RATIONAL ORBITS AND DENSITY THEOREMS RELATED TO
PREHOMOGENEOUS VECTOR SPACES
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1. GIT AND PREHOMOGENEOUS VECTOR SPACES

This paper is the content of the talk given at the conference “Algebraic Number
Theory and Related Topics 2023”.

In early 1980’s, the auther noticed a relation between GIT (geometric invariant
theory) and the theory of prehomogeneous vector spaces. We explain the starting
point in this section. We use classical language in the following.

The convergence of the zeta function was proved in Shintani’s paper [19] as follows.
Let G = GLy(R), V = Sym®R? be the space of binary cubic forms and ® € S(V&) the
space of rapidly decreasing functions. Let A(x) be the discriminant of x € V. Put
V) ={x € Vg | A(x) # 0}. The zeta function for (G, V) is defined as follows

2(d,5) = / det g* 3 B(gz)dg.
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This function of s € C converges absolutely and locally uniformly if Re(s) is suf-
ficiently large. The proof of the convergence is reduced to the convergence of the
following kind of integrals by considering a Siegel set for Gr/G7
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where € > 0 is a constant and d*\; = A;ldki fori=1,2.

The crucial observation is that if = € V, then (2o, z1) # (0,0) and (z9, x3) # (0,0).
Since ® is rapidly decreasing, there exists a polynomial P(A\', A3!) such that for any
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If \; = 1, we can choose N7 > 0 depending on s and the integral converges absolutely.
If Ay £ 1, we can choose N7 > 0 so that the integral with respect to Ay converges.
Then if Re(s) is large enough, the integral converges absolutely. It is possible to refine

the argument so that the integral converges absolutely for Re(s) > 6.
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The point of the above argument is that if z € V’ implies that (g, 1) # (0,0) and
(x2,23) # (0,0). The weights of coordinates with respect to the action of

o)

are 3,1,—1,—3. So the above condition says that if x € V', there are non-zero
coordinates for both positive and negative weights. This is obviously the stability in
GIT. This was the starting point of my investigation.

2. RATIONAL ORBITS OF PREHOMOGENEOUS VECTOR SPACES

At first I did not think that prehomogeneous vector spaces are interesting since the
set of generic points is a single orbit over algebraically closed fields. It is possible to
define the zeta function and compute some poles for the representation V' = Sym"Aff?
of G = GLy ([32]). However, it is difficult to interpret the poles at present. At some
point I was looking at the case G = GL3 x GLy, V = Sym?Aff* ® Aff*. Points of
V are expressed as x = (Q1,Q2) € V where @1, Q. are ternary quadratic forms. A
single ternary quadratic form @ € Sym?k® defines a conic in P? which is isomorphic
to P! over algebraically closed field. I could not think it is such an interesting object
geometrically.

However, for z = (Q1,Q2) € V, we can consider the intersection of two conics as
follows.

Coordinates of intersection points are solutions of quartic equations. 11th century
mathematician Omar Khayaam used this fact to describe solutions of cubic equations
with extra points at infinity. This case turns out to parametrize quartic extensions
as follows ([29]). Let k be a field.

Theorem 2.1 (D. Wright-A.Y.). Gx\V/ = H'(k, &4) where H'(k, &,) is the Galois
cohomology set with the trivial action of Gal(k*P/k) on Gy.

For z = (Q1,Q2) € V/, we denote
Zero(x) ={p € IP?(E) | Q1(p) = Q2(p) = 0}.

It turns out that points in Zero(z) are defined over k*P. Moreover, if we consider the
subset of € V} for which the action of Gal(k*P/k) on Zero(z) is transitive, then the



correspondence between rational orbits and isomorphism classes of quartic extensions
is bijective.

At this point, the importance of prehomogeneous vector spaces became obvious.
There is no geometric moduli, but the set of rational orbits is something like an
arithmetic moduli. We now state the definition of prehomogeneous vector spaces and
describe interpretations of rational orbits for some cases.

Definition 2.2. Let G be a connected reductive group and V a finite dimensional
representation of G both over a field k. Then (G,V) is called a prehomogeneous
vector space if the following conditions are satisfied.

(1) There exists w € V such that G -w C V is Zariski open.

(2) There exists a non-constant polynomial A(x) € k[V] \ k and a character
X : G — GL; such that A(gz) = x(g9)A(x).

The set {z € Vi | A(z) # 0} is denoted by V;*.

