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1. THIS MANUSCRIPT IS A SURVEY ON COMEAGER SUBSETS IN SPACES OF METRICS

This manuscript is devoted to a survey on comeager subsets in spaces of metrics. In

this survey, we first explain the history of spaces of metrics. Next, we exhibit results

on comeager subsets in spaces of metrics. Combining these results and the fact that
spaces of metrics are Baire, then we can obtain the existence and abundance of spaces

satisfying specific properties.

2. PRELIMINARIES

We first introduce the basic notations of spaces of metrics. Most of parts are the

same to several sections of the author’s preprint [25].

For a set X, a map d: X x X — [0,00) is called a pseudometric if the following

conditions are true:

(1) for every z € X, we have d(z,z) = 0;

(2) for every pair z,y € X, we have d(x,y) = d(y, x);



(3) for every triple x,y, z € X, we have d(x,y) < d(z, z) + d(z,y).
A pair (X, d) is called a pseudometric space. If d satisfies the additional condition:
(4) for every pair z,y € X, the equality d(z,y) = 0 implies = = v,

then d is called a metric.

For a topological space X, let CPM(X) denote the set of all continuous maps d: X x
X — [0,00) such that d is a pseudometric on X. We also denote by Met(X) the set of
all metrics d on X generating the same topology of X. This space is our main subject.
Notice that Met(X) € CPM(X), and X is metrizable if and only if Met(X) # 0.
Next we introduce the topology to Met(X). We define Dy : CPM(X)? — [0, 00] by
Dx(d,e) = sup, ,ex |d(w,y) — e(r,y)|. Note that Dx can take the value oo, but, using
e-open balls, we can define the topology induced by Dx as in the cases of ordinary
metrics. This topology coincides with the topology of uniform convergence. In this
paper, we represent the restricted metric Dy |vet(x)2 as the original symbol Dx. In
what follows, we consider that CPM(X) and Met(X) are equipped with the topologies
induced by Dx. Namely, we consider CPM(X) and Met(X) have the topologies of
uniform convergence.

For a pseudometric space (X,d), for a point z € X, and for r € (0,00), put
U(z,r;d) = {p € X | d(x,p) < r}, which is the open ball centered at = with ra-
dius 7.

Next, let us review ultrametrics (non-Archimedean metrics).

A pseudometric d: X x X — [0,00) is said to be a pseudo-ultrametric or non-
Archimedean pseudometric if d satisfies the so-called the strong triangle inequality:
d(z,y) < d(z,z)Vd(z,y) for all x,y, z € X, where the symbol “V” means the maximum
operator on R, i.e., xVy = max{z,y}. A pair (X,d) is called a pseudo-ultrametric space.
A pseudo-ultrametric d on X is called an ultrametric or non-Archimedean metric if the
equality d(z,y) = 0 implies = = y. Of course, every ultrametric is a metric.

A set R is said to be a range set if R C [0,00) and 0 € R. We say that a range set R
is characteristic if for every z € (0,00), there exists » € R\ {0} such that » < z. This
condition is equivalent to inf(R \ {0}) = 0. A metric d on X is said to be R-valued if
d(z,y) € R for all x,y € X.

For a topological space X, and for a range set R, we denote by UCPM(X, R) the
all R-valued continuous maps d: X x X — [0,00) for which d is a pseudo-ultrametric
on X. We also denote by UMet(X; R) the all R-valued ultrametrics d on X. Notice
that UMet(X; R) € UCPM(X, R). When considering non-Archimedean analogues, it
is often more effective to give a limitation on the range of metrics (see, for example,
[10]). Namely, we will think not only ([0, co)-valued) ultrametrics but also R-valued
ultrametrics for an arbitrary range set R.

For a range set R, a topological space X is said to be R-valued ultrametrizable if
UMet(X; R) # (). When R = [0, 00), the space X is simply said to be ultrametrizable.

Remark 2.1. In [18, Proposition 2.14], it was shown that X is ultrametrizable if and
only if for every characteristic range set R, the space X is R-valued ultrametrizable

(UMet(X; R) # 0).



