fy=T.

If 7 is a tempered automorphic representation of G(Aq), unramified outside a finite set S
of primes, the base change lift of a tempered automorphic representation o of H(Aq) (we
can choose S so that its Satake parameters lie in the image of BCp/q at every prime not in

S), the factorization of Asaip/q o BCp/q into irreducible L H-factors induces
L3(s, ™, Asaip/q) = L5(s, 0, Sme)LS(S,EF/Q),

with ep/q the Hecke character associated to the quadratic extension F/Q by class field
theory. The twisted L-function LS(S,W,AsaiF/Q ® €p/q) has thus a pole at s = 1. The
existence of a pole at s = 1 for L(s, m, Asaip/q ® €p/q) is equivalent to asking that 7 is in
the image of the base change lift. Moreover, these facts are related to the non-vanishing of the
Hirzebruch—Zagier cycles for m. Hirzebruch—Zagier cycles and their generating series can be
viewed as the prototype for Kudla program and its p-adic counterpart (cf. [HZ76], [GG12|,
[CNR24|). The relevant cases of Beilinson—Tate conjectures pertaining special values of the

Asai L-functions have been studied by Kings and Ramakrishnan (c¢f. [Kin98|, [Ram87]).
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1.2. An exceptional setting: GSpg and Gs.

1.2.1. The group Go. Let H be the algebra of Hamilton quaternions over Q with the usual
basis {1,4,7,k}. The conjugate @ of an element a = oy + aqi + agj + ask € His a =
ag — 11 — asj — ask. The split octonion algebra over Q is @ = H ¢ H with multiplication

(a,b) - (c,d) = (ac+ db,ad + cb).
Then O is a non-commutative, non-associative, alternative Q-algebra. If x = (a,b), let

T = (a@,—0b). Then z — T is a Q-linear involution on O satisfying T-y = 7 - T. The norm
N:O — Q, z— x -7, defines a quadratic form on @. Define

Go = {g € GL(0) |g(= - y) = (92) - (g9y), Vz,y € O}.

G acts transitively on the set Q of trace zero octonions and preserves the quadratic form
induced by N. Thus we have an embedding

Std : G — SO; — GL7,
which we denote by the the standard representation of G. The dual group Gy = G1(C).

1.2.2. A key diagram. Let J := (713 13) and define GSpg = {(g,v(9)) € GLg x GL; :

tgJg = v(g)J} and PGSpg = GSpg/Zasp,- The dual group of PGSpg is Spin;(C) and we
let Spin : Spin,(C) — SOg(C) — GLg(C) be the 8 dimensional Spin representation. Despite
G2 having discrete series at oo, the locally symmetric space associated to Go does not have
any complex structure. It is an observation of Gross and Savin [GS98| that the standard
motive of cuspidal automorphic representations of G(Aq) should be realised inside the
cohomology of the Siegel sixfold (i.e. the Shimura variety associated to GSpg). This is
motivated by the following discussion. The étale cohomology of the Siegel sixfold realizes the
Spin motive of cuspidal automorphic representations of PGSpg(Aq) (cf. [KS22]). Now note
that the stabilizer of a generic vector in Spin is isomorphic to G3(C), giving an embedding

¢ 1 G2(C) — Spiny (C).

Indeed, one can see that G3(C) = Spin;(C)NSO7(C) and we have the following commutative
diagram
Std

T

Go(C)— 807(C)—= GL+(C) (1)

]

Spin; (C)——= SOs(C)——= GLg(C).

W

Then we have the decomposition

Spin|§(G2(C)) ~ Std @ C.

If we let 7 be a cuspidal automorphic representation of PGSpg(Aq), which is a weak func-
torial lift (via &) of a cuspidal automorphic representation o of G2(Aq), then for a good
enough finite set of places S

L5(s,,Spin) = L5(s, o, Std) (5 (s). (2)
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In general, by Langlands functoriality it is expected that if L (s, 7, Spin) has a simple pole
at s = 1, then 7 is a functorial lift from G2 or its compact form. Combining results from

[KS22|, [Chel9], [GS20], [GGO9], and [PS18|, one can show the following.

Proposition 1.2 (|[CLJ22, Proposition 8.1|). Suppose that m is a cohomological cuspidal
automorphic representation of PGSpg(Aq) which is Steinberg at a finite place. Then w is
tempered and the following statements are equivalent:
(1) The partial L-function L°(s,n,Spin) has a simple pole at s = 1,
(2) For almost all ¢, the Satake parameters of ™ at € lie in §(G2(C)),
(3) There exists a cuspidal automorphic representation o of either Go or its form compact
at oo such that w is a weak functorial lift of o.

Moreover, if ™ supports a Fourier coefficient of rank 2 associated to a quadratic étale Q-
algebra I’ these conditions are equivalent to

(4)  is H-distinguished, with H = {(g1, 92) € GL2 X Resp/qGLar : det(g1) = det(g2)},
i.e. that there exists a cusp form ¥ in w such that

Pu(¥) := U(h)dh # 0.