The notion of regularity was introduced in [18, p.60, DEFINITION 7] for preho-
mogeneous vector spaces over C. To ensure expected properties for prehomogeneous
vector spaces over arbitrary fields, the definition of the regularity in [27, p.217, Defi-
nition 4.5] is more convenient. Irreducible regular prehomogeneous vector spaces over
C was classified in [18]. There are 29 cases. These prehomogeneous vector spaces are
defined over aribitary fields except that there are restrictions for ch £ in some cases.
We list interpretations of rational orbits as far as the author understands.

GL,, V = M(n), 1 point (classical)

GL; x GL,, Sym?k™, isomorphism classes of PSO(Q), (classical)

GLa,, A%K?™, 1 point (Witt)

GL; x GLy, Sym®k?, H'(k, &3) (classical)

GL; x GLg, A%k, H'(k, &,) ([28, p.1692, Proposition (1.12)])

GL; x GLy, A%k, k-forms of the Octonion ([28, p.1696, Proposition (2.24)])
GL; x GLg, A*k8, k-forms of SL3 ([30, p.127, Theorem 1.5])

GL3 x GLy, Sym?k® ® kz, H'(k,&,) ([29, p.311, Proposition 5.4])

GLg x GLg, A2k® ® k2, H' (k, &3) ([29, p.311, Proposition 5.4])

) GL5 x GL3, A%k° ® k:3 quaternion algebras [17, p.68, Theorem 3.4]

) GL5 x GLy4, A’K° ® k:4 H' (K, 65) (29, p.311, Proposition 5.4])

) GL3 x GL3 x GLo, ( ) ® k2, H'(k, &3) ([29, p.311, Proposition 5.4])

) Sp(2n) x GLap,, M(2n,2m) 7

) GL; x GSp(6), [0,1,0] = k¥, SU(3,Q) ([34, p.47, Theorem 4.11])

) GO(n) x GL,, M(n,m) 7 partially known.

) GL; x Spin(7), ([10, p.1015, PROPOSITION 4])

) Spin(7) x GLg, spin®k? ?

) Spin(7) x GLj3, spin®k? ?

) GL; x Spin(9), spin £'6, ([10, p.1016, PROPOSITION 5])

) Spin(10) x GLy, half sp1n®k;2 ?

) Spin(10) x GL3, half spin®k? ?
)
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(23) GL; x Spin(12), spin £32, ([10, p.1012, PROPOSITION 3])

(24) GL; x Spin(14), half spin k5% ?

(25) GL, x Ga, k7, SU(2,1) ([31, p.116, Theorem (0.3)])

(26) G x GLg, k" @ k2, SU(( %)) ([31, p.116, Theorem (0.3)])

(27) GLy x Eg, J = k?", 1 point ([11, p.272, Theorem 4.1])

(28) Eg x GLy, J ® k* = k* (Es split), H' (k, &3) ([12, p.309, Theorem 1.19])

(29) GL; x E7, k%, k-forms of Eg (the correspondence may not be bijective) (][22,
p.280, PROPOSITION 5.5))

3. PREHOMOGENEOUS VECTOR SPACES AND DENSITY THEOREMS

What makes the theory of prehomogeneous vector spaces special is that one can
expect density theorems. The origin of density theorems related to prehomogeneous
vector spaces probably goes back to Gauss.

Let G = GL; x GL,, V = Sym?Q?. Let hp be the narrow class number of orders
of discriminat D of quadratic fields. The following statement
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was called the Gauss conjecture. This conjecture was proved in 1865 by Lipschutz.
It is possible to interpret hp by the number of equivalence classes of integral binary
quadratic forms.

Siegel [21] generalized the above result to quadratic froms in arbitrary number n of
variables in 1944 including the case D > 0 for binary quadratic forms. As far as the
space of binary quadratic forms is concerned, the error estimate has been improved
by many people including Shintani [20], Chamizo-Iwaniec [4]. However, these results
are results over Z. The set of equivalence classes over QQ is more sparse and generally
speaking, it is more difficult to count sparse objects.

Counting integral equivalence classes of binary quadratic forms with some weights
is essentially the same as counting hp, hpRp of orders of quadratic fields (Rp is
the analogue of the regulator). Goldfeld-Hoffstein [7] proved (not by the method of
prehomogeneous vector spaces) in 1985 the density theorem which corresponds to
quivalence classes of binary quadratic forms over Q as follows.
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where Arp is the absolute discriminant of F. Their result include an error term
estimate. The numbers 1/18 or 1/36 and 4/21 are different since the integral structure
considered by Gauss corresponds to forms au? 4+ 2buv + cv? where a,b,c € Z. The
proof of the above statement by the theory of prehomogeneous vector spaces (without
the error term estimate) was given by Datskovsky [5] in 1993.



