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Abstract

In this paper, we motivate the applications of the Gromov-Hausdorff distance in computational
topology and topological data analysis. We present how dimension theory and metric geometry can
provide theoretical limits to the precision of metric invariants. We conclude by discussing generali-
sations of the Gromov-Hausdorff distance and further research directions.

The paper’s title is that of the talk delivered at the RIMS symposium ‘General topology and
related fields’, but this presentation has a different focus. A more suitable title is ‘The role of the
Gromov-Hausdorff distance and embeddability results in computational topology’.

1 Introduction

Computational topology is a field of mathematics at the intersection of computational
geometry, computer science and topology. The central question that is investigated is
the following: how can we compute if two spaces (e.g., metric spaces, triangulated mani-
folds, simplicial complexes) are the same? In topology, to distinguish between topological
spaces, we usually rely on topological invariants. Topological dimensions (small inductive,
large inductive, covering, Hausdorff, etc.) are classical examples: if two topological spaces
have different dimensions, then they are not homeomorphic ([24], 32]). In computational
topology, a similar approach is pursued, but there are two crucial differences:

(a) these invariants have to be efficiently computable and comparable, and
(b) they have to be stable under small perturbation to limit the impact of possible errors
in the representation of the spaces.

A central example of such invariants is persistent homology. In the past decades, successful
applications of these invariants to compare real-world datasets and extrapolate relevant
patterns lead to the establishment of a self-standing subject known as topological data
analysis (TDA). We refer the interested reader to [20] and to [28] for a database of real-
world applications of TDA.

As for the requirement (b), we expect that an invariant returns similar values if it
receives in input either a continuous object, e.g., a manifold, representing the ground
truth or a finite point cloud (i.e., a finite metric space) obtained by sampling it (see
Figure [1)).

Introduced by Edwards ([23]) and rediscovered and generalised by Gromov (][29]), the
Gromov-Hausdorff distance provides a theoretical tool to measure how two metric spaces
resemble each other. In particular, we can formally discuss how well a point cloud,
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Figure 1: In the applications, we need a distance notion showing that a circle and a finite sample of it
are similar even though the latter may contain small errors.

obtained by sampling a continuous object, approximates the ground truth. Its role in
computational topology has grown in the last decades (|43} 38, 37, B39, 40, 12, 13} 1, 2] 3]
39]).

In this survey paper, after recalling some basic notions and properties of the Gromov-
Hausdorff distance, we discuss its role in computational topology (§2)). After mentioning
its computational limits, we describe how stable invariants can be used to approximate
it (§. We then show how notions coming from dimension theory and coarse geometry
can be applied to demonstrate theoretical limits to the metric distortion created by stable
invariants (§4). We conclude with a list of further research directions requiring suitable
generalisations or modification of the Gromov-Hausdorff distance (§]).

2 Distances between metric spaces and the Gromov-Hausdorff
distance

Let us recall some notions and results in metric geometry. We refer the reader to
10, 47, 52).

Definition 2.1. For a pair (X, d) consisting of a set X and a map d: X x X — R, we
define the following properties:

(M1) for every z,y € X, d(z,y) > 0 and d(z,x) = 0;

(M2) for every z,y € X, d(z,y) = d(y,x) = 0 if and only if x = y;

(M3) for every z,y € X, d(z,y) = d(y, z) (symmetry);

(M4) for every z,y,z € X, d(x,y) < d(z,z) + d(z,y) (triangle inequality).

The pair (X, d) is called:

(a) a pseudo-metric space if it satisfies (M1), (M3) and (M4);

(b) a metric space if it is an extended pseudo-metric space satisfying (M2).

>

The path metric on the vertex set of an undirected graph, which associates to a pair
of vertices the length of the shortest path connecting them, is a classical example of a
metric. If the edges are weighted with positive values, the path metric can be similarly
defined as the length of a path is the sum of weights that it follows.



For every metric space (X, d), the Hausdorff distance between two subsets Y and Z of
X is defined as

dy(Y,Z) =inf{e > 0| Y C B.(Z), and Z C B.(Y)},

where, for a subset A of Z, B.(A) = J,c4 B-(a) and B.(a) denotes the open ball centred
in a with radius e.

