Sharp interface limit for a rate function of large deviations with quasi non-linearity

Takashi Kagaya Graduate school of Engineering, Muroran Institute of Technology *

1 Introduction

This paper is based on a joint work with Kenkichi Tsunoda (Kyushu University) [10]. Our main concern is the sharp interface limit for a Glauber+Kawasaki process with speed change. For this purpose, we start by defining the late function of the large deviation principle for the process (see [10] for the details). Let \mathbb{T}_N^d be the d-dimensional discrete torus with length N, that is, $\mathbb{T}_N^d = (\mathbb{Z}/N\mathbb{Z})^d$. Here, $N \in \mathbb{N}$ is a scaling parameter which we will let infinity later. Let X_N be the configuration space $\{0,1\}^{\mathbb{T}_N^d}$ and denote its generic element as $\eta = \{\eta(x)\}_{\mathbb{T}_N^d}$. We regard a configuration $\eta \in X_N$ in the following manner: for each site $x \in \mathbb{T}_N^d$, there is a particle at x if $\eta(x) = 1$, otherwise, there is no particle at site x.

We now define the Markovian generator L_N defined as $L_N f = N^2 L_K f + \widetilde{K} L_G f$ for any function $f: X_N \to \mathbb{R}$, where L_K and L_G are operators corresponding to a "diffusion" operator and a "reaction" operator, respectively. Let $(\eta_t^N)_{t\geq 0}$ denote a Markov process generated by L_N . Let \mathbb{T}^d be the d-dimensional continuum torus $(\mathbb{R}/\mathbb{Z})^d$. We define the empirical measure by

$$\pi_t^N(du) = \frac{1}{N^d} \sum_{x \in \mathbb{T}_N^d} \eta_t^N(x) \delta_{x/N}(du),$$

where δ_u stands for the Dirac measure at $u \in \mathbb{T}^d$.

The scaling limit for empirical measures is a fundamental problem in the study of interacting particle systems. For this Glauber+Kawasaki process, a large deviation principle, which determines the decay rate for the probability of an atypical event of the system, has also been studied in [9, 3, 11]. Loosely speaking, for a given density evolution $\phi:[0,T]\times\mathbb{T}^d\to[0,1]$, the probability that the empirical measure $\pi^N_t(dx)$ follows $\phi(t,x)dx$ behaves as

$$\mathbb{P}\left(\pi^{N}_{\cdot} \sim \phi(\cdot, x) dx\right) \approx \exp\{-N^{d}S(\phi)\},$$

^{*}Email: kagaya@muroran-it.ac.jp

where $S(\phi)$ is given by

$$S(\phi) = \sup_{H \in C^{1,2}([0,T] \times \mathbb{T}^d)} J^H(\phi),$$

$$J^H(\phi) = \int_{\mathbb{T}^d} \phi(T,x) H(T,x) \, dx - \int_{\mathbb{T}^d} \phi(0,x) H(0,x) \, dx$$

$$- \int_0^T \int_{\mathbb{T}^d} \left\{ \phi \partial_t H + P(\phi) \Delta H + \sigma(\phi) |\nabla H|^2 \right\} \, dx dt$$

$$- \int_0^T \int_{\mathbb{T}^d} \widetilde{K} \left\{ B(\phi) \left(e^H - 1 \right) + D(\phi) \left(e^{-H} - 1 \right) \right\} \, dx dt.$$

In this paper, we assume that $P:[0,1]\to [0,\infty)$ and $B,D:[0,1]\to \mathbb{R}$ and $W:[0,1]\to \mathbb{R}$ are smooth functions satisfying the following conditions:

- (A1) P satisfies P(0) = 0 and $P'(\rho) > 0$ for any $\rho \in [0, 1]$.
- (A2) $B(\rho) + D(\rho)$ is positive for any $\rho \in [0,1]$ and B D = -W'.
- (A3) W is a double-well potential, that is, there exist exactly three critical points $0 < \rho_- < \rho_* < \rho_+ < 1$ such that $W(\rho_\pm) < W(\rho)$ for any $\rho \neq \rho_\pm$ and $W''(\rho_\pm) > 0$.
- (A4) W satisfies a P-balance condition, that is, it holds that

$$\int_{\rho_{-}}^{\rho_{+}} W'(\rho)P'(\rho) d\rho = 0.$$

We note that the conditions (A1) and (A2) are satisfied when *B* and *D* are determined from a wide class of jump rates of the Glauber dynamics. Moreover, the conditions (A3) and (A4) were introduced from the probability background as in [5].

We here note that $S(\phi)$ is non-negative and vanishes if and only if ϕ solves the reaction-diffusion equation

$$\partial_t \rho = \Delta P(\rho) + \widetilde{K}(B(\rho) - D(\rho)). \tag{1.1}$$

Letting $\varepsilon:=1/\sqrt{\widetilde{K}},$ the reaction-diffusion equation (1.1) introduces an Allen-Chan type equation

$$\partial_t \rho_{\varepsilon} = \Delta P(\rho_{\varepsilon}) + \frac{1}{\varepsilon^2} (B(\rho_{\varepsilon}) - D(\rho_{\varepsilon})). \tag{1.2}$$

Heuristically, at each time, ρ_{ε} is close to a step function for sufficient small ε , and the transition layer converges to a surface Γ_t generating a mean curvature flow with a mobility constant θ determined by P,B and D as $\varepsilon \to +0$, namely, the motion of Γ_t is governed by $v_t - \theta h_t$, where v_t and h_t are the normal velocity and the mean curvature of Γ_t , respectively. In particular, the transition layer can be represented as $\rho_{\varepsilon}(t,x) \approx \overline{u}(d(t,x)/\varepsilon)$, where d(t,x) is a signed distance function from Γ_t and \overline{u} is a solution to the ordinary differential equation

$$\begin{cases} (P(\bar{u}))'' + B(\bar{u}) - D(\bar{u}) = 0 & \text{in } \mathbb{R}, \\ \bar{u}(\pm \infty) = \rho_{\pm}, & \bar{u}(0) = \frac{\rho_{+} + \rho_{-}}{2}. \end{cases}$$
 (1.3)

For the known convergence results, we refer to [4, 7, 1, 8, 12] for the case $P(\rho) = \rho$ and [5] for more general $P(\rho)$.