/ZGSPG(A)H(Q)\H(A)
If one of the first three conditions hold, the residue at s = 1 of the partial L-function
L3 (s, m,Spin) is given by

Res,—1 L° (s, 7, Spin) = L(1, o, Std) H(l —h.
Les

In (4), H is embedded into GSpg as follows. Let V' = V18V, be the standard representation
of H, with Vi = Qe; & Qf1, resp. Vo = Feg @ F'fs, the standard representation of GLo,
resp. Resp/qGLa . On V' we have a Q x F-values alternating form ¢ : V XV — Q x F'
which sends ¥ (e, f1) = (1,0) and ¢(e2, f2) = (0,1/2). If we regard V as a six dimensional
Q-vector space with symplectic form 1’ := Trqur/qo?¢: V XV = Q,

0t (aer + ae2,bfi + BF2) > abt L Trggg ).

then we have an embedding H < GSp(V,¢’). The latter can be made isomorphic to GSpg
after changing the symplectic Q-basis of V. For instance, if F' = Q(J) the choice of Q-basis
{6,17 6,27 9%» f{7 fé: fé} = {617 €2, 5627 fl; f27 5_1f2} of V identifies (V7 7/)/) with (‘/7 J)

1.2.3. The integral representation of the Spin L-function by Pollack—Shah. Pollack—Shah
in [PS18], building up on work of Gan—Gurevich in [GG09|, give an integral representa-
tion of the Spin L-function for cuspidal automorphic representations of PGSpg which sup-
port Fourier coeffients of rank 2. The results of [BGCLRJ23] and [CLJ22| concerning the
Beilinson—Tate conjectures for Siegel sixfolds rely on the arithmetic incarnation of the an-
alytic construction of [PS18]. We now recall their result (which we have implicitly used in
Proposition 1.2).

Let S (A?Q) denote the space of Schwartz-Bruhat functions on A%Q. Let By denote the

upper triangular Borel of GLy with modulus character op,(diag(t1,t2)) = |t1/t2|. Given
o c S(Aa), denote by

Flg,®,5) = | det(g) | /G o OB
1 Q
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L2(Aq)

the normalized Siegel section in Indgz( AQ)

(6,) and define the associated real analytic
Eisenstein series

E(qu)vs) = Z f(797(1)73)- (3)
1€B2(Q)\GL2(Q)

It has meromorphic continuation to the whole complex plane with at most a simple pole at
s = 1 with constant residue.

Let F' be a quadratic étale Q-algebra and let H = {(g1,92) € GL2 x Resp/qGLaF :
det(g1) = det(g2)}, which embeds into GSpg as above. If 7 is a cuspidal automorphic repre-
sentation of PGSpg(Aq), for any factorizable cusp form ¢ in the space of 7 and factorizable
S S(A%Q) consider

I(®, . 5) = / E(h1, ®, )p(h)dh.
Zosps (AH(Q)\H(AqQ)

We take @, p to be factorizable.

Theorem 1.3 (|PS18|). Let S denote a finite set of places containing oo and the ramified
places for . If m supports a Fourier coefficient of rank 2 attached to F', then

Z(®, ¢, s) = Is(Ps, ps, s)L5 (s, 7, Spin),
with Zs(®g, ps,s) the integral over the places in S.

Immediately from the theorem, taking the residue at s = 1 of the equality of Theorem
1.3 yields

200) - Puly) _ Ress—1 (Zs(®s, s, 5)L° (s, 7, Spin)) ,

2
where we have denoted by ® the Fourier transform of ® and we have used that
®(0
Ress=1E(g,2,s) = %

2. BEILINSON—TATE CONJECTURES AND MAIN RESULT

2.1. The analytic class number formula. Let K be a number field with ring of integers
Ok and degree [K : Q] = r1 + 2rg, where 1 denotes the number of real embeddings of K
and 2ry is the number of complex embeddings of K. The Dedekind zeta function of K is
the Euler product

()= Y ——— = [ (1= Nejalp) )"

1oy NK/ Q) PCOK

It converges for Re(s) > 1 and admits meromorphic continuation to C with a simple pole
at s = 1. Note that

(K®qR)*~ [ R*x [ C*=®)"x (@)
real v|oo complex v|oo

and we can define the regulator map r : (K ®q R)* — R"™""2 & — (log|xy|y)y. If pr :

R™+72 — R™M+7271 is any of the natural projections, the regulator of K is the covolume of
(pror)(OF) in RM1+271
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Theorem 2.1 (Analytic class number formula).
27 (27‘1‘)r2 hix Ry

|0Ktors| V |AK| 7

where hg is the class number of K, |(9K tors| @8 the number of roots unity in K, Ay is the
discriminant of K, and Ry is the regulator of K.