The Hausdorff distance can be equivalently characterised using the notion of corre-
spondence, which will be important in the sequel. A relation R between two sets A and
B is a correspondence if, for every a € A, there exists b, € B such that (a,b,) € R and,
vice versa, for every b € B, there is a;, € A satisfying (ap,b) € R. Equivalently, if the
maps obtained by restricting the two canonical projections of the product A x B to R
are surjective. Then, if Y and Z are subsets of a metric space X,

dy (Y, Z) = inf sup d(y, z). (1)

RCY xZ correspondence (y,2)ER

It is known that dy is a metric on the family of non-empty compact subsets of Z. Since
they are bounded, the distance between each pair of objects is finite, and two subsets are
at distance 0 if and only if they coincide since they are closed. This space is sometimes
referred as the hyperspace of Z and denoted by 2%.

The Hausdorff distance is the stepping stone to define other, less embedding-dependent
distances. First, we modify the Hausdorff distance to identify two subspaces that are
isometric even though they may be located in different areas of the ambient space. Let us
consider this definition in the particular case where Z is R, but it can be straightforwardly
extended.

Let X and Y be two subsets of RY. Their Fuclidean-Hausdorff distance dgg (see, for
example, [5]) is defined as follows:

dpy(X,Y) = inf{dy (X, f(Y)) | f € Isom(R")},

where Isom(R?) denotes the set of all isometries of R%. This notion is a metric on the
space of isometry classes of compact subsets of RY.

The Euclidean-Hausdorff distance can be conveniently differently characterised.

Theorem 2.2 (see [5]). Let X and Y be two subsets of RY. Consider them as metric
spaces. Then,
ix: X—Re and
iy Y—R?
isometric embeddings

The characterisation of the Euclidean-Hausdorff distance described in Theorem [2.2]
inspires the definition of the Gromov-Hausdorff distance. If X and Y are two arbitrary
metric spaces, we look for all possible isometric embeddings into some ambient metric
space where they are compared with the Hausdorff distance.



Definition 2.3 ([23, 29]). Given two metric spaces X and Y, their Gromov-Hausdorff
distance dgy is the value

dGH (X’ Y) - Z megilcfspace ix: Xu—le and dH (lX (X)7 ZY(Y))
X X—Z

isometric embeddings

(see Figure [2| for a representation).

The previous definition is not precise since the first infimum is not well-defined since all
metric spaces form a proper class. However, it is enough to investigate the pseudo-metric
spaces whose support is the disjoint union of the two metric spaces we are comparing.
This fact will follow from the construction provided in the proof of Theorem [2.4]

Figure 2: A representation of the fact that the spaces illustrated in Figure [1] are e-close with respect to
the Euclidean-Hausdorff and Gromov-Hausdoff distances.

Given Theorem [2.2 it is trivial that, pointwisely, dgy < dgg. In the Remark 2.6, we
show that they do not coincide even in simple cases.

Although intuitive, the definition of the Gromov-Hausdorff distance provided is not
practical for computations since it relies on a third, unknown metric space. A change of
perspective allows for a more manageable characterisation.

If (X,dx) and (Y,dy) are two metric spaces, and R C X X Y is a correspondence
between them, the distortion of R is the value

disR = sup |dx(9€1, $2) - dY(yh 92)|
($1,y1),($2,y2)€R

Theorem 2.4 ([10]). Let X and Y be two metric spaces, then

dGH (X’ Y) - % R CX x Yiggrespondence dis R
Proof. For a fixed € > 0, let Z be a metric space, ix: X — Z and iy : Y — Z two isometric
embeddings showing that dy(ix(X),iy(Y)) < dgu(X,Y)+ecand S C X x Y be a corre-
spondence such that sup, , s d(ix (), iy (y)) < du(ix(X),iy(Y))+¢e < dou(X,Y) + 2¢.
Note that disS < 2supy, , s d(ix(7),iy(y)), and so disS < 2(dgu(X,Y) +¢).
Vice versa, let R C X X Y be a correspondence. We construct a new metric space
Zx as follows. Consider a weighted undirected graph whose vertices are X LY, and



whose edges consist of all the pairs (z,2") € X x X weighted dx(z,2'), (y,¢) € Y x Y
weighted dy (y,v'), and (z,y) € R weighted by dis R/2. Then, Z% is the X UY endowed
with the path metric. Consider the canonical inclusions iy and 7y of X and Y into Z.
Trivially, dg(ix(X),iy(Y)) < disR/2. Using the distortion’s definition, it can be shown
that ix and iy are isometric embeddings. Given that R is arbitrary, then dgy(X,Y) <
% inngXXY correspondence disR. L

As an easy application of the previous characterisation, we obtain the following bounds
for the Gromov-Hausdorff distance between two bounded metric spaces. We denote by
diam X = sup, . x d(x,y) the diameter of a metric space X.