For the case $P(\rho)=\rho/2$, Bertini, Buttà and Pisante [2] characterized the functional $S_{\varepsilon}(\phi)$ from the perspective of the sharp interface limit by substituting a family of functions generating a transition layer around an arbitrary fixed geometric flow into the functional. Our purpose is to extend the result to a more general function P. For this purpose, for each $\varepsilon>0$ let us define

$$S_{\varepsilon}(\phi) = \sup_{H \in C^{1,2}([0,T] \times \mathbb{T}^d)} J_{\varepsilon}^H(\phi), \tag{1.4}$$

$$J_{\varepsilon}^{H}(\phi) = \frac{1}{\varepsilon} \int_{\mathbb{T}^{d}} \phi(T, x) H(T, x) \ dx - \frac{1}{\varepsilon} \int_{\mathbb{T}^{d}} \phi(0, x) H(0, x) \ dx$$
$$- \frac{1}{\varepsilon} \int_{0}^{T} \int_{\mathbb{T}^{d}} \left\{ \phi \partial_{t} H + P(\phi) \Delta H + \sigma(\phi) |\nabla H|^{2} \right\} \ dx dt$$
$$- \frac{1}{\varepsilon^{3}} \int_{0}^{T} \int_{\mathbb{T}^{d}} \left\{ B(\phi) \left(e^{H} - 1 \right) + D(\phi_{t}) \left(e^{-H} - 1 \right) \right\} \ dx dt.$$
(1.5)

and it was clarified that these conditions are needed to obtain a sharp interface limit for (1.2) leading to the motion by mean curvature.

In these settings, our goal can be stated that, restricting the form of a family of functions $\{\phi_{\varepsilon}\}_{\varepsilon>0}$ so that functions generating the transition layer around an arbitrary fixed geometric flow $\{\Gamma_t\}_{t\in[0,T]}$, we show a "formal" Γ -convergence from $S_{\varepsilon}(\phi_{\varepsilon})$ to

$$S_{\rm ac}(\Gamma) = \int_0^T \int_{\Gamma_t} \frac{(v_t - \theta h_t)^2}{4\mu} d\mathcal{H}^{d-1} dt,$$

where v_t, h_t are respectively the normal velocity and the mean curvature of Γ_t , \mathcal{H}^{d-1} is the (d-1)-dimensional Hausdorff measure and θ, μ are respectively the mobility and the transport coefficient determined by P, B and D (see (2.7) for details). To state the form of the family of functions $\{\phi_\varepsilon\}_{\varepsilon>0}$, we define a regularized version of a signed distance function from Γ_t as follows. For a family of oriented smooth hyper-surfaces $\Gamma = \{\Gamma_t\}_{t\in[0,T]}$ with $\Gamma_t = \partial\Omega_t$ for some open $\Omega_t \subset \mathbb{T}^d$ and with the finite surface area for any $t\in[0,T]$, choose $d(\cdot,t)$ as a regularized version of the signed distance from Γ_t satisfying

$$d(t,x) = \begin{cases} \operatorname{dist}(x,\Gamma_t) & \text{if } x \notin \Omega_t \text{ and } \operatorname{dist}(x,\Gamma_t) \ll 1, \\ -\operatorname{dist}(x,\Gamma_t) & \text{if } x \in \Omega_t \text{ and } \operatorname{dist}(x,\Gamma_t) \ll 1. \end{cases}$$
(1.6)

Then, the main result in this paper is stated as follows.

Theorem 1.1. Assume the properties (A1)–(A4) hold. Let $\Gamma = \{\Gamma_t\}_{t \in [0,T]}$ be a family of oriented smooth hyper-surfaces with $\Gamma_t = \partial \Omega_t$ for some open $\Omega_t \subset \mathbb{T}^d$ and with the finite surface area for any $t \in [0,T]$. Let also \overline{u} be the unique smooth solution to (1.3). For smooth functions $Q: [0,T] \times \mathbb{T}^d \times \mathbb{R} \to \mathbb{R}$ and $R_{\varepsilon}: [0,T] \times \mathbb{T}^d \to \mathbb{R}$, define the function $\phi_{\varepsilon}: [0,T] \times \mathbb{T}^d \to [0,1]$ by

$$\phi_{\varepsilon}(t,x) = \bar{u}\left(\frac{d(t,x)}{\varepsilon} + \varepsilon Q\left(t,x,\frac{d(t,x)}{\varepsilon}\right)\right) + \varepsilon R_{\varepsilon}(t,x). \tag{1.7}$$

Then we have the following.

1. If Q and R_{ε} satisfy

$$\sup_{(t,x,\xi)\in[0,T]\times\mathbb{T}^d\times\mathbb{R}} \left(\frac{|\partial_t Q|}{1+|\xi|} + \sum_{i=0}^2 \sum_{j=0}^2 \frac{|\partial_\xi^i \nabla^j Q|}{1+|\xi|} \right) < \infty, \tag{1.8}$$

$$\lim_{\varepsilon \to 0} \left(\sup_{(t,x) \in [0,T] \times \mathbb{T}^d} (|R_{\varepsilon}| + |\partial_t R_{\varepsilon}| + |\nabla R_{\varepsilon}| + |\nabla^2 R_{\varepsilon}|) \right) = 0, \tag{1.9}$$

then

$$\liminf_{\varepsilon \to 0} S_{\varepsilon}(\phi_{\varepsilon}) \ge S_{\mathrm{ac}}(\Gamma).$$