T Cie(s)(s — 1) =

In the 70’s, the analytic class number formula was extended to other special values of (xk;
precisely Lichtenbaum noticed that the order of vanishing of (x(s) at s = 1—m, for m > 1,
is equal to the dimension d,, of the higher K-group Ko,,—1(K) ® Q. Borel then proved a
formula of the leading term of (x(s) at s = 1 — m in terms of the covolume of the image of
a higher regulator map 7, : Kop—1(K) — R%. In the 80’s, Bloch defined a regulator map

Ks(E) — H'(E(C),R),

for the second K-group of a complex elliptic curve E/C, and showed a similar formula
relating the image of r with the leading term at s = 0 of the Hasse-Weil L-function of
elliptic curves with complex multiplication.

2.2. The conjecture. Beilinson conjectures generalize these class number formulas and
propose the right framework in which they fit in. We refer to [Nek94|, [Sch88| for excellent
surveys on these conjectures. In what follows, we restrict to the setting of the conjecture
where the underlying pure motive (which we assume to be of automorphic nature) has weight
—2 (cf. [Nek94, (6.3)]). In this case one has to take into account the regulator from motivic
cohomology as well as the contribution of algebraic cycles modulo homological equivalence
(and this is why we refer it to Beilinson—Tate conjectures).

Let G be a reductive group over Q, which admits a Shimura datum (G, X¢) and hence
has a Shimura variety. For a neat open compact subgroup K C G(Ay), we denote by Y (K)
the attached Shimura variety of level K, which is a smooth, quasi-projective complex variety
of dimension dg. We assume that dg is even. Also assume for simplicity that Y (K)
has a canonical model, which we still denote Y (K), over the rationals Q. Fix an element
h:S:=Resc/rGL1 — G/r of Xg. Over C, §,c >~ GL; x GL; and precomposing h with
GL; — GLy x GLy, ® = (2,1), yields up : GLy;c — Gc. Up to conjugacy, we can assume
that the image of pj, lands in a maximal torus 7" of G defined over Q. By our assumption,
the conjugacy class of uy is defined over Q and we can further assume that the image of
pun is contained in a maximal split torus of G. By duality, p, defines a character i, P of the
torus T dual to T and, after choosing a Borel pair for G a dominant weight for G. We let
oG G— GL,,, be the representation of highest weight jz;,. This representation extends to
a representation which we still call pg of the Langlands dual “G.

Example 2.2.

(GL2) Recall that (/}ig ~ GL3(C); h : S — GLy can be chosen to send z = a + ib €
C* to (% %) € GLy(R). After base-changing h to C, it can be diagonalized to
(2,2") = (% ,). Then fip, : (* ,/) = z and pgr, is the two dimensional standard
representation of GLa(C).

(GLy/p) Consider the group GLg over Spec(F), for F' totally real number field. In this case,
the reductive group over Q is nothing but G = Resg/q(GLa r); as G(Q) = GL2(F)
and

G(R) = GLy(F ®q R) = GL2(R)",
7



with n = [F: Q], since FeqR =R", a®r — (roi(a), - ,rop(a)) with o; running
through ¥ = {v : ¥ — R}. We can therefore define

h:S— Gr ~GL3R,

by sending z = a + ib — (( fbg) S (fb 2)) In this case, pg coincides with the

Asai representation Asaip,q.
(GSpg) We can choose h : S — GSpg so that z = a +ib € C* to (_‘115?3 Zg) € GSpg(R).

After diagonalizing it, we can assume pp : z — <I3 zlg) € Tasp, (C), with Tgsp,

being the diagonal maximal torus of GSpg. The associated character of fGSpG is the
highest weight of the 8-dimensional representation Spin.

Roughly speaking, the (global) Langlands conjecture predicts that the L-function of the
Hecke isotypic components of the cohomology of Y should be associated to the represen-
tation pg of “G of highest weight fi,. Let 7 = 7o @ 7; be a non-endoscopic tempered
cohomological cuspidal automorphic representation of G(Aq). To 7; one hopes to attach
a Chow motive M (7¢) pure of weight dg with coefficients in a big enough number field L

such that J
G
L85, M(mg) (")) = L (5,7, ).

for S a finite set of places containing co and the ramified primes for 7. It should be realized
in the interior cohomology of the Shimura variety Yg, i.e. for j € Z

M(ms)(j) @ mp = H!dG(YG, Lr(5))[ms]-

Denote jg = dJQi; let Hy,(M(7s)(jo + 1)) denote the first motivic cohomology group of
M(7¢)(ja+1) and let N(M(7f)(j)) denote the group of algebraic cycles in M (7¢)(ja) up
to homological equivalence. Let HL(M (7¢)r(jc + 1)) be the first Deligne—Beilinson coho-
mology group of M (7¢)(ja+1); the Betti cycle class clp induce amap rg : N(M(7¢)(ja)) —
Hi(M(mf)r(je + 1)) (¢f. [Nek94, §6.2]); this and Beilinson’s regulator rp induce

r=(rp,rp) : Hyu(M(mp)(je + 1)) ® N(M(7f)(jo)) = Hp(M(ms)r(je +1))-

Conjecture 2.3. (Beilinson—Tate)
(1) The map r induces an isomorphism

(H (M (ms)(j + 1)) & N(M(7f)(ja) @@ R = Hp(M(ms)r(je + 1)),
(2) ords—oL®(s,m, pg) = dimp, H,(M(7s)(jo + 1)),

