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1 Backgroud

The algebraic properties of diffeomorphism groups of manifolds and their subgroups are
studied by many people. As a classical result, many of these groups are known to be
perfect and some of them are even simple. In more quantitative consideration of these
properties, boundedness of diffeomorphism groups (uniform perfectness, uniform sim-
plicity, evaluation of commutator length, etc) are studied by D. Burago, S. Ivanov and
L. Polterovich (2008) in dimension 3 ([6]) and T. Tsuboi (2008 - 2012) ([19, 20, 21]) in
dimension # 2,4. After these works, many authors have studied boundedness of vari-
ous kind of automorphism groups of manifolds with a structure. (groups of equivariant
diffeomorphisms, leaf preserving diffeomorphisms, etc).

In this expository article we are concerned with diffeomorphism groups of manifold
pairs (K. Abe and K. Fukui [1, 3, 4, 5]) and bundle diffeomorphism groups (K. Fukui
and T. Yagasaki [12]). Our aim is a comprehensive study of boundedness of these groups
([12, 13, 14]). In a consideration of these groups, the one dimensional cases, (i.e., bundle
diffeomorphism groups over a circle and diffeomorphism groups of manifold pairs (M, L)
with L being a finite disjoint union of circles) are studied commonly using quasimorphisms
induced from the rotation angle on circles. In each case, the quasimorphism induces an
invariant, which detects boundedness of the group. This exposition will focus on this
common strategy.

Throughout this article we work in the C'* category, though some conclusions also
hold in the C" category (r € Zs). We refer to [8] for generalities on quasimorphisms.

2 Quasimorphisms induced from the rotation angle on a circle

In order to introduce the rotation angle on a topological circle S we need to fix an
orientation and an arc-length measure on S*. If we normalize as the total length of S* = 1,
then these data are equivalent to a choice of a universal covering 7 : R — R/Z ~ S* up
to the choice of a base point in S*. Below we fix a universal covering 7 : R — R/Z ~ S*.

Every path ¢ : I — S! admits a lift ¢ : I — R. The rotation angle of ¢ is defined by
A(c) := ¢(1) — ¢(0). This quantity is independent of the choice of the lift ¢. Note that
¢1 ™4 C9, then A(c1) = A(ep) and that if ¢ is a loop (a closed path), then A(c) = deg c.



We fix a distinguish point p. For any isotopy F : S' x I — S the rotation angle of F'
(with respect to p) is defined by pu(F) = p,(F) :== A(F(p, *)). Then the map

pIsot(SY)y = R : F e u(F)
is a quasimorphism of defect 1 and it restricts to a surjective group homomorphism
pl : Isot(SY)iqa — Z.
Since u(F) = p(G) if F ~, G, the map p reduces to the map on the universal covering
of Diff(S1),
ji : Diff(S")o — R : fi([F)) = u(F),
which is also a quasimorphism of defect 1 and it restricts to a surjective group isomorphism
| = deg : 1 (Diff (S1)g) & Z.
As explained in the subsequent sections, the quasimorphisms u and g induce the associated
quasimorphisms on the following groups (cf. [5, 12]).
(1) for a fiber bundle 7 : M — S*
the group Isot, (M), of bundle isotopies of 7 and

the universal covering group ﬁfﬂ(M )o
of the group Diff, (M) of bundle diffeomorphisms of =

(2) for a manifold pair (M, L) with L a finite disjoint union of circles in M
the group Isot(M, L), of isotopies of (M, L) and

the universal covering group I/)If/f(M ,L)o
of the group Diff (M, L)y of diffeomorphisms of (M, L)

3 Boundedness of Diff (M), for a fiber bundle 7 : M — S!

Suppose m : M — S' is a fiber bundle with fiber N and structure group I < Diff(N).
We refer to [12] for notations and resutls in this section.

3.1 Quasimorphism 7 on ]if/fﬁ(M)g
Each f € Diff,(M) determines a diffeomorphism f € Diff(S")o. This correspondence
yields the surjective group homomorphisms

P : Diff (M )y — Diff(S")o, P(f)=f and

Py : Isot.(M)o —> Isot(S)o, Pi(F) = F := (F})er-

If F ~, G in Isot,(M)g, then F ~, G in Isot(S')s. Hence we also have the surjective
group homomorphism

P : Diff,(M)y —> Diff(5%), P([F]) = [F].
These induce the quasimorphisms of defect 1
v:=ypo Pr:lIsot,(M)y — R and v:= ,ZiojS : [,)\i?fﬂ(M)O — R.



These are included in the following diagram :

1 — Isoty(M)iay ia,, C  Isotg(M)o —2= Diff o(M)y — 1

1 —— mDiff,(M), < Diff,(M), —Z~ Diff,(M); — 1

7 v la

kZ - R R/kZ.

v| v

0 0

Here, R([F]) = Fi, V(F1) = [v(F)] (F € Isot;(M)g) and we have Z > Imv| = kZ for a
unique k € Zsq. This integer k = k(m) € Z>( can be used to detect the boundedness of
the group Diff . (M),. We do not take the homogenization of the quasimorphism v, since
we are concerned with the values v(F') and 7(f) themselves to deduce some evaluations
of the commutator length clf etc.