2. There exists \widehat{Q} such that, choosing $Q = \widehat{Q}$ and $R_{\varepsilon} = 0$, it holds that

$$\lim_{\varepsilon \to 0} S_{\varepsilon}(\phi_{\varepsilon}) = S_{\mathrm{ac}}(\Gamma).$$

2 Outline of the proof

We here discuss the outline of the proof in the case when $R_{\varepsilon} \equiv 0$ for simplicity. We denote by $H_{\max,\varepsilon}$ the maximizer (depending on ϕ) of the maximum problem (1.4), which satisfies the Euler-Lagrange equation

$$\partial_t \phi + \nabla \cdot [2\sigma(\phi)\nabla H_{\max,\varepsilon}] = \Delta P(\phi) + \frac{B(\phi)e^{H_{\max,\varepsilon}} - D(\phi)e^{-H_{\max,\varepsilon}}}{\varepsilon^2}.$$
 (2.1)

To compute the limit of $S_{\varepsilon}(\phi_{\varepsilon})$ as $\varepsilon \to 0$, our first purpose is to calculate the power series expansion of $S_{\varepsilon}(\phi_{\varepsilon})$ in ε , namely, to decompose $S_{\varepsilon}(\phi_{\varepsilon})$ as the following form:

$$S_{\varepsilon}(\phi_{\varepsilon}) = \sum_{k \in \mathbb{Z}} \varepsilon^k \int_0^T \int_{\mathbb{T}^d} \phi_Q^k \left(t, x, \frac{d(t, x)}{\varepsilon} \right) dx dt, \tag{2.2}$$

where ϕ_Q^k is a function depending on Q. A key tool to obtain this kind of decomposition of $S_{\varepsilon}(\phi_{\varepsilon})$ is the decomposition of the maximizer $H_{\max,\varepsilon}$ (depending on ϕ_{ε}) as

$$H_{\max,\varepsilon}(t,x) = \varepsilon \widehat{H}_1(t,x,d(t,x)/\varepsilon) + \varepsilon^2 \widehat{K}_{\varepsilon}(t,x),$$
 (2.3)

where \widehat{H}_1 is a unique solution to a linearized problem of (4.1) and is determined by the function Q appeared in the choice of ϕ_{ε} . We then apply the Taylor expansion for the integrands of $S_{\varepsilon}(\phi_{\varepsilon})$ to conclude that, concerning the form (2.2); (i) $S_{\varepsilon}(\phi_{\varepsilon})$ consists of terms with the coefficient ε^k with $k \geq -1$; (ii) as $\varepsilon \to 0$, the term with coefficient ε^{-1} is of constant order and converges to the iterated integral of $\phi_Q^{-1}(t,x,\xi)$ along $t \in [0,T]$, $x \in \Gamma_t$ and $\xi \in \mathbb{R}$; (iii) the other terms vanish as $\varepsilon \to 0$. The conditions (ii) and (iii) follows from the condition (i) by applying the following proposition:

Proposition 2.1. Let $\Gamma = \{\Gamma_t\}_{t \in [0,T]}$ be a family of oriented smooth hyper-surfaces with $\Gamma_t = \partial \Omega_t$ for some open $\Omega_t \subset \mathbb{T}^d$. Assume Γ_t has a finite surface area for any $t \in [0,T]$. Denote by d(x,t) be a regularized version of the signed distance from Γ_t satisfying (1.6). Let $\gamma' > 0$ be an arbitrary positive constant. Then, the following statements hold:

(1) Let $\widetilde{\mathcal{R}}_{\varepsilon}: [0,T] \times \mathbb{T}^d \times \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$\overline{\lim_{\varepsilon \to 0}} \sup_{(t,x,\xi) \in [0,T] \times \mathbb{T}^d \times \mathbb{R}} e^{\gamma' |\xi|} |\widetilde{\mathcal{R}}_{\varepsilon}(t,x,\xi)| = 0$$

Then, it holds that

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^T \int_{\mathbb{T}^d} \widetilde{\mathcal{R}}_{\varepsilon}(t, x, d(t, x)/\varepsilon) \ dx dt = 0.$$

(2) Let $A:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ be a continuous function satisfying

$$\sup_{(t,x,\xi)\in[0,T]\times\mathbb{T}^d\times\mathbb{R}} e^{\gamma'|\xi|} |A(t,x,\xi)| < \infty$$
 (2.4)

Then, it holds that

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^T \int_{\mathbb{T}^d} A(t, x, d(t, x)/\varepsilon) \ dx dt = \int_0^T \int_{\Gamma_t} \int_{\mathbb{R}} A(t, x, \xi) \ d\xi d\mathcal{H}^{d-1}(dx) dt.$$
 (2.5)

Brief proof of Proposition 2.1. We give a brief proof for the case (2). For each t, we divide the integral domain \mathbb{T}^d by

$$D_1(t) := \{x \in \mathbb{T}^d : |d(t,x)| \le \kappa\} \quad \text{and} \quad D_2(t) := \{x \in \mathbb{T}^d : |d(t,x)| > \kappa\}$$

for a sufficiently small constant $\kappa > 0$. The conditions (2.4) yields

$$\left| \frac{1}{\varepsilon} \int_0^T \int_{D_2(t)} A(t, x, d(t, x) / \varepsilon) \ dx dt \right| \le \frac{C}{\varepsilon} e^{-\gamma' \kappa / \varepsilon} \to 0 \quad \text{as } \varepsilon \to 0,$$

where C is a constant independent of ε . The remained integral can be calculated as