(3) —ords—1L7(s,m, pg) = dimg, N(M(7y)(ja)),

(4) det(Imr) = L*(1, M(7s)(ja))D(M(7s)(jo+1)), where D(M (74)(jc+1)) denotes
the Deligne Ly-structure of det(Hh(M (7f)r(jc +1)).

Very few cases of these conjectures (not only in weight —2) are known [Bei85], [Bei86|,
[Den8&9], [Den90], [Ram86], [BC16], [Kin9§|, [Lem17], and they remain one of the main open
problems in arithmetic geometry.

We conclude this section with a speculation. Suppose that we are interested in the arith-
metic of L-functions attached to a reductive group G and representation p’ of G for which

IThe twist M(ﬂf)(d%) has weight 0 and both L-functions are centred at s = 1/2.
8



either G does not admit a Shimura datum or p’ # pg. Is there hope to construct auto-
morphic Chow motives associated to cohomological cuspidal automorphic representations 7
of G and p/'? If so, how to approach Beilinson’s conjecture in those cases? One possible
strategy:

(1) Construct the motive as a piece of the interior cohomology of an auxiliary Shimura
variety for a group G’ by means of lifting from G to G’ (e.g. theta or endoscopic
lifting);

(2) Seek for Rankin-Selberg integrals for automorphic representations of G’ which nat-
urally detect the lifting from G and calculate the L-function associated to p;

(3) Construct the motivic counterpart of the Rankin-Selberg integral of (2).

As briefly commented in §1.2.2, an instance of (1) has been proposed by [GS98| and
partially answered by [KS22] for Ga: G2 does not admit a Shimura variety but its “standard
motive” appears as a piece of the cohomology of Yggp, by means of an exceptional theta
correspondence. In this case, the right Rankin—Selberg integral appears in the literature, but
(3) seems out of reach as it is not known at the moment if there exist motivic incarnations
of Siegel Eisenstein series for GSp,. We can similarly analyze the settings described in §1.1
with (G, p') equal to either (GSpy, p1,1 ® £5/q)* (in which case G/ = GU(2,2)), with £/Q
an auxiliary imaginary quadratic extension and £, q the Hecke character associated to it by
class field theory, or (GLg, Sym®) (in which case G’ = Resp/q(GL2) with F//Q real quadratic
extension). The “right” Rankin—Selberg integrals appear in the literature (c¢f. [CT24|) and
involve again Siegel Eisenstein series for GSp,.

2.3. Our case of interest: main results. Let 7 = 7o ® 7y be a cohomological (for trivial
coeflicients) cuspidal automorphic representation of PGSpg(Aq) which is unramified outside
a finite set S of places which we assume to contain co. Suppose that at a finite place p the
component , is the Steinberg representation of PGSpg(Qp). Then, by results of [KS22]|, 7
is tempered with 7 in the discrete series L-packet for the trivial representation. Moreover,
for a big enough number field L, we have (¢f. [CLJ22, §2.8])

H (Vesspy (U), La(3)) ) = HE (Vs (U), La(3)) 7] = M (mp)(3) @ 7Y
with Mp(7f)(3) a pure Hodge structure of weight 0 such that, if h?? = dimc(Mp(7f)(3))P4,
BP 1 if p#0,
2 ifp=0.

In particular, we have dimy; Mp(7f)(3) = 8 as expected. Furthermore Kret—Shin [KS22]
have shown that
L%(s, M(ms)(3)) = L% (s, m, Spin).
Define Ry := L; ®q R. The following lemma calculates the dimension of the  ¢-isotypic
component of the seventh degree Deligne-Beilinson cohomology group of Yasp, (K).

Lemma 2.4 (|CLJ22, Lemma 2.11]). We have
dimg, 1} (Yasp, (U)/R. R (4))[rf] = dimen}.

2This is a quasi-split version of the setting of §1.1.1, in which if 7 is a generic cuspidal automorphic rep-
resentation of PGU(2,2) in the image of the theta correspondence of a cuspidal automorphic representation
o of PGSp, we have a decomposition

L3(s,m,A*) = L¥(s.m,p11 ® £5/Q)¢" (5).



If we write
Hp(Yasp, (U)/R. Rr(4))[rs] = Hp(M(mp)r(4)) @ 77

then the Lemma implies that H7,(M (7f)r(4)) is one dimensional. Conjecture 2.3 therefore
suggests the following:

Expectation 2.5.