Proposition 2.5. Let X and Y be two bounded metric spaces. Then,
1 1
§|diamX —diamY| < dgp(X,Y) < §max{diamX, diam Y'}.

Proof. The upper bound is obtained by considering the trivial correspondence R = X xY
whose distortion is max{diam X, diam Y'}. As for the lower bound, if diam X = diamY’,
there is nothing to prove. Without loss of generality, we can now suppose that diam X >
diamY +e&. For every € > § > 0, there are x1, x5 € X such that dx(z1,z) > diam X — 4.
Let us take an arbitrary correspondence R C X xY. If y;,yo € Y satisfy (z1,y1), (x2,92) €
Ra

disR > |dx (1, x2) — dy (Y1, y2)| = dx (1, 22) — dy (y1,y2) > diam X — ¢ — diam Y.
We can conclude since § can be arbitrarily taken. O]

Remark 2.6. Given two point clouds in R?, the reader may wonder for which reasons the
Gromov-Hausdorff distance should be preferred to the Euclidean-Hausdorff distance. The
essential advantage of the first is that it does not depend on embedding the point clouds
in R, and it considers them as metric spaces on their own. Already small examples show
the difference in the two approaches (see [38]).

Let Xy = {x, 21,22} be the vertices of an equilateral triangle in the plane of edge
length 2, and Y be a singleton. The isometry minimizing the Hausdorff distance between
X, and Y places Y as the centre ¢ of X5, which achieves dpy(Xs,Y) = dy(Xs, {c}) =
2v/3 /3. However, if we embed X, and Y into a different space, we can lower their distance.
Indeed, consider the tree T' consisting of three leaves {ag, a1, as} and another vertex b that
is connected to the three leaves through edges of length 1. Endow it with the path distance.
We can isometrically embed X, into the leaves of T" and Y as its centre b. Then,

dGH(XQ,Y) < dH({al,aQ,ag}, {b}) =1< ¥ = dEH(XQ,Y)

According to Proposition dor (X2, Y) = 1.
We can readily extend this construction to every dimension by replacing X, with a

d-dimensional simplex Xy = {x, ..., 24} embedded in R? with pairwise distances equal
to 2 ([38]).



A lower bound on the Gromov-Hausdorff distance depending on the Fuclidean-Hausdorff
distance was provided in [3§].

Theorem 2.7. For every pair of compact subsets X and Y of R,

den(X,Y) < dpu(X,Y) < cg/M - dgu(X,Y),

where M = max{diam X,diam Y} and c; is a constant depending only on the dimension

d.

However, if X and Y are two finite subsets of R, a linear lower bound to dgg depending
on dpy can be proved.

Theorem 2.8. ([36, Theorem 3.2]) For every pair X andY of compact subsets of R,

4
ngH(X; Y)<deu(X,Y) <dpu(X,Y).

2.1 Properties of the Gromov-Hausdorff distance

The Gromov-Hausdorff distance has nice metric properties. A metric space (X, d) is
geodesicif, for every pair of points x,y € X, there is an isometric embedding y: [0, d(z,y)] —
X such that y(0) = z and (1) = y. Such map 7 is called a geodesic connecting x and y.

Proposition 2.9. (a) Given two compact metric spaces X andY , dgy(X,Y) =0 if and
only if they are isometric.

(b) The space GH, sometimes called Gromov-Hausdorff space, of isometry classes of com-
pact metric spaces endowed with the Gromov-Hausdorff distance is a metric space.

(¢) The space GH is separable.

(d) The space GH is complete.

(e) The space GH is geodesic.

Proof. We refer to [10] for items (a) and (b), and to [47] for items (c) and (d). Because
of its importance, let us hint at the proof of item (e) in the simpler case of finite metric
spaces.

Let X and Y be two finite metric spaces, and R C X X Y be a correspondence such
that dis R = 2dgu(X,Y). Let T = dgu(X,Y). For every 0 <t < T, define the metric d;
on R as follows:

(o0 ') = (1= 3 s + o).

For each such t, d; is a metric. Furthermore, (R, d;) is a finite metric space.
Define v: [0,7] — GH as follows:

(X,dyx) ift=0,
() =4 Y.dy) ift=T,
(R,d;) otherwise.