$$\begin{split} &\frac{1}{\varepsilon} \int_{0}^{T} \int_{D_{1}(t)} A(t, x, d(t, x)/\varepsilon) \, dxdt \\ &= \frac{1}{\varepsilon} \int_{0}^{T} \int_{-\kappa}^{\kappa} \int_{\{x: d(t, x) = s\}} A(t, x, s/\varepsilon) \, \mathcal{H}^{d-1}(dx) dsdt \\ &= \frac{1}{\varepsilon} \int_{0}^{T} \int_{-\kappa}^{\kappa} \int_{\Gamma_{t}} A(t, y + sn_{t}(y), s/\varepsilon) |\det(\nabla_{\Gamma_{t}} \mathrm{Id}(y) + s\nabla_{\Gamma_{t}} n_{t}(y))| \, \mathcal{H}^{d-1}(dy) dsdt \\ &= \int_{0}^{T} \int_{-\kappa/\varepsilon}^{\kappa/\varepsilon} \int_{\Gamma_{t}} A(t, y + \varepsilon \widetilde{s} n_{t}(y), \widetilde{s}) |\det(\nabla_{\Gamma_{t}} \mathrm{Id}(y) + \varepsilon \widetilde{s} \nabla_{\Gamma_{t}} n_{t}(y))| \, \mathcal{H}^{d-1}(dy) d\widetilde{s} dt, \end{split}$$

where y is a point on Γ_t , n_t is a unit normal vector of Γ_t , ∇_{Γ_t} is the divergence operator on Γ_t and Id is the identity map on \mathbb{T}^d . We note that the co-area formula (see [6, Theorem 3.10] for example) have been used at the first equality and $|\det(\nabla_{\Gamma_t}\mathrm{Id}(y)+\varepsilon \widetilde{s}\nabla_{\Gamma_t}n_t(y))| \mathcal{H}^{d-1}(dy)$ describes the surface area element of the surface $\{x:d(t,x)=\varepsilon \widetilde{s}\}$. The above calculations yields (2.5) by letting $\varepsilon\to 0$.

We now return to the consideration of the limit for the power series expansion (2.2). Since the maximizer $H_{\max,\varepsilon}$ is uniquely determined depending on ϕ_{ε} and the form of ϕ_{ε} is restricted as in (1.7) (with $R_{\varepsilon}\equiv 0$), the limit of $\varepsilon^{-1}\int\!\!\int \phi_Q^{-1}dxdt$ can be represented as a functional of Q. The minimizing problem of the functional with respect to Q is solvable, which shows that the minimum value is $S_{\rm as}(\Gamma)$ and \widehat{Q} in Theorem 1.1 can be chosen as the minimizer. In this paper, the following sections will include notes not written in the original paper [10], as well as the mathematical structure that yields the propositions in each step of the proof of the main theorem described at the beginning of this section.

Remark 2.2. In order to apply Proposition 2.1, we have to prove that the function $\widehat{H}_1(t,x,\xi)$ obtained in the decomposition (2.3) and the minimizer \widehat{Q} respectively satisfy the exponential decay estimate with respect to ξ as in (2.4) and the decay estimate with respect to ξ as in (1.8). Although similar estimates were discussed in the case $P(\rho) = \rho/2$ (see [2]), in our problem, the inability to write \widehat{H}_1 and \widehat{Q} in the form of variable separations necessitated a slight re-consideration of the estimates in the previous study. In the previous problem, \widehat{H}_1 and \widehat{Q} are separable as $\widehat{H}_1(t,x,\xi) = A(t,x)h(\xi)$ and $\widehat{Q}(t,x,\xi) = B(t,x)Q^*(\xi)$. In this paper, we omit the details of the arguments on the above estimates in our problem.

To discuss the power series expansion (2.2) and the minimizing problem of $\widehat{S}(Q)$ in more detail, we introduce several notions and known theorems are listed. We first discuss on the ODE (1.3). A standard theory as in [13, Lemma 2.6.1] can be applied to obtain the following properties:

Lemma 2.3 (Application of [13, Lemma 2.6.1]). Assume that smooth functions $P: [0,1] \to [0,\infty)$, $B,D: [0,1] \to \mathbb{R}$ and $W: [0,1] \to \mathbb{R}$ satisfy the properties (A1)–(A4). Then, (1.3) admits a unique smooth solution. Furthermore, there exist $\gamma > 0$ and C > 0 such that

$$\bar{u}'(\xi) > 0$$
 for $\xi \in \mathbb{R}$, $|\bar{u}'(\xi)| + |\bar{u}''(\xi)| + |\bar{u}'''(\xi)| \le Ce^{-\gamma|\xi|}$ for $\xi \in \mathbb{R}$.

The exponential decay of \bar{u} is key estimate to apply Proposition 2.1. In the following arguments, we also use the composition function of P and \bar{u} which is denoted by $\bar{v} := P(\bar{u})$. Let the linear operator $L_{\bar{u}} : H^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by

$$L_{\bar{u}}\psi(\xi) = \left[2\sigma(\bar{u}(\xi))\psi'(\xi)\right]' - \left[B(\bar{u}(\xi)) + D(\bar{u}(\xi))\right]\psi(\xi) \tag{2.6}$$

for $\psi \in H^2(\mathbb{R})$. Let ν be the constant defined by

$$\nu := \langle \bar{v}', (-L_{\bar{u}})\bar{v}' \rangle_{L^2}/2,$$

where $\langle \cdot, \cdot \rangle_{L^2}$ denotes the standard L^2 -norm on \mathbb{R} . We also define the constants θ_1, θ_2 by

$$\theta_1 = \int_{\rho_-}^{\rho_+} \sqrt{2\widetilde{W}(\rho)} \ d\rho, \quad \theta_2 = \int_{\rho_-}^{\rho_+} P'(\rho) \sqrt{2\widetilde{W}(\rho)} \ d\rho,$$

where the function \widetilde{W} is defined as

$$\widetilde{W}(\rho) = \int_{\rho_{-}}^{\rho} W'(\widetilde{\rho}) P'(\widetilde{\rho}) \ d\widetilde{\rho}.$$

Note that it holds that $\langle \bar{u}', \bar{v}' \rangle_{L^2} = \theta_1, \langle \bar{v}', \bar{v}' \rangle_{L^2} = \theta_2$. Then, the mobility μ and the transport coefficient θ can be chosen as

$$\mu := \nu/\theta_1^2, \quad \theta := \theta_2/\theta_1, \tag{2.7}$$

respectively.