(1) If L®(s,w,Spin) is holomorphic at s = 1, there should exist a motivic cohomol-
ogy class v € Hiy(Yasp, (U), Lx(4)) such that the projection rp(Zwm)(my) to the
mp-isotypic component of its Deligne—Beilinson realization and its Hecke translates
generate HL(M(ms)r(4)) ® Tr?.

(2) If L(s,m,Spin) has a simple pole at s = 1, there should exist a codimension 3 cycle
(modulo homological equivalence) Znom € N*(Yasp, (U))r, such that the projection
7B(Zhom)(7f) to the m¢-isotypic component of its realization via rp and its Hecke
translates generate H(M (mf)r(4)) ® 77?.

In [BGCLRJ23| and [CLJ22|, we construct candidates for 2, Znom. Before stating our
result, we introduce some notation. We fix a sufficiently small open compact U C GSpg(A ¢)

such that ﬂ}] #0. Let w22 be the discrete series of PGSpg(R) of Hodge type (3,3) and let

Voo be the highest weight vector of the minimal K-type of 723, For a cusp form Y = PRy,
with ¢ € lec], we have a harmonic differential form w, of Hodge type (3,3). The restriction
of 2% to Spg(R) factors as the direct sum Tri’fl & fifjl of the discrete series for Spg(R) of
minimal K =~ U(3)-types (25 4y and 7(4 o _9). Each of these representations have a one
dimensional weight (0,0, 0)-eigenspace and we let ¢ be a vector in the minimal K-type

of 5 whose projection to each of the two factors generates the weight (0, 0, 0)-eigenspace.

We will let ¢ := % @ ¢s. Fix the Schwartz-Bruhat function ® on R? defined by
(z,y) — e~™@* %) and, for each L-valued Schwartz—Bruhat function S S(A%,LW),
we let @ = &, ® ®;. Finally recall that we have introduced the integral representation
Z(®, ¢, s) of the Spin L-function of GSpg by Pollack—Shah.
Theorem 2.6 (|[BGCLRJ23, Theorem 1.5], [CLJ22, Theorem 1.2]).

(1) If L°(s,w, Spin) is holomorphic at s = 1, for suitable Q€ S(A?,Lw), there exist

.,@p/af € H},(Yasp,(U). Lx(4)) and a natural map

(we) : Hp(Yasp,(U) /R, Rx(4)) = C®q Lx
such that
(rp(Z0f ) (7p), wp) = C lim (Zs(®s. %, 5) L (s, Spin))

with C' an explicit volume factor independent of .

(2) Suppose L (s, m,Spin) has a simple pole at s = 1, so that 7 is a weak functorial lift
of a cuspidal automorphic representation o of Ga(Aq). Then there exists Zpom €
N3(Shq(U)) L, such that the value of the Poincaré pairing

(rB(Zhom)(7f), wp) = C'Ress—1 (Zg(P's, @%,S)LS(S,W,Spin))
= C'L5(1,0,Std)Ress—1 (Zs(P, ¢, 5)C(s))

with C' an explicit non-zero constant independent of ™ and ®' a suitable Schwartz—
Bruhat function on A(QQ.
10



Immediately from the Theorem (plus arguing as in [BGCLRJ23, Corollary 5.23] if in case
(1) of Theorem 2.6) yields the following.

Corollary 2.7. Let ¢°, ®, @' be as in Theorem 2.6. If Ig(Vs, %, 1) # 0 for U equal to @’
and to the Fourier transform ® then Expectation 2.5 holds.

Understanding the behaviour of the ramified integral Zg(¥g, cp%, s) at s =1 is at the heart
of the conjecture and calculating it would strenghten notably our results. At present, this
seems however out of reach (at least for us in this generality). The main crux is that the
space of Fourier cocfficients that the integral Z(¥, °, s) unfolds to is not finite dimensional
in general.

We conclude with a remark on the arithmetic applications of our construction.

(1) In [CRJ20], we showed how the étale realization of Z /af could be assembled into
a norm-compatible tower at p of cohomology classes, giving rise to an element of
the Iwasawa cohomology of the local p-adic Spin Galois representation associated
with m¢. We expect these classes to form an Euler system for the Spin Galois
representation.

(2) If L(s,m,Spin) has a pole at s = 1, Conjecture 2.3 (3) would imply the existence
of a Galois invariant vector in the p-adic Spin Galois representation attached to 7.
Inspired by the diagram (1), if o is a cuspidal automorphic representation of Gg
or its compact form lifting to 7, Gross and Savin [GS98| conjectured the existence
of the rank 7 “standard” motive M (o) attached to o and the decomposition of the
motive M (7¢)(3) as the direct sum of M (o) and the rank 1 trivial motive generated
by the class given in Conjecture 2.3. Moreover, inspired by local calculations, they
conjectured that this class should arise from a Hilbert modular threefold. Thanks
to the work [KS22|, we have a decomposition of Galois representations

My(mp) ® 71'][{ ~ [My(of) @ Qp] ® 77][{.
Under the hypotheses of Corollary 2.7, in [CLJ22|, we show that the étale realization
of Zpom generates the trivial sub-representation Qp of My(oy), confirming the con-

jecture of Gross—Savin at the cost of assuming that the ramified integral is non-zero
at s = 1.