3.2 Application of the function 7 to the boundedness of the group Diff (M),

We are concerned with the estimate of conjugation invariant norms cl, clb, and (, (g €
Diff . (M)o—Ker P) and the diameters of Diff (M), with respect to these norms. Here, clb,
is the commutator length with support in arcs in S' and (, is the conjugation generated
norm with respect to g. Note that ¢l < clb, by their definition.

Consider the following basic condition on (N, I”).
(%) Diff,. (R x N)g is perfect for the product (N, I")-bundle pr:R x N — R.

At the moment the condition (x) is known to hold in the following cases

(i) a principal G bundle with G a compact Lie group ([2])

(ii) N is a closed manifold and [’ = Diff(V) ([12, 17, 18])
Proposition 3.1. Suppose f € Diff (M), and v(f) = [s] € R/kZ, where s € ( — & £]
in the case k € Z>1. Then, we have the following estimates.

(1) () e f>7(lsl) +2) (i) ¢,(f) <4clb, f for any g € Diff, (M), — Ker P
(2) elb.f <2||s|| +3 if (N, I") satisfies the condition (x).

Here, due to our convention, ¢l f = oo for f ¢ [Diff] (M), Diff. (M),] and cld Diff” (M )y = oo
when Diff” (M), is not perfect. Similar conventions are applied to clb, and (,.

Corollary 3.1. If (N, I") satisfies the condition (x), then the group Diff (M), is simple
relative to Ker P.

The boundedness of the group Diff (M )y is detected by the invariant k£ = k(m,r).

[1] The case that k=0 :

In this case, the map v : Diff (M), — R itself is a surjective quasimorphism of
defect 1 and it restricts to a surjective group homomorphism 7 : Ker P — Z. Hence we
have the following conclusion.



Theorem 3.1. If k£ = 0, then Diff (M), is unbounded and not uniformly perfect.

[2] The case that k > 1 :
Theorem 3.2. Suppose (N, 1) satisfies the condition (). Then the following holds.

(1) %(k: +2) < cld Diff,(M)o < clbyd Diff,(M)y < k + 3.

(2) Dift, (M) is uniformly simple rel. Ker P, and so it is bounded and uniformly perfect.

Any (N, I') bundle 7 over S* is represented as a mapping torus M, associated to some
attaching map ¢ € I'. We can describe k(7) in term of the attaching map ¢ and construct
some explicit examples of (un)bounded bundle diffeomorphism groups over S.

4 Boundedness of Diff(M, L), for a finite disjoint union L of cir-
cles in M

4.1 Previous results

In[1, 3,4, 5] K. Abe and K. Fukui studied the uniform perfectness of the group Diff (M, N),
of diffeomorphisms of a manifold pair (M, N). Suppose M is a connected closed manifold
of dim > 2 and N is a proper submanifold of M of dim > 1. Let NN; (i € [m]) denote the
connected components of V.

The group Diff (M, N)g is not simple. In fact, it admits the restriction maps

P :Diff(M,N)y — Diff(N)y and P, : Diff (M, N)y — Diff(N;)o (i € [m]).

These are surjective group homomorphisms and Diff (M, N)g includes the normal sub-
groups Ker P and Ker P; (i € [m]).

They showed that the group Diff (M, N), is perfect and obtained the following results
for the uniform perfectness.

Theorem 4.1.

(1) If Diff(N)p and Diff.,(M — N), are uniformly perfect and |moKer P| < oo, then
Diff (M, N is uniformly perfect.

(2) In the case dim N =1 (i.e, N is a finite disjoint union of circles), if |moKer P| = oo,
then Diff(M, N)o admits a unbounded quasimorphism, so that it is not uniformly
perfect.

Their proof of Theorem 4.1 (2) was based on a quasimorphism on Diff (M, N)y in-
duced from the quasimorphism i : Isot(S')o — R in Section 2. They used the criterion
on |moKer P| in Theorem 4.1 to show that for a knot K of the 3-sphere S® the group
Diff (53, K)o is uniformly perfect if and only if K is a torus knot.

Our aim is a more comprehensive study of the boundedness of the group Diff (M, N),
(effective evaluations of the norms cl, clb and (,, the uniform relative simplicity, etc)
(cf. [14]). We can show that the fragmentation lemma and the simplicity of Diff (M, N)g
relative to S := Uie[m] Ker P; due to the standard arguments.



The group Diff(M, N), includes the normal subgroup G := Diff.(M — N)y. Since
the manifold M — L is the interior of a compact manifold with nonempty boundary,
we can apply our results in [11] for the boundedness of the group G. Then, for each
f € Diff(M, N), it is natural to seek a factorization f = gh such that g € G and supp h
is contained in a small neighborhood of N and deduce some estimates on ¢l f, clb f and

Co(f)-
Below we focus on the case where dim N = 1 and only discuss the boundedness of
Diff (M, N)o module G to simplify the explanation.