3 Decomposition of maximizer $H_{\max,\varepsilon}$

The decomposition (2.3) can be obtained by applying the Taylor expansion for each term in (4.1). For simplicity, let $d_{\varepsilon} := d(t,x)/\varepsilon$ here. For example, a simple calculation yields by using the form of ϕ_{ε} in (1.7) (with $R_{\varepsilon} \equiv 0$)

$$\partial_t \phi_{\varepsilon} = \overline{u}'(d_{\varepsilon} + \varepsilon Q(t, x, d_{\varepsilon})) \left(\frac{\partial_t d(t, x)}{\varepsilon} + \varepsilon \partial_t Q(t, x, d_{\varepsilon}) + \partial_{\xi} Q(t, x, d_{\varepsilon}) \partial_t d(t, x) \right)$$

and the Taylor expansion (for $\bar{u}'(d_{\varepsilon} + \varepsilon Q(t, x, d_{\varepsilon}))$ at the point d_{ε}) implies

$$\bar{u}'(d_{\varepsilon} + \varepsilon Q(t, x, d_{\varepsilon})) = \bar{u}'(d_{\varepsilon}) + \varepsilon \bar{u}''(d_{\varepsilon} + \varepsilon \theta Q(t, x, d_{\varepsilon}))Q(t, x, d_{\varepsilon}),$$

where $\theta \in (0,1)$ is a constant, which give us the quantity

$$\partial_t \phi_{\varepsilon}(t, x) = \overline{u}'(d_{\varepsilon}) \frac{\partial_t d(t, x)}{\varepsilon} + \mathcal{R}_{\varepsilon}(t, x, d_{\varepsilon}),$$

where the remainder $\mathcal{R}_{\varepsilon}:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ satisfies

$$\limsup_{\varepsilon \to 0} \sup_{(t,x,\xi) \in [0,T] \times \mathbb{T}^d \times \mathbb{R}} e^{\gamma |\xi|/2} |\mathcal{R}_{\varepsilon}(t,x,\xi)| < \infty.$$
 (3.1)

This estimate follows from the exponential decay estimate of \bar{u} . By applying a similar argument for the remained terms in (4.1), we obtain

$$\overline{u}'(d_{\varepsilon})\frac{\partial_{t}d}{\varepsilon} + \frac{2}{\varepsilon^{2}}\Big((\sigma \circ \overline{u})'(d_{\varepsilon})\nabla H_{\max,\varepsilon} + (\sigma \circ \overline{u})(d_{\varepsilon})\Delta H_{\max,\varepsilon}\Big)
\approx \frac{1}{\varepsilon^{2}}\Big((P \circ \overline{u})''(d_{\varepsilon}) + (B \circ \overline{u})(d_{\varepsilon}) - (D \circ \overline{u})(d_{\varepsilon})\Big)
+ \frac{1}{\varepsilon}\Big((P \circ \overline{u})'''(d_{\varepsilon}) + (B \circ \overline{u})'(d_{\varepsilon}) - (D \circ \overline{u})'(d_{\varepsilon})\Big)
+ \frac{1}{\varepsilon}\Big((P \circ \overline{u})'\Delta d + 2(P \circ \overline{u})'(d_{\varepsilon})\partial_{\xi}Q + (P \circ \overline{u})'\partial_{\xi}^{2}Q\Big)
+ \frac{1}{\varepsilon^{2}}\Big((B \circ \overline{u})(d_{\varepsilon}) + (D_{\circ}\overline{u})(d_{\varepsilon})\Big)H_{\max,\varepsilon}.$$
(3.2)

Due to the ODE (1.3), the second line and third line vanish, which yields that $H_{\max,\varepsilon}$ converges 0 as $\varepsilon \to 0$ with the order at least $O(\varepsilon)$ so that the orders with respect to ε on the both sides in (3.2) are balanced. Therefore, $H_{\max,\varepsilon}$ should be decomposable as in (2.3) and \widehat{H}_1 should satisfies

$$L_{\bar{u}}\widehat{H}_1(t,x,\xi) = \bar{v}'(\xi)\Delta d(t,x) + 2\bar{v}''(\xi)\partial_{\xi}Q(t,x,\xi) + \bar{v}'(\xi)\partial_{\xi}^2Q(t,x,\xi) - \bar{u}'(\xi)\partial_t d(t,x).$$
 (3.3)

As a result, the following proposition holds:

Proposition 3.1. Let $Q:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ be a smooth function satisfying (1.8). Define $\phi_{\varepsilon}:[0,T]\times\mathbb{T}^d\to[0,1]$ by (1.7) with $R_{\varepsilon}=0$. Let $H_{\max,\varepsilon}:[0,T]\times\mathbb{T}^d\to\mathbb{R}$ and $\widehat{H}_1:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ be the solution of (4.1) and (3.3), respectively. Define the function $\widehat{K}_{\varepsilon}:[0,T]\times\mathbb{T}^d\to\mathbb{R}$ through the decomposition

$$H_{\max,\varepsilon}(t,x) = \varepsilon \widehat{H}_1(t,x,d_{\varepsilon}) + \varepsilon^2 \widehat{K}_{\varepsilon}(t,x)$$
 for $(t,x) \in [0,T] \times \mathbb{T}^d$.