3. ELEMENTS OF THE PROOFS AND CRUCIAL TECHNICAL INNOVATION

3.1. The construction of the motivic classes and algebraic cycles. The idea is to
interpret geometrically Pollack—Shah’s integral Z(®, ¢, s) and its residue at s = 1. The
construction of our motivic class therefore relies on the motivic incarnations of real analytic
Eisenstein series on GLo.

3.1.1. Modular units. The input of our construction are the modular units already con-
sidered by Beilinson and Kato, which are related to real analytic Eisenstein series by the
second Kronecker limit formula which we now recall. Fix the Schwartz-Bruhat function
®,, on R? defined by (x,y) — e~ (@ +y?) and, for each Q-valued function ®; € S(A%,G),
the smallest positive integer Ng, such that @y is constant modulo Ng fZQ. Finally, denote
SO(A?,Q) C S(A?,Q) the space of elements ®¢ such that ®¢((0,0)) = 0. The second

Kronecker limit formula says the following.

Proposition 3.1. Let ®; € SO(A?C,Q) with No, > 3, then there exists

u(®s) € O(Yar, (U(Na,))* © Q = Hy(Yor,(U(Ne,)), Q(1))
11



such that for any g € GLa(A) we have
lim E(g, @, s) = loglu(®y)(9),
where ® = O, ® Oy and E(g, P, s) is the Eisenstein series defined in (3).

Here, U(Na,) is the kernel of reduction modulo Nq>f2. Note that when ®; = char((0,1) +
NZQ), the unit u(®y) is a product of Siegel units go,/n as in [Kat04, §1.4].

3.1.2. Hilbert modular threefolds and the classes. Let F be a quadratic étale Q-algebra and
let

H = {(g91,92) € GL2 x Resp/qGLar : det(g1) = det(g2)},

which embeds into GSpg as in §1.2.2. The associated Shimura variety Y is a quasi-projective
threefold which splits as the product of a modular curve and a PEL-type Hilbert modular
surface. The embedding H — GSpg induces a morphism of Shimura varieties over Q

Ly - YH(U N H(Af)) — YGSpg(U)'

We suppose that U is “nice” (e.g. satisfies the condition of [CRJ20, Lemma 2.1]), so that
the morphism ¢y is a closed immersion of codimension 3. Let

wie s Hiy(Ya(U NH(Ay)), Q(1)) — Hiy(Yasp, (U), Q(4))
be the corresponding pushforward map in cohomology. If we let
pry : Yu(UNH(Ay)) — Yar, (Uh),
with UNH(A ) = U Xqet U2, be the map induced by the projection of H onto its GLo-factor,
and let ®f € ‘S'O(Afc7 L)Y, we can define

Zy = 1w (pri(u(®))) € Hiy(Yasp, (U), Lx(4)).

The class rp(Z /af )(7¢) is the projection of the m¢-isotypic component of the archimedean

realization rp(.,@”/af).
Similarly, let

Lyywrnca,) € CH(Ya(UNH(Af))) = H (Yu(U N H(Af)), Q).

bet the fundamental class of Y (U N H(Ay)), i.e. Y 0[C] € CHY(Yu(U NH(Ay))) with C
running through the set of connected components of Yy (U NH(Ay)). Then

wa(lyywen(a,)) € CH (Yasp, (U))

is the class associated to the codimension 3 cycle associated to Ya(U NH(Ay)) in Yasp, (U)
and we define

Zhom = from (10« (Lyyywnm(a ) € N (Yasp, (U))

to be its image under the natural map fhom : CH?(Yasp, (U)) = N3(Yasp, (U)). The class

7B(Zhom)(7f) is then defined analogously to rp(ffjaf)(ch).
12



3.2. Strategy and a technical difficulty. Once we have defined the candidates for the
two motivic elements which should satisfy Expectation 2.5, we want to

(1) pair their archimedean realization with the the cohomology class attached to the
harmonic differential form w,,
(2) relate this to the adelic integral of Pollack—Shah.

In the case of Zyom, Poincaré duality yields (cf. [CLJ22, Propositions 4.8,4.10])

),
(27mi)3 Jygwnn(a,))

where w, is a compactly supported differential form such that w. = w,, +dn, with 7 a degree
5 rapidly decreasing differential form on Ygsp, (U). Since, by a result of Borel,

*
LyWe,

(rB(Zhom) (Wf)v Wp) =

/ tirdn =0,
YH(UWH(AJI))
we get
(8B (7). i00) = s | .
(2m8)3 Jyywnn(a )

It is easy then to see that the latter is equal (up to a non-zero constant) to the residue at
s = 1 of the integral of Pollack—Shah (c¢f. [CLJ22, Proposition 5.10]). This, Theorem 1.3
and Proposition 1.2 prove Theorem 2.6(2).