We define UDE : UCPM(X, R)? — [0, cc] by declaring that UD%(d, e) is the infimum
of all € € R such that d(x,y) < e(z,y) Ve and e(z,y) < d(z,y) Ve for all z,y € X.
Then UDE is an ultrametric on UCPM(X, R) taking values in [0, 00]. Since Dx(d, e)
is the same to the infimum e such that d(z,y) < e(x,y) + € and e(z,y) < d(z,y) + €,
the ultrametric UDY is a non-Archimedean analogue of the supremum metric Dx (d, e)
in the sense of replacing “4+” with “V”. Similarly to Dy, we can define the topology
induced by UD% using open balls. In this paper, we represent the restricted met-
ric Z/{Df;? |UMet(X; r)2 as the original symbol Z/{Df}. In what follows, we consider that
UCPM(X, R) and UMet(X;R) are equipped with the topologies induced by UDE.
This topology is strictly stronger than the topology of uniformly convergence. It could
be called the topology of non-Archimedean uniformly convergence.

Remark 2.2. Let R be a range set, and X be an R-valued ultrametrizable space. Then
we have the inclusions UMet(X; R) € Met(X) and UCPM(X, R) € CPM(X). For
every pair d,e € UCPM(X, R), we also obtain Dx(d,e) < UD%(d,e). Except for the
case where X is empty or one-point, the topology generated by UD%(d, e) is always
strictly stronger than that generated by Dyx.

For a topological space X, for a range set R, and for an open covering C of X, we
define UL(C; R) = UCPM(X, R) N L(C).

3. HISTORY OF SPACE OF METRICS

3.1. History. Next let us review the history of research on spaces of metrics.

As long as the author knows, the concept of spaces of metrics first appeared in 1944,
as a Shanks’ work [36] proving that for every pair X and Y of compact metrizable
spaces, Met(X) is isometric to Met(Y') if and only if X is homeomorphic to Y ([36,
Theorem 3.2]). This result is an analogue of Banach-Stone-Eilenberg theorem, which
states that for every pair of compact Hausdorff spaces X and Y, the spaces C'(X) and
C(Y) of real-valued continuous functions with supremum metrics are isometric to each
other if and only of X is homeomorphic to Y.

About half of a century later, Salat, Téth, and Zsilinszky [43] began to investigate
spaces of all possible metrics on given sets. During the 1990s, some mathematicians
follows this subject (see [43], [44], [42], [6], and [40]). Remark that this space of metrics
depends only on the cardinality of an underlying set. Under our notation, they consid-
ered that the space (CPM(X),Dy) for a discrete topological space X. Let us explain
some of their results. For example, Salat, Téth, and Zsilinszky [43] proved that, for a
discrete space (a set) X, the set of uniformly discrete metrics (metrics which positive
values are uniformly bounded below) is open dense in CPM(X).

Starting in 2020, in contrast, the author (Y. Ishiki) considered the set of topological
metrics; namely, for a metrizable space X, the space Met(X) of metrics generating the
same topology of X equipped with the supremum distance Dx. Although it was not
known whether Met(X) is Baire or not, the author clarified the denseness and Borel
hierarchy of a subset {d € Met(X) | (X,d) satisfies P } for a certain property P on
metric spaces, and proved that some subsets are comeager in Met(X) ([17], [18], [19],
[21], [22], and [26]). We give explanation focusing on the author’s papers.



The paper [17] was a first one investigating Met(X). In that paper, the author showed
that the set of all metrics in Met(X) having Assouad dimension oo (equivalently, non-
doubling) is dense and Gys. It was also show that if X is locally compact and second-
countable, then Met(X) is completely metrizable, in particular, it is Baire. Note that,
except when X is the empty set or the one-point space, the supremum metric Dy is not
complete on Met(X). We will describe known results on comeager subsets in Section 5.
The paper [18] handled non-Archimedean analogues of Hausdorft’s metric extension and
theorem appearing in the previous paper [17]. The author [19] clarified the denseness
and Borel hierarchy of the sets of doubling metrics, uniformly disconnected metrics,
and uniformly perfect metrics. The paper [22] proved that, the set of metrics taking
values in a disconnected subset of reals is comeager. At the same time, the author
[21] showed the extension theorem for proper functions and proper metrics. This paper
indicated the possibility of the theory of spaces of proper metrics. In [20] and [23], the
author proved that the space (UCPM(X, R),UD%) of continuous pseudo-ultrametrics is
isometric to the Urysohn universal ultrametric sapce. This work does not directly relate
to the theory of spaces of metrics. However, the idea of using continuous pseudometrics
was applied in the later paper [25], where the author showed that spaces of metrics are
Baire, and the set of complete metrics is comeager in the space of metrics. This paper
[25] established the author’s theory of comeager subsets of metrics.