Then, there exists $0 < \widetilde{\gamma} < \gamma$ such that

$$\sup_{\substack{(t,x,\xi)\in[0,T]\times\mathbb{T}^d\times\mathbb{R}\\\varepsilon\to 0}} e^{\widetilde{\gamma}|\xi|} \sum_{i=0}^2 \sum_{j=0}^2 |\partial_{\xi}^i \nabla^j \widehat{H}_1| < \infty,$$

$$\overline{\lim_{\varepsilon\to 0}} \left\{ \sup_{\substack{(t,x)\in[0,T]\times\mathbb{T}^d\\}} |\widehat{K}_{\varepsilon}| + \varepsilon |\nabla \widehat{K}_{\varepsilon}| \right\} < \infty.$$
(3.4)

4 The power series expansion of $S_{arepsilon}(\phi_{arepsilon})$

We next discuss the power series expansion of $S_{\varepsilon}(\phi_{\varepsilon})$ as in (2.2). Since $H_{\max,\varepsilon}$ is the maximizer for the maximum problem as in (1.4), integrating by parts for (1.5) and substituting the Euler-Lagrange equation into it yields

$$S_{\varepsilon}(\phi_{\varepsilon}) = \frac{1}{\varepsilon} \int_{0}^{T} \int_{\mathbb{T}^{d}} \sigma(\phi_{\varepsilon}) |\nabla H_{\max,\varepsilon}|^{2} dx dt$$

$$+ \frac{1}{\varepsilon^{3}} \int_{0}^{T} \int_{\mathbb{T}^{d}} B(\phi_{\varepsilon}) \left(1 - e^{H_{\max,\varepsilon}} + H_{\max,\varepsilon} e^{H_{\max,\varepsilon}}\right) dx dt$$

$$+ \frac{1}{\varepsilon^{3}} \int_{0}^{T} \int_{\mathbb{T}^{d}} D(\phi_{\varepsilon}) \left(1 - e^{-H_{\max,\varepsilon}} - H_{\max,\varepsilon} e^{-H_{\max,\varepsilon}}\right) dx dt.$$

$$(4.1)$$

Furthermore, due to the decomposition (2.3), we have by applying the Taylor expansion (as to obtain (3.2))

$$S_{\varepsilon}(\phi_{\varepsilon}) = \frac{1}{\varepsilon} \int_{0}^{T} \int_{\mathbb{T}^{d}} \sigma(\bar{u}(d_{\varepsilon})) (\partial_{\xi} \widehat{H}(t, x, d_{\varepsilon}))^{2} + \frac{B(\bar{u}(d_{\varepsilon})) + D(\bar{u}(d_{\varepsilon}))}{2} (\widehat{H}_{1}(t, x, d_{\varepsilon}))^{2} dxdt + \int_{0}^{T} \int_{\mathbb{T}^{d}} \widehat{R}_{\varepsilon}(t, x, d_{\varepsilon}) dxdt,$$

where $\widehat{R}_{\varepsilon}$ is a remainder satisfying (3.1). Therefore, letting $\varepsilon \to 0$, we obtain by applying Proposition 2.1

$$\lim_{\varepsilon \to 0} S_{\varepsilon}(\phi_{\varepsilon})$$

$$= \int_{0}^{T} \int_{\Gamma_{\varepsilon}} \int_{\mathbb{R}} \sigma(\bar{u}(\xi)) (\partial_{\xi} \widehat{H}(t, x, \xi))^{2} + \frac{B(\bar{u}(\xi)) + D(\bar{u}(\xi))}{2} (\widehat{H}_{1}(t, x, \xi))^{2} d\xi d\mathcal{H}^{n-1}(x) dt$$

Recalling the definition of $L_{\bar{u}}$ in (2.6), since H_1 is the solution of (3.3), the limit can be re-written as

$$\lim_{\varepsilon \to 0} S_{\varepsilon}(\phi_{\varepsilon}) = \int_{0}^{T} \int_{\Gamma_{t}} \int_{\mathbb{R}} F_{Q}(-L_{\bar{u}})^{-1} F_{Q} d\xi d\mathcal{H}^{n-1}(x) dt,$$

where $F_Q:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ is a function defined (depending on Q) as

$$F_Q(t, x, \xi) := \overline{u}'(\xi) \partial_t d(t, x) - \overline{v}'(\xi) \Delta d(t, x) - 2\overline{v}''(\xi) \partial_\xi Q(t, x, \xi) - \overline{v}'(\xi) \partial_\xi^2 Q(t, x, \xi).$$

Thus, it is sufficient to prove that

$$\inf_{Q} \int_{0}^{T} \int_{\Gamma_{t}} \int_{\mathbb{R}} F_{Q}(-L_{\bar{u}})^{-1} F_{Q} d\xi d\mathcal{H}^{n-1}(x) dt = S_{\mathrm{ac}}(\Gamma)$$

$$\tag{4.2}$$

and the minimum is achieved when $Q=\widehat{Q}$ to prove the second claim in Theorem 1.1.

Remark 4.1. In the first claim in Theorem 1.1, the vanishing property $R_{\varepsilon} \equiv 0$ is not assumed, and thus the decomposition of $H_{\max,\varepsilon}$ as in (2.3) is not applicable according to the assumption in Proposition 3.1. However, due to the definition of S_{ε} as in (1.4), we have

$$S_{\varepsilon}(\phi_{\varepsilon}) \ge J_{\varepsilon}^{\varepsilon \widehat{H}_1}(\phi_{\varepsilon}),$$

where \widehat{H}_1 is the solution of (3.3) (which is defined depending on Q). Although the Euler-Lagrange equation cannot be applied as when $R_{\varepsilon} \equiv 0$, the limit of the functional $J_{\varepsilon}^{\varepsilon \widehat{H}_1}(\phi_{\varepsilon})$ can be calculated by using the Taylor expansion and the estimate of H_1 in (3.4) as

$$J_{\varepsilon}^{\varepsilon \widehat{H}_{1}}(\phi_{\varepsilon}) = \int_{0}^{T} \int_{\Gamma_{t}} \int_{\mathbb{R}} F_{Q}(-L_{\overline{u}})^{-1} F_{Q} \ d\xi d\mathcal{H}^{n-1}(x) dt.$$

The above explanation also explains why only the lower semi-continuity, not the full-convergence, can be shown when $R_{\varepsilon} \not\equiv 0$.