4.2 Quasimorphism 7 on ]iiff(M, L)y
We consider a pair (M, L) such that M is a connected closed manifold of dim > 2 and L
is a finite disjoint union of circles L; (i € [m]) in M. For each i € [m| we have
the restriction maps P : Diff (M, L)y — Diff(L;)o, Py, : Isot(M, L)y — Isot(L;)o,
the induced map P, : Diff (M, L)y —» Diff (L;)o : P([F]) = [F|p,x1)-
These are surjective group homomorphisms and induce the quasimorphisms of defect 1,
vi = o Pp;:Isot(M,L)y — R and 7 :=Jio P, : Diff (M, L)y —> R.
Finally we obtain the vector-valued quasimorphisms
V= (Ui)icpm] : Isot(M, L)y — R™ and ¥ = (3 )icpm) - DIff(M, L)y — R™.
These are included in the following diagram :

1 —— ISOt(M, L)idM,idM - ISOt(M L)O —> lef M L 0 — 1

1 — mDiff(M, L))y C Diff(M, L)y —2= Diff(M, L)y — 1

v U lﬁ

A C R™ R™/A

0

where R([F|) = F1, V(F1) = [v(F)] (F € Isot(M, L)y) and A:=Imv|<Z™. Here, we
note that the quasimorphism v has no information for the subgroup G = Diff.(M — L)j.

Since moKer P = Z™/A, from Theorem 4.1 it follows that the group Diff(M, L), is
uniformly perfect modulo G if and only if rank A = m. If rank A < m, the group
Diff (M, L)y admits a quasimorphism onto R, so that Diff (M, L), is unbounded.

4.3 Application of the function 7 to the boundedness of the group Diff (M, L),

Due to Epstein (]7]) we need an effective evaluation of the norm ¢lb on Diff (M, L)y mod-
ulo G to detect the uniform simplicity of Diff(M, L), relative to & (that is, uniform
boundedness of the norms ¢, (¢ € Diff(M, L)y — S)). This also yields an evaluation of
cld Diff (M, L)p modulo G. We can deduce some estimate of clb f (f € Diff (M, L)y) in
term of the affine lattice U(f) = v(F) + A C R™ (F € Isot(M, L)ia,f)-



In the case that rank A = m, the quotient group Z™/A is a finite abelian group and
we can introduce the quantity : & := max;em) ki € Z>1,

where e; (i € [m]) is the standard basis of R™ and k; := ord [¢;] € Z> in Z™ /A (i € [m]).
Theorem 4.2. ([14]) If rank A = m, then

(1) elb(f mod G) <2|k/2] +3 (f € Diff(M,N)y).

(2) cldDiff(M,N)y < 2|k/2] + 3+ cldG and clbd Diff(M, N)o < 2|k/2] + 3 + clbd G.

(3) Diff(M, N)o is bounded and uniformly simple relative to S = ;) Ker P;, when
dim M # 2,4. Moreover, cld Diff (M, N)y < 2|k/2| + 7, when dim M is odd.

In the case m =1 (i.e., L consists of a circle K), we have A = kZ for a unique k € Zy.
Then, rank A < m if and only if £ = 0. In [1] it is shown that for a knot K in the 3-sphere
3, Diff*(S3, K)o is uniformly perfect if and only if K is a torus knot. We can extend
this example to the following form.

Example 4.1. Suppose M is a closed connected C*° n-manifold (n > 2) and K is a circle
in M.

(1) Suppose M admits a smooth S! action g such that K = S! - p for some point p of
K and the orbit map g, : S' = K, g,(2) = z - p, has degree ¢ (up to +). Then,
( € kZ and k|¢. In fact, the S* action ¢ induces an isotopy F € Isot(M, K)iqq :
F(z,t) = e*" . z. Tt follows that kZ 2 v(F) = deg F, = deg g, = (.

(i) In the case M is a Seifert fibered 3-manifold, if K a regular fiber, then k = 1
and if K is a (p, q) multiple fiber, then k|p.

(ii) In particular, if K is a torus knot in S3 then k = 1, since K is a regular fiber of
a standard Seifert fibering of S® with two multiple fibers.

(2) k =0 in the following cases :
(1) (a) m(M) has a trivial center and (b) m(K) — (M) is injective.

() n=3
(a) m (M — K) has a trivial center and

(b) m(D — K) — m(M — K) is injective for a tubular neighborhood D of K
in M.

(i) Any non-torus knot K in S? satisfies the condition ().

(ii) The following example (M, K') satisfies the condition (f) for n > 4. Suppose G
is a finitely presented group such that Z(G) =1 and G includes an element a of
infinite order (for example, G = Z x H, H is a nontrivial group). Since n > 4,
there exists a closed connected C* n-manifold M with m (M) = G. Take a
circle K in M which represents the element a in 7 (M), so that the inclusion
i : K C M induces an isomorphism i, : 71 (K) = (a) < m(M).
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