As applications of infinite-dimensional topology, recently, Koshino researched topo-
logical types of spaces of metrics equipped with not only the uniform topologies but
also the compact-open topologies ([30], [31], and [32]). Let us assert one of Koshino’s
results.

Theorem 3.1 ([30, Corollary 1]). If X is a separable metrizable space of cardinality k,
then

(1) Met(X) is homeomorphic to [0,1)"+=D/2 if < oo;
(2) Met(X) is homeomorphic to £* if X is compact;

(3) BMet(X) is homeomorphic to £ if X is not compact, where BMet(X) is the
set of all bounded metrics in the space Met(X).

In the context of Lipschitz-free Banach spaces (it is also called Arens—Eells spaces, or
1-Wasserstein spaces), there are several works on spaces of metrics (see [37], [38], and
[11, Problem 6.6]).

3.2. Why Met(X)? In this subsection, we review the author’s observation in 2020,
made while preparing the preprint [17], in which we first investigated comeager subsets
in the space Met(X) of metrics. The author’s motivation of research on Met(X) stems
from the following mathematical subjects.

(A) The theory of moduli spaces. Specifically, the Gromov—Hausdorff space (see [5]),
and space of Riemannian metrics (see [§8]).

(B) The theory of Baire spaces (see [2]). In particular, Banach and Mazurkiewicz’s
proofs of the existence (denseness) of nowhere differentiable functions (see [3]
and [33]).



(C) Differential Topology. Specifically, transversality theorems, and Sard’s theorem
(see, for example, [14]). For the difference between measure and category, see
[35].

(D) Vershik’s result [41] on universal metric in the space of metrics on Zs( equipped
with a measure.

(E) Hausdorfl’s metric extension theorem [13], and its improvements.
In what follows, we explain each item of (A)—(E).

3.2.1. Item (A). Since there already have existed a theory of moduli spaces related to
metric spaces, such as the Gromov—Hausdorff space, and spaces of Riemannian metrics,
the author thought that we can make the theory of moduli spaces of metrics. Con-
sidering the author’s paper [16] on quasi-symmetric maps, which is a generalization of
(quasi-)conformal maps appearing in Teichmiiller spaces, we could say our research also
comes from the theory of Teichmiiller spaces.

3.2.2. Item (B). Let us recall the Banach and Mazurkiewicz theorem asserting that
the set of nowhere differential functions is comeager in the function space on [0, 1].
As a corollary of this theorem, we can obtain the existence of nowhere differentiable
functions. Of course, we can make those functions concretely, using, for example, Weier-
strass’ method. The author would like to emphasizes that Banach and Mazurkiewicz’s
theorem indicates that the theory of Baire spaces is a framework that gives us a system-
atic method to show the existence and the abundance of special objects in topological
spaces. Based on this observation, the author planned to prove the abundance of
“strange” metrics in spaces of metrics using Baire spaces.

3.2.3. Item (C). There is another branch of methods to show the existence and the
abundance of special objects in terms of measure theory. In particular, we focus on
applications of measure theory to differentiable topology. Sard’s theorem states that
for a sufficiently smooth map f: M — N, the set of critical values of f is small in the
sense of measure. Transversality theorem is a development of Sard’s theorem, which,
roughly speaking, says that under certain conditions, there are so many “good” maps
between differentiable manifolds. For example, the abundance of Morse function can
be obtained as a consequence of transversality theorems. The author did not major
in differential topology; however, these theorems in differential topology inspired the
author to construct the theory of spaces of metrics, and to show the abundance of
“good” metrics in spaces of metrics, contrasting with (B). Remark that transversality
theorems and its corollaries state the abundance of “good” objects whereas Baire cate-
gory theorem and its corollaries implies that the abundance of “bad” objects. Here, we
notice that there is a binary opposition, an analogy, or a duality, between the theory of
Baire spaces and measure theory as aspects of method to show the abundance of special
objects. The Oxtoby’s book [35] deals with analogues of the theory of Baire spaces and
measure theory.