5 Minimizing problem

In this section, for each fixed point $(t,x) \in [0,T] \times \mathbb{T}^d$, we discuss the minimizing problem

$$\inf_{\bar{Q}} \int_{\mathbb{R}} F_{\bar{Q}}(-L_{\bar{u}})^{-1} F_{\bar{Q}} \ d\xi,$$

where $\bar{Q}:[0,T]\times\mathbb{T}^d\times\mathbb{R}\to\mathbb{R}$ is a smooth function satisfying

$$\sup_{\substack{(t,x,\xi)\in[0,T]\times\mathbb{T}^d\times\mathbb{R}\\}}\frac{|\bar{Q}|+|\partial_{\xi}\bar{Q}|+|\partial_{\xi}^2\bar{Q}|^2}{1+|\xi|}<\infty. \tag{5.1}$$

Our purpose is to prove the following proposition:

Proposition 5.1. Let $\bar{Q}:[0,T]\times\mathbb{T}^d\times\mathbb{R}$ be a smooth function satisfying (5.1). Then, it holds that

$$\int_{\mathbb{R}} F_{\bar{Q}}(-L_{\bar{u}})^{-1} F_{\bar{Q}} \ d\xi \ge \frac{(\partial_t d - \theta \Delta d)^2}{2\mu} \quad \textit{for} \ (t, x) \in [0, T] \times \mathbb{T}^d.$$

Furthermore, a minimizer \bar{Q}_{\min} is given by

$$\bar{Q}_{\min}(t, x, \xi) = \int_{0}^{\xi} \frac{1}{(\bar{v}')^{2}(\widetilde{\xi})} \int_{-\infty}^{\widetilde{\xi}} \left(\bar{u}'(\widehat{\xi}) \partial_{t} d(t, x) - \bar{v}'(\widehat{\xi}) \Delta d(t, x) - \frac{\lambda(t, x)}{2} L_{\bar{u}} \bar{v}'(\widehat{\xi}) \right) \bar{v}'(\widehat{\xi}) d\widehat{\xi} d\widetilde{\xi},$$
(5.2)

where $\lambda:[0,T] imes \mathbb{T}^d$ is a smooth function defined as

$$\lambda(t,x) = \frac{2(\|\overline{v}'\|_{L^2}^2 \Delta d(t,x) - \langle \overline{u}', \overline{v}' \rangle_{L^2} \partial_t d(t,x))}{\langle -L_{\overline{u}}\overline{v}', \overline{v}' \rangle_{L^2}},\tag{5.3}$$

and \bar{Q}_{min} satisfies (1.8) replaced Q by \bar{Q}_{min} .

Brief proof of Proposition 5.1. We use \bar{Q}' instead of $\partial_{\xi}\bar{Q}(t,x,\xi)$ and omit the variables t,x for simplicity. Noticing $2\bar{v}''\bar{Q}'+\bar{v}'\bar{Q}''$ is perpendicular with \bar{v}' in $L^2(\mathbb{R})$, we can re-formulate the minimizing problem as

$$\inf \left\{ \int_{\mathbb{R}} F_{\bar{Q}}(-L_{\bar{u}})^{-1} F_{\bar{Q}} \ d\xi : \bar{Q} \text{ satisfies (5.1)} \right\}$$

$$\geq \inf \left\{ \langle \bar{u}' \partial_t d - \bar{v}' \Delta d - \psi, (-L_{\bar{u}})^{-1} (\bar{u}' \partial_t d - \bar{v}' \Delta d - \psi) \rangle_{L^2} : \psi \in L^2(\mathbb{R}) \text{ s.t. } \psi \perp \bar{v}' \right\},$$

where we denote $\psi \perp \phi$ for $\psi, \phi \in L^2(\mathbb{R})$ if $\langle \psi, \phi \rangle_{L^2} = 0$. We note that the equality holds if a minimizer ψ_{\min} for the latter minimizing problem exists and a solution \bar{Q}_{\min} to

$$2\bar{v}''\bar{Q}'_{\min} + \bar{v}'\bar{Q}''_{\min} = \psi_{\min}$$

$$(5.4)$$

satisfies (5.1); hence, it is sufficient to solve the solution \bar{Q}_{\min} and prove that \bar{Q}_{\min} satisfies the stronger estimate (1.8) than (5.1).

We thus define functional

$$G(\psi) := \langle \overline{u}' \partial_t d - \overline{v}' \Delta d - \psi, (-L_{\overline{u}})^{-1} (\overline{u}' \partial_t d - \overline{v}' \Delta d - \psi) \rangle_{L^2} \quad \text{for } \psi \in L^2(\mathbb{R})$$

and consider the minimizing problem

$$\inf_{\psi \in L^2: \psi \perp \bar{v}'} G(\psi). \tag{5.5}$$

Applying the method of Lagrange multiplier, we see that a minimizer $\psi_{\min} \in L^2(\mathbb{R})$ of (5.5) satisfies

$$\langle \phi, (-L_{\bar{u}})^{-1} (\bar{u}' \partial_t d - \bar{v}' \Delta d - \psi_{\min}) \rangle_{L^2} + \langle \bar{u}' \partial_t d - \bar{v}' \Delta d - \psi_{\min}, (-L_{\bar{u}})^{-1} \phi \rangle_{L^2} = \lambda \langle \bar{v}', \phi \rangle_{L^2}$$

for any $\phi \in L^2(\mathbb{R})$, where λ is the Lagrange multiplier, if the minimizer exists. Since $L_{\bar{u}}$ is self-adjoint on $L^2(\mathbb{R})$, it is equivalent to

$$\psi_{\min} = \bar{u}' \partial_t d - \bar{v}' \Delta d - \frac{\lambda}{2} L_{\bar{u}} \bar{v}'.$$