Let us estimate dgm(v(s),v(t)) for every s,t € [0,7]. With simple computations, the
inequality dag(v(s),v(t)) < |s — t| can be shown. The triangular inequality implies that
this is enough to show that v is a geodesic ([14]). O

The proof of item (e) in the compact case follows the same structure. The additional
ingredients are the followings: the distortion-minimising correspondence still exists if the
spaces are compact and the spaces (R, d;) are compact.

The geodesics defined in the previous proof are called straight-line geodesics. Already
in [33], Proposition 2.9(e) was proved, but no explicit geodesics were provided. The
construction given in Proposition (e) shows that we have access to an optimal trans-
formation between two compact metric spaces as soon as a correspondence with optimal
distortion is provided.

Geodesics in GH are not unique. There may be more optimal correspondences that

induce distinct geodesics (Example [2.10]).

Example 2.10. There may be more than one straight-line geodesics between two (finite)
metric spaces. Consider the subsets X = {1,2,3,4} and Y = {1,2,4} of R, and two
correspondences R; € X x Y, for i = 1,2, defined as follows:

Ri1=1(1,1),(2,2),(3,2),(4,4)}, and Ry = {(1,1),(2,2),(3,4),(4,4)}

(see Figure (3| for their representation).

It is easy to see that the distortion of both correspondences is 1. Hence, dgu(X,Y) <
1/2. We have that dgy(X,Y) = 1/2 since every correspondence R between X and Y has
to associate two distinct points of X to the same point of Y for the pigeon hole principle.
Hence, its distortion is at least 1.

Consider now the straight-line geodesics v; and v, between X and Y that R; and Rs
induce. They are distinct since 7, (¢) and () are not isometric for every t € (0,1/2). In
fact, for every t € (0,1/2), consider the point (3,3) in ;1 (¢). For every (3,3) # z € v (¢),
di((3,3),2) > 1. However, for every t' € (0,1/2) and y € v,(t'), there is y # v’ € 1(t')
with dy(y,y’) < 1. Hence, 71(t) and (t') are not isometric.

40—%—0 :7
3>2L
2 — o

le—o0—e — o

Rl Rl

Figure 3: A representation of the two correspondences R and Ro. The metric space 7y, (1/4) consists of
the hollow dots. The set of distances from the top-most point  is {0,3/2,2,3}, and it is easy to see that
none of the points in v2(¢) has the same set. More precisely, for every point y € vo(t), there is z € ¥o(t)
such that 0 < d¢(y, z) < 1. Hence, the two geodesics are distinct.



Not all geodesics are straight-line. In [I5], the authors provided continuously many
distinct geodesics between finite metric spaces.

2.2 Computational limitations of the Gromov-Hausdorff distance

We have discussed properties of the Gromov-Hausdorff distance that are relevant for
the applications. In addition to those enlisted in Proposition 2.9, the Gromov-Hausdorff
distance does not depend on the particular embeddings of the spaces and can be used to
compare discrete and continuous objects. However, there is a fundamental limitation to
the practical employment of the Gromov-Hausdorff distance in computer science, which
is its computational complexity.

Remark 2.11. Suppose that we have an algorithm to compute the Gromov-Hausdorff
distance between two finite metric spaces.

The graph isomorphism problem is a decision problem that is not known to be solvable
in polynomial time nor to be NP-complete. Let X = (V,E) and X’ = (V' E’) be
two graphs. We can compute in polynomial time their two path metrics (e.g., using
Dijkstra’s algorithm formulated in 1956). Then, we compare the two metric spaces using
the Gromov-Hausdorff distance and obtain a solution for the graph isomorphism problem
since dgp (X, X’) =0 if and only X and X' are isomorphic.

More precisely, it can be proved the following result, which shows that even approxi-
mating it lead to computational bottlenecks.

Theorem 2.12 ([4, [50]). The following decision problem is NP-hard:
3-GROMOV-HAUSDORFF. Given two metric trees Ty and Ty with unit length edges, de-
termine whether dgp(T1,Ts) < 3.

Given this computational bottleneck, developing techniques to compute lower and
upper bounds to the Gromov-Hausdorff distance between to metric spaces is a fertile
research direction.

On the other hand, the Gromov-Hausdorff distance provides a theoretical framework
to evaluate computable invariants of metric spaces, formally describing how precisely
they reflect the geometry. These aspects will be described in more detail in the following
section.