3.2.4. Item (D). Vershik [41, Theorem 4] proved that, almost all (in the sense of mea-
sure) elements d of CPM(Z>) satisfy that the completion of (X, d) is isometric to the
Urysohn universal ultrametric space. Based on Vershik’s result, and considering a dual-
ity between Baire spaces and measure theory explained above, there should be a theory
of spaces of metrics from a point of view of Baire spaces. The author’s theory on spaces
of metrics can be regarded as one of counterparts of Vershiks’ result.

3.2.5. Item (E). The author believes that Item (E) is most important among those
items. Let us recall Hausdorff’s metric extension theorem.

Theorem 3.2 ([13]). Let X be a metrizable space, and A be a closed subset of X. If d
is a metric on A that generates the same topology of A, then there exists a metic D on
X that generates the same topology of X and satisfies that D|s2 = d.

This theorem is an analogue of the Tietze-Urysohn extension theorem. The Tietze—
Urysohn theorem, or the existence of a partition of unity, is used to investigate the
function spaces on a normal spaces. Thus, when the author knew this theorem, the
author thought there should be spaces of metrics because we already have got an exten-
sion theorem, and Hausdorff’s theorem would be useful for a study of spaces of metrics.
However, it was an optimistic consideration. Indeed, to research the space Met(X) of
metrics in the author’s first paper [17] on spaces of metrics, we need more strong form
of extension theorem of metrics:

Theorem 3.3 ([17, Theorem 1.1]). Let X be a metrizable space, and let {A;}icr be a
discrete family of closed subsets of X. Then for every metric d € Met(X), and for
every family {e;}icr of metrics with e; € Met(4;), there exists a metric m € Met(X)
satisfying the following:

(1) for every i € I we have m|y2 = e;;
(2) Dx <m7 d) = SUDjer DAi(eAi7 dlAf)

Moreover, if X is completely metrizable, and if each e; € Met(A;) is a complete metric,
then we can choose m € Met(X) as a complete metric on X.

To prove Theorem 3.3, the author used analogues between extensions of metrics and
extensions of functions. Hausdorfl’s theorem (Theorem 3.2) is an analogue of Tietze—
Urysohn’s theorem, and there exists a proof of Theorem 3.2 using Dugunsji’s extension
theorem, which is a generalization of Tietze—Urysohn’s theorem. Theorem 3.3 can be
considered as an analogue of Katétov—Tong’s insertion theorem of real-valued functions
(see [28] and [39]). Thus, the author thought that we could make use of a generalization
of Tietze—Urysohn’s theorem. In fact, Michael’s continuous selection theorem enables
us to show Theorem 3.3. Subsequently, we took the first step in researching comeager
subsets of spaces of metrics.

For more information on relationships between extensions of metrics and functions,
we refer the readers to [15]. We exhibits the relationships between extensions of metrics
and extensions of functions (see Figure 1) under the following abbreviations:



e Theorems on extension of functions:
(TU): Tietze-Urysohn theorem (see [46, Theorem 15.8]).
): Dugundji’s extension theorem [7].

KT): Katétov and Tong’s Insertion theorem ([28] and [39]).

F) and (Y): Franz’s theorem [9] and Yamazaki’s theorem [47] on extensions of

(D
(
(M): Michael’s continuous selection theorems for paracompactness [34].
(
functions involving zero sets.

(P): Tietze-Urysohn theorem for proper functions [21].

e Theorems on extension of metrics:
[H]: Hausdorff’s metric extension theorem [13].
[S]: Simultaneous extension of metrics [29].
[I]: Insertion theorem of metrics (an interpolation theorem of metrics) [17].
[

PM]: an extension theorem on proper metrics [21].

H]=<- Analogy (TU)

Impl
Analogy

"]
Gen. [S] S —--=-- > (D)

[ St - (KT)

Sepecialize

Generalize

F1GURE 1. Relationships between extension theorems of functions and metrics



4. RECENT PROGRESS IN SPACES OF METRICS

After RIMS symposium, in July 2024, for every metrizable space X, and every closed
subset A of X, the author [24] recently constructed an extensor of metrics

E: Met(A) — Met(X)

such that Dx (E(d), E(e)) = Da(d,e) for all d,e € Met(A). The proof is based on three
constructions, ¢!-products, Wasserstein spaces, and L'-like spaces, and also based on
Whitney—-Dugundji decomposition of metric spaces.