Therefore, the orthogonal condition $\psi_{\min} \perp \bar{v}'$ shows that λ is given by (5.3) if the minimizer ψ_{\min} exists. We next prove that ψ_{\min} is a minimizer of (5.5). For this purpose, note that λ is chosen so that $\psi_{\min} \perp \bar{v}'$ holds. Therefore it is enough to

prove $G(\psi_{\min} + \psi) \geq G(\psi_{\min})$ for any function $\psi \in L^2(\mathbb{R})$ with $\psi \perp \overline{v}'$. By direct calculations, we have

$$G(\psi_{\min}) = \frac{\lambda^2}{4} \langle -L_{\overline{u}} \overline{v}', \overline{v}' \rangle_{L^2} = \frac{(\partial_t d \langle \overline{u}', \overline{v}' \rangle_{L^2} - \Delta d \|\overline{v}'\|_{L^2}^2)^2}{\langle -L_{\overline{u}} \overline{v}', \overline{v}' \rangle_{L^2}} = \frac{(\partial_t d - \theta \Delta d)^2}{2\mu}.$$

On the other hand, since $L_{\bar u}$ is self-adjoint on $L^2(\mathbb{R})$ and $\psi \perp \bar v'$ holds, we obtain

$$G(\psi_{\min} + \psi) = \frac{\lambda^2}{4} \langle -L_{\bar{u}}\bar{v}', \bar{v}' \rangle_{L^2} + \frac{\lambda}{2} \left(\langle L_{\bar{u}}\bar{v}', (-L_{\bar{u}})^{-1}\psi \rangle_{L^2} - \langle \psi, \bar{v}' \rangle_{L^2} \right) + \langle \psi, (-L_{\bar{u}})^{-1}\psi \rangle_{L^2}$$
$$= G(\psi_{\min}) + \langle \psi, (-L_{\bar{u}})^{-1}\psi \rangle_{L^2}.$$

Letting $\phi := (-L_{\bar{u}})^{-1}\psi$, we see

$$\langle \psi, (-L_{\bar{u}})^{-1} \psi \rangle_{L^2} = \int_{\mathbb{R}} 2\sigma(\bar{u})(\phi')^2 + [B(\bar{u}) + D(\bar{u})]\phi^2 d\xi \ge 0,$$

which yields

$$G(\widetilde{\psi}) \geq G(\psi_{\min}) = \frac{(\partial_t d - \theta \Delta d)^2}{2\mu} \quad \text{for } \ \widetilde{\psi} \in L^2(\mathbb{R}) \ \ \text{with} \ \ \widetilde{\psi} \perp \overline{v}'.$$

Therefore, ψ_{\min} is a minimizer of the minimizing problem (5.5). Multiplying \bar{v}' by the both sides of and integrating it, we have

$$(\bar{v}')^{2}(\xi)\bar{Q}'_{\min}(t,x,\xi) = \int_{-\infty}^{\xi} \left(\bar{u}'(\widehat{\xi})\partial_{t}d(t,x) - \bar{v}'(\widehat{\xi})\Delta d(t,x) - \frac{\lambda(t,x)}{2}L_{\bar{u}}\bar{v}'(\widehat{\xi})\right)\bar{v}'(\widehat{\xi})\,d\widehat{\xi},$$

which yields (5.2). We here omit the arguments on the estimate (1.8).

Due to the Proposition 5.1, we can prove the second claim in Theorem 1.1 by choosing $\widehat{Q}=\bar{Q}_{\min}$.

References

- [1] G. BARLES, H. M. SONER AND P. E. SOUGANIDIS, Front propagation and phase field theory, SIAM J. Control Optim., **31** (1993), 439–469.
- [2] L. BERTINI, P. BUTTÀ AND A. PISANTE, On large deviations of interface motions for statistical mechanics models, Ann. Henri Poincaré, 20 (2019), 1785– 1821.
- [3] L. BERTINI, A. FAGGIONATO AND A. GABRIELLI, Large deviation principles for nongradient weakly asymmetric stochastic lattice gases, Ann. Appl. Probab., 23 (2013), 1–65.
- [4] X. CHEN, Generation and propagation of interfaces in reaction-diffusion equations, J. Diff. Equations, **96** (1992), 116–141.

- [5] P. EL KETTANI, T. FUNAKI, D. HILHORST, H. PARK AND S. SETHURAMAN, Mean curvature interface limit from Glauber+Zero-range interacting particles, Comm. Math. Phys., **394** (2022), 1173–1223.
- [6] L. C. EVANS AND R. F. GARIEPY, Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Revised ed., 2015.
- [7] L. C. EVANS, H. M. SONER AND P. E. SOUGANIDIS, *Phase transitions and generalized motion by mean curvature*, Comm. Pure Appl. Math., **45** (1992), 1097–1123.
- [8] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature, J. Diff. Geom., 38 (1993), 417–461.
- [9] G. JONA-LASINIO, C. LANDIM AND M.E. VARES, Large deviations for a reaction diffusion model, Probab. Theory Related Fields, **97** (1993), 339–361.
- [10] T. KAGAYA AND K. TSUNODA, Sharp interface limit for a quasi-linear large deviation rate function, preprint. arXiv:2402.12155
- [11] C. LANDIM AND K. TSUNODA, Hydrostatics and dynamical large deviations for a reaction-diffusion model, Ann. Inst. H. Poincaré Probab. Statist., **54** (2018), 51–74.
- [12] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence, J. Geom. Anal., 7 (1997), 437–475.
- [13] S. SCHAUBECK, Sharp interface limits for diffuse interface models, PhD thesis, Univ. of Regensburg (2014), urn:nbn:de:bvb:355-epub-294622.