What about for 2 /af 7 Here we encounter a technical difficulty. We want to define a map
( ’W30> : H%(YGSpg(U)/R7 RW(4)) — C®q Ly
such that

(ro (2 mp).ooh = [ pr}log fu(@)| - 1,

Yu(UNH(A))
so that we can conclude the proof of Theorem 2.6(1) by using the second Kronecker limit
formula. One way to do it is by expressing Deligne—Beilinson cohomology in terms of currents
which can be naturally evaluated against wy,. By a result of Jannsen [Jan88|, Deligne-
Beilinson cohomology can be described by currents on the toroidal compactification X&OSTPS
of Yasp,- If we knew that w, extends to the toroidal compactification, we would be done.
To the best of our knowledge this might not be the case. If w, were holomorphic, then it
would be ok but that’s not the case as our form is of type (3,3). At this point, it is worth
to comment that the other similar cases of Beilinson conjectures appearing in the literature
use more or less implicitly the assumption on the extension to the toroidal compactification
of the Shimura variety of differential forms attached to cuspidal automorphic forms. When
the groups in question are GLy, GLy x GLy (over Q), then the forms are holomorphic and
are known to satisfy the assumption. However, in the cases Resp/q(GLz2) of [Kin98|, GSp,
of [Lem17], and GU(2,1) of [PS17], one is forced to work with cuspidal differential forms
which are not holomorphic and it is not clear whether one can extend them or not to the
boundary.

Our first attempt to solve this issue (which also appeared in a first draft of [BGCLRJ23|)
consisted of approximating the diffential form w, by compactly supported differential forms,
which can then be evaluated at the current representing rp (% Jaf ). However, this approach
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is faulty: the final value is equal to

/ prilog|u(®y)| - tjw, + Err,
JYu(UNH(Ap))
with Err an error term which we don’t know how to control.
The novel idea in [BGCLRJ23| is to give a description of Deligne-Beilinson cohomology

in terms of tempered currents on Xg’srps, i.e. sheaves of continuous linear forms on smooth

differential forms on X&OSrpG which are rapidly decreasing along Dgsp, = X&OSrpG — Yasp,-

Note that this retraces the reason why a Rankin—Selberg integral converges on the first
place: the integral of a slowly increasing form (e.g. an Eisenstein series) against a cusp form
converges because the cusp form is rapidly decreasing.

In |[BGCLRJ23|, we carry out the description of Deligne-Beilinson cohomology in terms
of tempered currents in a great level of generality so to include and thus fix the gap of the
aforementioned cases (i.e. Resp;q(GL2), GSpy, and GU(2,1)).

3.3. Tempered currents and Deligne—Beilinson cohomology. We let Y be a smooth,
quasi-projective, complex variety of pure dimension d obtained as the base change of a
smooth, quasi-projective scheme over R. Let X be a smooth compactification of Y such
that D = X — Y is a simple normal crossing divisor and denote by j : Y — X the open
embedding. Let Q- be the sheaf of holomorphic differential forms on ¥ and let Q% (log D)
be the sheaf of holomorphic differential forms on Y with logarithmic poles along D. Recall
we have quasi-isomorphisms of complexes

Rj,.C — Rj,Q% + Q% (log D).

For any p € Z, the Deligne—Beilinson cohomology groups H(Y,R(p)) are defined as the
hypercohomology groups of the complex

R(p)p := cone(Rj,R(p) ® FPQ% (log D) — Rj. Q5 )[—1]. (4)

The cohomology groups H3(Y/R,R(p)) are then defined as Hj (Y, R(p))F>=1, with Fx =
F* ® c being the de Rham involution given by the action of the complex conjugation on Y
and on the coeflicients.

To give the desired presentation of Deligne—Beilinson cohomology, we replace the com-
plexes appearing in Equation (4) by quasi-isomorphic complexes of tempered currents. Lo-
cally around any point, we can find a coordinate system (z1,..., 2k, Zk+1, - - - 2¢) such that
X is isomorphic to a polydisc of dimension d and some radius r > 0 and that the normal
crossing divisor D is given by the equations z; ...z = 0. Slowly increasing (resp. rapidly
decreasing) functions on X are then defined locally by asking that