Before concluding the section, let us describe one more layer of complexity. Given a
compact metric space M—typically a manifold—and a (finite) sample X of it, a natural
question is the following: how dense X in M has to be in order to correctly capture the
geometry of M7 Intuitively, we would expect that for some parameter ¢ > 0, if X is
e-dense in M, i.e., dy(X, M) < e, then dgy(X, M) = dy(X, M). However, in general
this is not the case.

Theorem 2.13 ([2]). For every € > 0, there are a finite metric space X and a finite
subset X' C X such that
don(X, X') < edy(X, X').



In [2], the authors provide conditions on manifolds and samples ensuring bounds on
the Gromov-Hausdorff distance depending on the Hausdorff distance. In [3], this study is
further developed. Particular attention is paid to the case of metric graphs.

3 Stable invariants

In the previous section, we mentioned that computing the Gromov-Hausdorff distance
is mostly unfeasible. To practically compare two metric spaces, we often rely on (metric)
invariants. These associate to every metric space X a value 1(X) of some other metric
space in such a way that ¥(X) = ¥(Y') provided that X and Y are two isometric metric
spaces. More formally, an invariant is a map ¢¥: GH — X where &X' is a metric space.
In practical settings, we require that these invariants can be efficiently computed and
compared.

Invariants assuming values into a (finite-dimensional) Hilbert space are called vectori-
sation methods and they are particularly relevant for the applications since they can be
exploited in machine learning pipelines.

The following property of invariants is essential.

Definition 3.1. Following [39], an invariant ¢: GH — X is stable if there exists a non-
decreasing function p;: R>g — R such that

dx(V(X), ¥(Y)) < pi(deu(X,Y))
for every pair of compact metric spaces X and Y.
Why is stability important? Consider the following decision problems. We simplify
the questions for expository reasons.
Pgy: Given two finite metric spaces, are they ‘close’ in the Gromov-Hausdorff distance?

We have discussed before why this problem is hard to tackle. Let now ¢: GH — X be
an invariant, and define the following decision problem.

Pr: Given two points in X', are they ‘close’ relatively to the distance dy?

We can look for a metric space X in which the problem Py is easy to solve. Then, to
study whether two spaces X,Y € GH are close, we can consider their images ¥ (X) and
¥ (Y') and solve the problem Py relatively to this instance. We would have the following
possible situations.

Pan
Yes No
Py Yes | true positive  false positive
No | false negative true negative

Suppose that 1 is stable. If Py returns no, Pgy cannot return yes. This is due
to the fact that, intuitively, dx(¥(X),¥(Y")) has to be small provided that dgy(X,Y)
is small. Hence, false negatives, which are particularly undesirable in applications, are
avoided. Indeed, if small changes in the spaces considered, maybe due to some unavoidable



experimental errors retrieving or classifying the data, lead to very different outputs, then
such method is not reliable.

Furthermore, stable invariants can be used to provide lower bounds to the Gromov-
Hausdorff distance. If ¢ is a stable invariant and p, is invertible, then, for every pair of
compact metric spaces X and Y,

dan(X,Y) 2 pit (da (1 (X), ) (Y))).

Proposition [2.5| shows that the diameter of a metric space is a stable invariant. The
following, further examples are taken from [39).

Example 3.2. Let (X, d) be a metric space. We define the following stable invariants:
e its circumradius as the value rad(X) = mingex max,cx d(z, z’);

its circumradius set as the subset C(X) = {maxycx d(z,2') |z € X};

its eccentricity function as the map eccx: X — Rsq, eccx(z) = maxyex dx(z,2');
its distance set as the subset D(X) = {d(z,2') | x,2' € X};

its local distance set as the map Lx: X — P(Rx), Lx(z) = {d(z,2") | 2’ € X }.

It is easy to see that the invariants introduced in Example can be polynomially
computed. Less trivial, but still easy is showing that the distance between those invariants
can also be polynomially computed. More refined arguments can be found in [39, Remark
3.7].

These invariants are clearly related one another, and they have different ‘discerning
power’. Namely, if ¢ and ¢ are two invariants such that, for every compact metric space
X, ¥(X) < ¢(X), ¢ has a higher chance than ¢ to distinguish more pairs of non-isometric
metric spaces. Typically though, a more discerning invariant is more costly to compute.

We announced in Example that all the invariants presented are stable. Let us

phrase this property more precisely in the following result, which is easy to show (see
[39]).