In September 2024, as an application of the author’s extension theorem of metrics,
the author and Katsuhisa Koshino established a joint work [27], which including, for
example, as one of main results, a theorem asserting that every compact metric space
can be isometrically embedded into (Met(X), Dy ), where X is an arbitrary uncountable
Polish space.

5. COMEAGER SUBSETS IN SPACES OF METRICS

5.1. Spaces of metrics are Baire. In this subsection, we discuss Baire-ness of spaces
of metrics.

We first explain the partial results on Baire-ness of spaces of metrics.

In 2020, the author proved that the following theorems on the complete metrizability
of Met(X).

Theorem 5.1 ([17, Lemma 5.1)). Let X be a second-countable locally compact Haus-
dorff space. Then Met(X) is completely metrizable. Specifically, it is Baire.

Soon afterwards, Koshino established the next stronger result.

Theorem 5.2 ([30, Proposition 3]). Let X be a o-compact metrizable space. Then
Met(X) is completely metrizable. Specifically, it is Baire.

We next explain the result on Baire-ness of spaces metrics obtained in [25]. For a
pseudometric space (X, d), and a covering C = {C; };c; of X, we say that a positive real
number r € (0,00) is a Lebesgue number of C if for every = € X there exists i € I such
that U(z,r;d) C C;.

For a topological space X, and for a covering C of X, we denote by L(C) the set of
all d € CPM(X) such that C has a (positive) Lebesgue number with respect d.

Theorem 5.3 ([25, Theorem 1.1]). Let X be a metrizable space, and C an open cover.
Then the set L(C) is open dense in CPM(X).

Let X be a metrizable space, and w € CPM(X). We define I(w) the set of all
d € CPM(X) such that 1x: (X,d) — (X, w) is uniformly continuous, where 1x stands
for the identity map. Namely, d € I(w) if and only if for every ¢ € (0,00), there
exists 0 € (0,00) such that for every pair z,y € X, the inequality d(x,y) < § implies
w(x,y) < e. As a consequence of Theorem 5.3, we prove that I(w) is comeager in
CPM(X) (compare with the proof of [30, Proposition 3]).

Theorem 5.4 ([25, Theorem 1.2]). Let X be a metrizable space, w € CPM(X). Then
the set I(w) is comeager in CPM(X).



Theorem 5.4 implies that the following two theorems:

Theorem 5.5 ([25, Theorem 1.3]). Let X be a metrizable space. Then Met(X) is
comeager in CPM(X). In particular, the space Met(X) is Baire itself.

Theorem 5.6 ([25, Theorem 1.4]). Let X be a completely metrizable space. Then the
set Comp(X) is comeager in CPM(X). Hence, it is also comeager in Met(X).

We also obtain a non-Archimedean analogues of those theorems. For a topological
space X, for a range set R, and for an open covering C of X, we define UL(C; R) =
UCPM(X, R) N L(C).

The next theorem is a non-Archimedean analogue of Theorem 5.3. Ultraparacompact-
ness is a non-Archimedean analogue of paracompactness. A space if ultraparacompact
if and only if it is paracompact and has covering dimension 0.

Theorem 5.7. Let R be a range set, X an ultraparacompact Hausdorff space, and C
an open covering of X. Then the set UL(C; R) is open and dense in UCPM(X, R).

Let R be a range set, and X an R-valued metrizable space, and take w € CPM(X).

Notice that w is not necessarily non-Archimedean. We define Ul(w, R) the set of all
d € UCPM(X, R) such that 1x: (X,d) — (X, w) is uniformly continuous.
We also obtain an analogue of Theorem 5.4 for ultrametrics.

Theorem 5.8. Let R be a range set, and X an R-valued ultrametrizable space, and
take w € CPM(X) (w is not necessarily non-Archimedean). Then the set Ul(w, R) is
comeager in UCPM(X, R).

The following theorem is corresponding to Theorem 5.5.

Theorem 5.9. Let R be a range set, X an R-valued ultrametrizable space. Then
UMet(X; R) is comeager in (UCPM(X, R),UDY). In particular, the moduli space
(UMet(X; R),UDY) is Baire.

For a topological space X, and for a range set R, put
UComp(X; R) = UMet(X; R) N Comp(X).

The next result is an analogue of Theorem 5.6.