& N
f(z)l<C (H |log \ziH)
i=1
for some N > 0 (resp. for all N < 0) and some constant C, and if similar conditions holds
for the derivatives of f as well. Let 7%, @ be the complexes of sheaves on X of slowly
increasing and rapidly decreasing differential forms respectively. These are complexes of fine
sheaves equipped with a natural Hodge structure, given by the type of a differential form,
and with a real structure, given by real valued smooth differential forms. We define the

complex Z% of sheaves on X of tempered currents as follows. Define 229 as the sheaves
U w— I'.(U, .;zf;é_p ’d_q)* of continuous linear forms on compactly supported sections on U

of rapidly decreasing differential forms, where U C X is an open set. Here we have used
14



a natural Fréchet topology on rapidly decreasing differential forms. From these, we define
27, which is so equipped with a Hodge filtration as well as with a natural real structure.
Note that there there is a filtered morphism of complexes

Ly — D
coming from the fact that, for any open subset U C X, any form w € &/2(U) defines a
current T,, € 224(U) by

1 e
T(n) = / WA, (€ Do(U, k=),

(@) Jy

be given by R(p — 1)-valued tempered currents and let m,—1 : C = R(p — 1)

be the projection defined by m,_1(2) = H%ﬁ

Theorem 3.2 (|[BGCLRJ23, Theorem 2.25|). We have

HA(Y, R(p)) ~ {(8,T):dS = 9, d~T =mp—1(5)}
d(s,T)

where (S,T) € FPI5(X) & Zig . 1)(X) and d(S,T) = (dS,dT — 7,-1(5)).

Let 75 rp-1)

I

Let us define Gysin morphisms. Let ¢ : Y < Y’ be a closed immersion of codimension
¢ and assume that the smooth compactifications X, X’ are chosen so that ¢ extends to
t: X < X' with . 1(D") = D. We can then define a Gysin morphism

Lt HR(Y,R(p)) — HE™(Y',R(p +¢))

by setting t4[S, T := [txS, 11| (where given a current X, 1, X : w — X (*w)).
We can finally get to the construction of the linear form associated to certain rapidly
decreasing differential forms at the cost of restricting their possible Hodge types.

Proposition 3.3 ((BGCLRJ23, Proposition 2.27]). Letn € N,p € Z and letw € &/ "(X)
be a smooth closed rapidly decreasing differential form of Hodge type components inside
{(a,b) : a,b>d —p}. Then the assignment (S,T) > T(w) induces a map

(.w): H3 (Y, R(p)) - C.
3.4. End of proof of Theorem 2.6(1) and remarks. Proposition 3.3 is enough for our
applications: let n =d =6, p=4,Y = Yasp,. Then {(a,b) : a,b > 2} = {(3,3)} and so we
have a linear pairing

(,wy) : HH(Yasp, (U), R(4)) — C.

Moreover, with some diagram chasing, one sees that rp(Z /af ) is represented by the pair of
tempered currents
([‘U,*Tpr’fdlog u(®yf)s [‘U,*Tpri* log |u(<I>f)|)
By the explicit description of the Gysin morphism and the pairing, one gets
D
< TD(ng% ws&) = LU,*Tpr{ log |u(®y)| (wso)
= Tpr}‘ log |u(® )| (['(*]wlp)

/ pri log [u(@ ;)] - i,
Yu(UNH(A )

as desired. Proposition 3.1 and Theorem 1.3 finish the proof.
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Let us conclude with a remark on how the similar gap in the constructions of [Kin98| and
[PS17] can be fixed; the case of [Lem17|, which involves cup products of Siegel units, has
been discussed in [CLJ23, Theorem 3.15|.

[Kin98|: Consider the motivic class constructed as pushforward of a Siegel unit with
respect to the closed immersion (for nice enough level U) of

L YGL2(U N GLQ(Af)) — YResF/QGLQ (U)7

with F'/Q a real quadratic field, associated to the natural embedding GLy — Resp 1QGLa.
This defines a class in H%(YReSF/QGLZ(U),G(Z)). If we let w be the differential form of
Hodge type (1,1) associated to a Hilbert modular cusp form F of level U, by Proposition
3.3 (with d = n = p = 2) we can pair it with the archimedean realization of the motivic
class yielding the value

/ log [u(®f)| -t w.

YGL, (UNGL2(Ay))

By Proposition 3.1, this is related to the Rankin—Selberg integral that calculates the Asai
L-function of F.

[PS17]: let E/Q be an imaginary quadratic extension defining the unitary group GU(2, 1).
The associated Shimura variety is the so called Picard modular surface. Denote by H its
subgroup

H = {(g,t) € GLa x Resg/qGL1 : det(g) = Nm(t)}.
Then we have a diagram
Yo, « Yo <= Ygue,)

and one defines a motivic element in H3,(You(2,1), Q(2)) as the pushforward of the pullback
of a Siegel unit. By Proposition 3.3 (same numerology of case above) its archimedean
realization can be paired with a differential form of Hodge type (1,1) associated to cusp
forms of GU(2,1). The value of the resulting integral is meticulously studied in [PS17],
where they relate it to a non-critical value of the degree six standard L-function of GU(2,1).
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