Proposition 3.3. The circumradius, the circumradius set, the eccentricity function, the
distance set and the local distance set are stable invariants. More precisely, for every pair
of metric spaces X andY,

max{|rad(X) — rad(Y)|, |diam X — diam Y|} < dy(C(X),C(Y)) <

< inf — <
T RCXXY cltg‘respondence (:C?;%ERIGCCX (33') eCCY(y) ’ -

sup du(Lx(z),Ly(y)) <

in
T RCXXY correspondence (z,y)ER

S 2dGH(AXva Y)a

and

|diam X — diam Y| < dy(D(X),D(Y)) <
< inf sup dy(Lx(z), Ly(y)) <

T RCXXY correspondence (z,y)ER

< 2den(X,Y).
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More refined invariants, which focus on retrieving specific features, are used in the
computational topology community. A cornerstone example is given by persistent homol-
ogy ([20]), which intuitively capture the size of the homological features of a metric space.
In [12, 13] (see also [14]), it is shown that the persistence homology of the Vietoris-Rips
and Dowker filtrations is stable.

All the examples of invariants we have discussed are not injective and, intuitively,
return false positives. We refer the reader to [39] for a more detailed discussion. In the
next section we discuss conditions ensuring that these false positives can or cannot be
avoided.

4 Applications of dimension theory and coarse geometry to in-
variants’ precision

Miming the definition of stability, we say that an invariant ¢: GH — X avoids false
positives if there exists a non-decreasing function p_: R>o — R>( such that p_ — oo and

p—(den(X,Y)) < dx((X),$(Y)) (2)

for every pair of compact metric spaces X and Y.

A lower bound as in prevents false positives since the larger the Gromov-Hausdorff
distance, the larger the distance between the two associated invariants.

We investigate the following question.

Question 4.1. Does there exist an tnvariant 1 with values into a Hilbert space which is
stable and avoids false positives?

Amap ¢: (X,dx) — (Y, dy) between two metric spaces is said to be a coarse embedding
see [46]) if there exist two maps p_, py: Rsg — Rsq, called control functions, such that
p— — oo and, for every z,y € X,

p-(dx(z,y)) < dy (), ¥ (y)) < pi(dx(z,y)). (3)

In particular, an invariant that is stable and avoids false positives is a coarse embedding.

Coarse embeddings have been introduced by Gromov and extensively studied in the
field of metric geometry known as coarse geometry. A crucial application of this theory is
due to Yu, who proved in [57] that those metric spaces that can be coarsely embedded into
a Hilbert space satisfy the Novikov and the coarse Baum-Connes conjectures generalising
results contained in [56].

Immediate examples of coarse embeddings are isometric and bi-Lipschitz embeddings,
where the control functions are identities and linear maps, respectively.

By studying the geometry of the Gromov-Hausdorff space, we can show that sufficiently
regular embeddings cannot exist. Let us denote by GH<* the subspace of GH consisting
of all finite metric spaces.

Fact 4.2. The spaces GH and GH=* cannot be isometrically embedded into any Hilbert
space.

11



Proof. 1t is easy to show that a Hilbert space has unique geodesics. However, in GH and
GH=“ there are pair of spaces with several distinct geodesics between them (see Example

and [15]). O

To prove the (non-)existence of coarse and bi-Lipschitz embeddings of the Gromov-
Hausdorff space into some Hilbert space, more advanced tools are needed.

The result contained in [57] and mentioned above motivated two research directions.
On one hand, since an explicit coarse embedding can be hard to construct, a plethora of
conditions ensuring its existence have been defined and investigated (see [40]). Among
these properties, if a space has finite asymptotic dimension (a dimension notion introduced
by Gromov, [30]), then it can be coarsely embedded into a Hilbert space ([57,31]). On the
other hand, examples of metric spaces that cannot be coarsely embedded were constructed
for example in [19] 34]. Showing that one of those pathological examples can be coarsely
embedded into a metric space X proves that X itself cannot be coarsely embedded into
any Hilbert space. Using this approach and modifying constructions described in [55], the
following result was proved.

Theorem 4.3 ([59]). The spaces GH=* and GH cannot be coarsely embedded into any
Hilbert space.

In the same paper, by computing the asymptotic dimension, it is shown that a pos-
itive result can be obtained if considering metric spaces with a uniform bound on their
cardinality.

Theorem 4.4 ([59]). The space GH=" consisting of all metric spaces with at most n
points can be coarsely embedded into any Hilbert space.