It seems that considering equivalence classes over Q provvide more interesting
density theorems. If we consider the prehomogeneous vector space G = GL; x GLo,
V = Sym*Aff?] the classical theorem of Davenport and Heilbronn [6] is obtained as
follows.

where Ar is the absolute discriminant of F'.

The reason why one can prove this kind of density theorems is that the set of
rational orbits G \V;® parametrizes interesting objects. As we stated in (4) of the
previous section, G;\V;* is in bijective correspondence with H'(k, &3) in the above
case. If (G,V) is a prehomogeneous vector space, we expect a density theorem of
counting elements of x € G \V3*® with weight vol(G? ,/GS,.).

The following density theorems has been proved.

(1) Sym?Aff* @ Aff> — quartic fields (Bhargava [1])

(2) A?Aff® @ Aff* — quintic fields (Bhargava [2])

(3) Sym*Aff” — vol(PSO(Q)a/PSO(Q)g) (Hayasaka-A.Y. [8], [9], [36])

(4) Non-split form of k? ® k* @ k* — [k : Q] = 3 fixed, [F : Q] = 2, density of
hiRr/hpRp (L =k, - F) (A.Y. [33], [35])

This result (3) is a Q version of Siegel’s result in 1944. If n is odd (resp. even),
the density is in the form

n+1

X 2
log X

constant x (resp. constant x X HTH)

]

4. ZETA FUNCTIONS

We cannot explain all the steps of the zeta function theory on the process to go from
Z-equivalence classes to Q-equivalence classes. Roughly speaking, one has to know
the principal part of the zeta function or something which is equivalence. Then the
local theory and the computation of the “local density” proves the density theorem of
Q-equivalence classes. We explain what has to be done for the zeta function theory.

We compute the poles by a wrong argument in the case of G = GL,, V = Sym3Q?.
The zeta function in this case is defined for a Schwartz—Bruhat function ® on V}, and
s € C as follows

2@.5)= [ Jdetgl Y lgn)dg
Ga/Go reVE

where dg is an invariant measure on Gy.
The standard argument is to use the Poisson summation formula for the sum
ervés ®(gx) for g € Gy such that |det g| = 1. The difficulty is that we have to

consider all points of V. However, the action of the group may not be the best
on the set Vo \ Vi°. It turns out that this set has a stratification called the GIT
stratification, which we explain in the next section.



One of the strata in this case is S = {z € Vg | « has triple roots}. Let
Z'={(0,0,0,z) | x # 0},

alt, t) = <t1 t2> n(u) = (i (1)>

Bq = {a(ti, ta)n(u)} .

Then Sg = Gg xB, Zg- (GIT stratification)

We illustrate the computation of the contribution from Sg by a WRONG argu-
ment. We assume that ¢ is invariant by the action of the standard maximal compact
subgroup of G. Then

/G/G Z g$dg_/GA/B Z gx

| det g|=1 IESQ | det g|=1 $€Z’

/ B(alty, i)t 2d*h
AX/QX

EZ’

= C(CID(O 0,0, %), %) this is a lie.

3
Repalce @ by ®,(x) = &(Ax) (A > 0). Then
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This above argument is of course wrong since the integral diverges. However, it can
be justifed by a similar argument as in the trace formula using the smoothed version
of Eisenstein series.

The inductive struture Sg = Gg X g, Zg Was essential in the above computation. It
is possible to verify this statement explicitly in this case. However, it becomes difficult
to show such a stratification explicitly for bigger prehomogeneous vector spaces. It
is possible to apply what we call the GIT stratification, which we will explain in the
next section.

5. GIT STRATIFICATION

The notion of the GIT stratification is based on a certain “convexity”. It was
established in the context of GIT by Ness [14], Kempf [13] and Kirwan [15] (see [16]
also). For the rationality questions, see [24].

Let k be a perfect field and k its algebraic closure. Even though, the rationality
question is answered for non-split groups in [24], we assume that algebraic groups are
split in this section for simplicity. We use the notation diag(gy, ..., gn,) for the block



diagonal matrix whose diagonal blocks are ¢y, ..., g,. We are mainly interested in
prehomogeneous vector spaces, but we first consider a general situation.

Let G be a connected reductive group, V' a finite dimensional representation of G
both defined over k. As we mentioned above, GG is assumed to be split. We assume
that there is a connected split reductive subgroup G; of G, a split torus Ty C Z(G)
(the center of GG), such that Ty, N G is finite and G = Ty as algebraic groups. We
assume that there is a rational character x of Ty such that the action of ¢t € Tj is
given by the scalar multiplication by x(t).