Theorem 5.10. Let R be a range set, X a completely metrizable and R-valued ultra-
metrizable space. Then UComp(X; R) is comeager in (UCPM(X, R),UD%). Moreover,
the set UComp(X; R) is also comeager in (UMet(X; R),UDY).

Recently, Koshino proved a duality of absolute Borel complexity of X and Met(X),
and, as a corollary, he obtain:

Theorem 5.11 ([32, Corollary]). Let X be a separable metrizable space. Then X is
o-compact if and only if Met(X) is completely metrizable.



5.2. Comeager subsets in spaces of metrics. In this section, we exhibit known
comeager subsets in spaces of metrics.
For a property P on metric spaces, we consider that

{d € Met(X) | (X,d) has the property P }.

We exhibit the table of properties P such that the comeager-ness of the set {d €
Met(X) | (X,d) has P } is already known.

Table 1: Table of comeager sets in Met(X)

Reference

Assumptions on X

Property P

[17, Theorem 4.12.]

X is not discrete.

d is non-doubling.

[17, Theorem 4.12.]

X is not discrete.

d is non-uniformly discon-
nected

[17, Cor 4.17, and Prop 4.18]

X is not discrete.

d is not satisfying the
strong triangle inequality.

[17, Cor 4.17 and Prop 4.19]

X is not discrete.

d is not satisfying the
Ptolemy inequality.

[17, Cor 4.17 and Prop 4.20.]

X is not discrete.

d is not satisfying the
Gromov Cycl,(0) condi-
tion.

[17, Theorem 4.15]

X is not discrete.

d is having rich pseudo-
cones property. Namely,
the set of all pseudo-cone
of (X,d) is the same to
the whole of Gromov—
Hausdorff space.

[17, Thm 1.3 and Exam 1.1]

X is locally non-discrete.
Namely, every open sub-
sets is non-discrete.

every open subset is (1)
non-doubling, (2) non-
uniformly disconnected,
(3) mnot satisfying the
strong triangle inequal-
ity, (4) not satisfying
Ptolemy inequality, (5)
not satisfying the Gro-
mov Cycl,(0) condition,
and (6) having rich
pseudo-cones property.

[19, Thm 1.4]

X is the Cantor set.

d is non-uniformly per-
fect.




Table 1: Table of comeager sets in Met(X)

[22, Thm 1.1] X is metrizable and hav- | The set {d(z,y) | z,y €
ing the large inductive di- | X } is closed and totally
mension 0. disconnected in R.

[22, Thm 1.2] X is metrizable and hav- | d is gap-like, i.e., for every
ing the large inductive di- | p € X, the set {d(p,z) |
mension 0. r € X} is not dense in

any neighborhood of 0 in
[0, 00).

[26, Thm 1.2] X is metrizable and|d is  strongly rigid,
having the large induc- |i.e., for all distinct
tive dimension 0 with | {z,y},{u,v} € [X]?, we
Card(X) < 2%, have d(z,y) # d(u,v).

[26, Thm 1.3] X is o-compact, metriz- | d is rigid, i.e., ev-
able and having the large | ery isometric bijection
inductive dimension 0| f: (X,d) — (X,d) must
with 3 < Card(X) < 2%. | be the identity map.

Equivalently, the self-
isometry group of (X, d)
is trivial.

[25, Thm 1.4] X is completely metriz- | d is complete.
able

Combining results placed in the table and Theorem 5.5, we obtain the following result
on the abundance “strange” metrics in spaces of metrics.

Corollary 5.12. Let X be a o-compact, non-discrete, metrizable space have large in-
ductive dimension 0 and satisfying 3 < Card(X) < 2%. Then the set of all d € Met(X)
satisfying the following conditions is comeager in X, especially, it is non-empty.

(1) non-doubling;
(2) non-uniformly disconnected;
(3) not being ultrametrics;
(4) {d(z,y) | z,y € X} is closed and totally disconnected in [0, 00);
(5) strongly rigid;
(6) complete.
5.3. Comeager subsets in spaces of ultrametrics. The author also have obtained
comeager subsets in spaces of ultrametrics. Similarly to the Archimedean case, we also
exhibit the table of P such that {d € UMet(X; R) | X has P }. In this table, we always
assume that X is R-valued ultrametrizable, i.e., UMet(X; R) # ().