More precisely, it is shown that the asymptotic dimension of GH=" is n(n — 1)/2.

Let us now consider bi-Lipschitz embeddability. To prove the non-existence of certain
bi-Lipschitz embeddings, Assouad defined in his PhD thesis the following dimension notion
(see [6l [7]), now named after him. The same notion was already studied in [§]. We refer
the interested reader to [49, 26], where the proofs of the following facts can be found.

Let X be a metric space, A C X, and p > 0. Denote by N(A, p) the minimal number
of closed balls with radius p needed to cover A.

Definition 4.5. Given a metric space X, a subset A is (M, s)-homogeneous if any ball
of radius r centred in a point of A and intersected with A can be covered by at most
M(r/p)® balls of radius p < r. In formula, for every x € A, N(B(z,r)NA,p) < M(r/p)°.

Definition 4.6. Let X be a metric space and A be a subset of it. The Assouad dimension
dimy A of A is the infimum of all s such that A is (M, s)-homogeneous for some M > 1.

Proposition 4.7. Let X and Y be metric spaces, and p: X — Y be a bi-Lipschitz
embedding. Then, dimg p(X) = dima X.

Example 4.8. For every subset Y of R”, dimy Y < n.

As an immediate consequence of Proposition [4.7]and Example [4.8] if a metric space X
satisfies dimy4 X = oo, then it cannot be bi-Lipschitz embedded into any R™.
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Theorem 4.9 ([59]). The subspace GHZH C GH™ consisting of finite metric spaces
with diameter bounded by R has infinite Assouad dimension. Therefore, it cannot be
bi-Lipschitz embedded into any R.

Coarse geometry and dimension theory have already been applied in computational
topology to study spaces of persistence diagrams, summaries of the persistent homology
of spaces. Here we mention [11], 44, [45] 48], 9] [54].

5 Generalisations of the Gromov-Hausdorff distance and fur-
ther research directions

Let us conclude this paper with a discussion about different research directions. We
have discussed the role of the Gromov-Hausdorff distance in computational topology. The
crucial assumption is that datasets and shapes can be represented as metric spaces. How-
ever, this assumption is too restrictive in many real-world settings and these structures
fail to capture essential properties. In the sequel, we discuss some of these situations.

Example 5.1. Let X be a finite set, and w: X x X — R be a map. Following [14],
we call (X, w) a network. For every pair of points z,y € X, we can interpret w(z,y) as
their distance. The further axioms that need to be fulfilled to make w a metric may not
be satisfied in general. Consider for example a directed graph G = (V, E). For the sake
of simplicity, let us assume that it is strongly connected, i.e., for every pair of vertices
x,y € V, there are directed paths going from x to y and from y to x. We can equip
V' with its path quasi-metric w, obtained by assigning to the pair (z,y) € V x V the
length of the shortest path going from x to . Then, w has all the desired properties of a
metric but for symmetry. Such a distance function is an example of a quasi-metric, i.e.,
it satisfies axioms (M1), (M2) and (M4) in Definition 2.1 By enforcing symmetry on a
quasi-metric, we are loosing essential characteristics of the system.

Figure 4: An example of a directed graph.

In the previous example, w still retains a distance-like flavour, but there are other
datasets where this intuition cannot be straightforwardly found. In biology, the three-
dimensional structure of DNA strands inside the nucleus of a cell is often captured by
collecting the frequency of bases’ proximity (for example, see Hi-C data). The result of
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several of these detections is a network (X, w), where X is a string of bases and, for every
x,y € X, w(zr,y) is defined as the number of occurrences (experiments) in which x and
y were found close to each other. The analysis of such data is a frontier direction at
the intersection of mathematics and biology. In these kinds of networks, the triangular
inequality cannot be enforced in general.

We define the network distance between two networks X and Y ([14]) as the value

1
Ay (X,Y) == inf disR.
N( ’ ) 2 RCXXY clorlirespondence 5
According to Theorem the network distance generalises the Gromov-Hausdorff dis-
tance. Furthermore, and maybe surprisingly, the network distance is symmetric and
satisfies the triangular inequality.

A characterisation of the network distance using embeddings into a common space, as
in the definition of the Gromov-Hausdorff distance (Definition , cannot be provided
in general. However, this characterisation can be given for the network distance between
quasi-metric spaces ([58]).