Let (ToNGy) C T C Gy be a maximal split torus, X, (7'), X*(7T') the groups of one
parameter subgroups (abbreviated as 1PS from now on) and the group of rational
characters respectively. We put

t=X.(T)®R, tg=X.(T)®Q, t' = X"(T)®R, t5 =X (T) ® Q.

Let W = Ng(T)/T be the Weyl group of G. W acts on t* also.

There is a natural pairing ( , )7 : X*(T) x X,(T) — Z defined by tXNT = y(\(t))
for x € X*(T), A € X.(T'). This is a perfect paring ([3, pp.113-115]).

There exists an inner product (, ) on t which is invariant under the actions of W
and the Galois group Gal(k/k). We may assume that this inner product is rational,
ie., (\,v) € Qforall \,v € tg. Let || || be the norm on t defined by (, ). We choose
a Weyl chamber t; C t for the action of W.

For A € t, let 8 = B()\) be the element of t* such that (8,v) = (\,v) for all v € t.
The map A — S()) is a bijection and we denote the inverse map by A = A(). There
is a unique positive rational number a such that a\(8) € X.(7T') and is indivisible.
We use the notation Ag for aA(B).

Identifying t with t* we have a W-invariant inner product ( , ), on t*, the norm
| ||« determined by (', ). and a Weyl chamber ;.

Let N = dim V. We choose a coordinate system v = (vy,...,vy) on V by which
T acts diagonally. Let v; € t* and a; be the weight and the coordinate vector which
corresponds to i-th coordinate. Let I' = {71,...,7n5}. For a subset J C I, we denote
the convex hull of J by Conv3J. Let P(V') be the projective space associated with V'
and my : V' \ {0} — P(V) the natural map. For J C I' such that 0 ¢ Conv J, let 8 be
the closest point of ConvJ to the origin. Then § lies in t. Let B be the set of all
such 3 which lies in t.

We define

Vs = Span{a; | (vi,8)« = (8,8)+},  Zs = Span{a;| (v, B)« = (B, f):},
W3 = Span{a; | (vi, 8)« > (B, 5)«}

where Span is the spanned subspace. Clearly Yz = Zg @ Wj.
If Ais a 1PS of GG, we define

P(\) = {p cG ‘ lim A(£)pA (1) exists} . M(X) = Zo()\) (the centralizer),

U\ = {p €G ‘ lim A(£)pA(t) ! = 1} .



The group P()) is a parabolic subgroup of G' ([23, p.148]) with Levi part M (\) and
unipotent radical U(X). We put Pz = P(\g), Mp = Za(A\g) and Uz = U(Ag).

Let xs be the indivisible rational character of Mz such that the restriction of x§ to
T coincides with bf for some positive integers a,b. We define Gg = {g € M3 | x5(g9) =
1}° (the identity component). Then G4 acts on Zs. Note that Mg and G are defined
over k, and since (X3, Ag) is a positive multiple of ||3||., Ms = Gzlm(\z). Moreover,
if v is any rational 1PS in G, (v, A3) = 0.

Let P(Z3)* be the set of semi-stable points of P(Z3) with respect to the action

of G}; o Gp N G;. Since there is a difference between Zz and P(Z3), we remove

appropriate scalar directions from Gg to consider stability. For the notion of semi-
stable points, see [16]. We regard P(Z5)* as a subset of P(V'). Put

5= W‘}l(]P’(Zﬁ)SS), Y5 = {(zy,w) |z € ZF,w € Ws}.

We define S = GY;°. Note that Ss can be the empty set. We denote the set of
k-rational points of S, etc., by Say, etc.
The following theorem is COROLLARY 1.4 [24, p.264].

Theorem 5.1. Suppose that k is a perfect field. Then we have

Vi \ {0} = V& TT I Sor-

BeB

~ SS
Moreover, Sgr = Gi X p,,, Y53

We call this stratification the GIT stratification. The importance of the above
theorem is the rationality of the inductive structure of Sz. Obviously, we can use
computer to determine B. The computer computation of B was carried out for the
following cases in [25].

(1) G = GL3 x GL3 x GLy, V = Aff* @ Aff® @ Aff*.
(2) G = GLg x GLy, V = A2Aff® @ Aff%,
(3) G = GLs x GLy, V = A2Aff® @ Aff*.
(4) G = GLg, V = APAff®.
There may be Sg which is the empty set. It takes some work to determine 3 such
that Sz # (0. This has been carried out for the cases (1)—(3) in [26], [27].
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