Table 2: Table of comeager sets in UMet(X; R)

Reference Assumptions on X Property P
[18, Proposition 6.9] | X is not discrete. d is non-doubling.
[18, Theorem 4.15] | X is not discrete. d is having R-rich-pseudo-

cones property. Namely, the
set of all pseudo-cone of (X, d)
is the same to the whole of
Gromov—Hausdorff space.

[18, Theorem 7.7 X is locally non-discrete. | every open subset is (1) non-
Namely, every open subsets is | doubling, (2) having rich R-
non-discrete. pseudo-cones property.

[19, Theorem 1.5 X is the Cantor set. d is non-uniformly perfect.

[25, Theorem 1.§] X is completely metrizable d is complete.

6. QUESTIONS
It is interesting to think Met(X) is always Borel in its completion CPM(X).
Question 6.1. Is Met(X) always Borel in CPM(X)?
Related to Question 6.1, we cite a conjecture made in [24].

Conjecture 6.2. Recall that ¥; stands for the first uncountable cardinality, and let
Dy, denote the the discrete space of cardinality of N;. Under this notations, the space
Met(Dy,) is not completely metrizable.

This conjecture is motivated by the aim to remove the assumption of the separability
of X in Theorem 5.11.

Take a non-separable metrizable space X. Then X contains Dy, as a closed subset.
Thus, Met(X) contains Met(Dy,) as a closed subset due to the main result in [24].
If Conjecture 6.2 is true, then the space Met(X) would not be completely metrizable.
Namely, the complete metrizability of Met(X') would imply the separability of X. This
observation is a reason why the author supports Conjecture 6.2. I am eager for someone
to solve this conjecture.

We also cite more questions from [24]. A metric on a set Z is said to be proper if every
bounded set in (Z,d) is compact. For a metrizable space X, we denote by PrMet(X)
the set of all d € Met(X) that is proper. In the paper [21], the author obtained an
analogue of Hausdorff’s metric extension theorem for proper metrics. It is interesting
to ask whether we construct a simultaneous extension of proper metrics or not.

Question 6.3. Let X be a second-countable locally compact Hausdorff space, and A be
a closed subset of X. Does there exist an extensor F': Met(A) — Met(X) satisfying the
conclusions of the main result of [24]. and the additional condition that F'(PrMet(A)) C
PrMet(X)?

If we could obtain the sophisticated extension theorem of proper metrics, we would
be able to investigate comeager subsets of spaces of proper metrics.



Question 6.4. Similarly to Met(X), can we investigate the topology and comeager
subsets of the space PrMet(X) of proper metrics equipped with the supremum metric?

We are also interested in standard forms of comeager subsets.

Question 6.5. Let X be a metrizable space. For every comeager subset S of Met(X),
does there exists a countable family {C}cz., of open covers of X such that

() L) C s

iEZZO

This question is motivated by the characterization of (co)meager sets in the Cantor set
[4, Theorem 5.2].

The author believes there are intriguing relationships between the big metric spaces
such as the Gromov—Hausdorff space (M,GH), the Urysohn universal metric space
(U, p), and the hyperspace (K(X),HD,). We also consider their non-Archimedean
analogues.

Question 6.6. Are there relationships between spaces of metrics and other big metric
spaces? See Figures 2 and 3.

For the statement that the Gromov-Hausdorff space (M,GH) is isometric to the
quotient metric space of hyperspace of the Urysohn universal metric space (U, p), we
refer the readers to [12, Exercise (b) in the page 83] and [1, Theorem 3.4].

For the isometric equivalences between non-Archimedean Gromov-Hausdorff spaces

(Ug, N A) and non-Archimedean Urysohn universal metric spaces (Vg, o), see [45] and
23].
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F1GURE 2. Relationships between big metrics spaces in the Archimedean world
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FIGURE 3. Relationships between big metrics spaces in the Non-
Archimedean world



Recently, several mathematicians are researching moduli spaces of metric measure
spaces. So the author wants to make a bridge between my theory and mm-spaces.

Question 6.7. Can we obtain analogues of the above results for metric measure spaces?

In the end, the author would like to give an advice on research on spaces of metrics.
The author thinks that Met(X) is too big for geometric research. So, if the readers
want to investigate Met(X), then it is slightly (more) reasonable to consider only spaces
BMet(X) of bounded metrics.
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