Another example of intrinsically asymmetric objects is given by directed spaces, where
a collection of directions or paths is privileged. A different approach to generalise the
Gromov-Hausdorff distance to those spaces is proposed in [25].

Example 5.2. Another situation where metric spaces are too restrictive comes from
higher-order interactions, where relationships are not limited to pairwise connections,
but involve more complex interactions. The importance of studying those aspects is
getting more and more attention in several fields, such as social network analysis, biology
and neuroscience. More suitable structures to model that information are (weighted)
hypergraphs, simplicial complexes and filtrations.

A hypergraph is a pair H = (V, E), where V is a set and E is a set of hyperedges, i.e.,
finite non-empty subsets e C V. A hypergraph is an (abstract) simplicial complex if E is
closed under taking subsets. In this case, its elements are called simplices. A weighted
hypergraph is a triple (V, E,w) where (V| F) is a hypergraph and w: F — R. Similarly,
a filtration is a triple (V, E,w) where (V, E) is a simplicial complex and w: F — R is
monotonous (i.e., if e C ¢’ are two simplices, then w(e) < w(e’)).

Motivated by the applications, there is a growing interest in computational topology
around those objects [16] [60]. In [41], the author defines a distance notion between two
finite filtrations (X, wyx) and (Y,wy). A tripod (Z, f,g) between X and Y consists of a
finite set Z and two surjective maps

7
N
X Y,

dr(X,Y)= inf  sup wx(f(A)) — wy(g(A))].
(Z,f,9) tripod §£ AC Z finite

Then,
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The author showed that it is symmetric and satisfies the triangular inequality. In [41],
the stability of persistence homology with respect to this distance is shown.

Example 5.3. In crystallography and material science, lattices and periodic point sets are
central objects used to represent periodic crystal structures. In those applications, each
point—representing atoms or molecules—is relevant and so a distance notion between two
such structures needs to preserve them. Let us present two definitions.

For every X,Y C R? we define

dB (X’ Y) - f: X—)%/n}f)ijection 2161)[?‘ ’.T B f(fE)H7 and

dpp(X,Y)= inf dp(X,¥(Y)).
EB( ) ) ¢EIslglm(]Rd) B( 7¢( ))
In both cases the infimum is assumed to be infinite if no bijection exists. We call dp the
bottleneck distance and dgp the Fuclidean bottleneck distance ([22]).

We refer to [22] 21] for constructions of topological invariants to study lattices and peri-
odic point sets. Furthermore, we mention that the authors of [27] discussed embeddability
results of the bottleneck and Euclidean-bottleneck distances and deduced theoretical lim-
its of similar invariants.

Example 5.4. We have already discussed how the Gromov-Hausdorff distance is stable
under small perturbations; if experimental errors occur while sampling a metric space,
the Gromov-Hausdorff distance does not change sensibly provided that the errors are
small. However, even a single outlier—i.e., a point that differs significantly from the
expectation—can heavily impact the distance (Figure [5)).
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Figure 5: An example showing that an unwanted single outlier in the centre of the second point cloud
drastically increases the Gromov-Hausdorff distance.

This sensitivity to outliers is an undesirable feature in most applications. Indeed,
collecting data, their creation cannot be ruled out in general, and constructing topological
tools to reduce their impact is an active research direction in the computational topology
community.

A key-idea to tackle this issue and, at the same time, bypass some of the compu-
tational bottlenecks associated with the Gromov-Hausdorff distance, is representing the
data as metric measure spaces, i.e., metric spaces equipped with a compatible probabil-
ity measure. With this viewpoint change, tools from optimal transport [53] have been
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successfully applied. Several metrics have been proposed and studied to compare metric
measure spaces. Examples range from the classical box and Gromov-Prohorov distances
[29] to the recently introduced Gromov-Wasserstein [40] and Gromov-Monge distances
[42]. These notions allow for more efficient comparisons while preserving essential geo-
metric properties. In addition, probability measures on the point sets can encode the
relevance or trustworthiness of the sample points.

Example 5.5. In several applications, not all the points in a point cloud are of the same
kind, and considering their spacial interactions is important. As a motivating example,
advances in biology enable collecting data describing cells’ positions and types. Con-
sistently with the motivation, we can represent these datasets as coloured point clouds
(see Figure [6]). Defining computable invariants and theoretical approaches to study these
datasets is an active research direction. Here we mention, for example, [I8| 17, [51].
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Figure 6: Three different datasets coloured in black and white showing different spatial configurations.
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