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1 Introduction

This paper is based on a joint work with Kenkichi Tsunoda (Kyushu University)
[10]. Our main concern is the sharp interface limit for a Glauber+Kawasaki pro-
cess with speed change. For this purpose, we start by defining the late function of
the large deviation principle for the process (see [10] for the details). Let T4, be the
d-dimensional discrete torus with length N, that is, T¢ = (Z/NZ)?. Here, N € N
is a scaling parameter which we will let infinity later. Let Xy be the configuration
space {0,1}"™ and denote its generic element as n = {n(2)}ra . We regard a config-
uration 17 € Xy in the following manner: for each site z € T%, there is a particle at
x if n(x) = 1, otherwise, there is no particle at site z.

We now define the Markovian generator Ly defined as Lyf = N2Lgf + KL¢ f
for any function f : Xy — R, where Lx and L are operators corresponding to a
“diffusion” operator and a “reaction” operator, respectively. Let (7"),>o denote a
Markov process generated by Ly. Let T¢ be the d-dimensional continuum torus
(R/Z)?. We define the empirical measure by

N(du) Nd Z ny ()8, /n (du),

z€TY,

where §, stands for the Dirac measure at u € T.

The scaling limit for empirical measures is a fundamental problem in the study
of interacting particle systems. For this Glauber+Kawasaki process, a large devi-
ation principle, which determines the decay rate for the probability of an atypical
event of the system, has also been studied in [9, 3, 11]. Loosely speaking, for a
given density evolution ¢ : [0,7] x T¢ — [0, 1], the probability that the empirical
measure 7' (dz) follows ¢(t, z)dx behaves as

P (7 ~ ¢(-, 2)dz) =~ exp{—N*S(¢)},
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where S(¢) is given by
S(o) = sup (),

HeC2([0,1]xT4)

/gzﬁT:c Txdx—/éOx (0,z) dz

- / {00, H + P(¢)AH + o(¢)|VH|*} drdt
0 Td

- [ [ RAB@) (= 1) + D) (7 = 1)} daar

In this paper, we assume that P : [0,1] — [0,00) and B,D : [0,1] — R and W :
[0,1] — R are smooth functions satisfying the following conditions:

(Al) P satisfies P(0) =0 and P'(p) > 0 for any p € [0, 1].
(A2) B(p)+ D(p) is positive for any p € [0,1) and B — D = —W".

(A3) W is a double-well potential, that is, there exist exactly three critical points
0< p_ < pe <py <1lsuchthat W(ps) < W(p) for any p # p+ and W”(ps) > 0.

(A4) W satisfies a P-balance condition, that is, it holds that

/p+ W' (p)P'(p) dp = 0.

We note that the conditions (A1) and (A2) are satisfied when B and D are deter-
mined from a wide class of jump rates of the Glauber dynamics. Moreover, the
conditions (A3) and (A4) were introduced from the probability background as in
[5].

We here note that S(¢) is non-negative and vanishes if and only if ¢ solves the
reaction-diffusion equation

dup = AP(p) + K (B(p) — D(p)). (1.1)

Letting e :=1/V K, the reaction-diffusion equation (1.1) introduces an Allen-Chan
type equation

Oipe = AP(p.) + 5 (B(p.) — Dlp.)) (1.2)

Heuristically, at each time, p. is close to a step function for sufficient small ¢, and
the transition layer converges to a surface I'; generating a mean curvature flow
with a mobility constant 6 determined by P, B and D as ¢ — 40, namely, the motion
of T'; is governed by v; — 6h;, where v; and h; are the normal velocity and the mean
curvature of I';, respectively. In particular, the transition layer can be represented
as p.(t,x) = u(d(t,x)/e), where d(t, z) is a signed distance function from I'; and @ is
a solution to the ordinary differential equation

()" + B(a) — D(a) =0 in R,

%
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For the known convergence results, we refer to [4, 7, 1, 8, 12] for the case P(p) = p
and [5] for more general P(p).

For the case P(p) = p/2, Bertini, Butta and Pisante [2] characterized the func-
tional S.(¢) from the perspective of the sharp interface limit by substituting a fam-
ily of functions generating a transition layer around an arbitrary fixed geometric
flow into the functional. Our purpose is to extend the result to a more general
function P. For this purpose, for each ¢ > 0 let us define

S(¢)= swp  JI(9), (1.4)
HeC2([0,7]xTd)
70) = = | oT(Ta) de = [ o0.0)1(0.0) da
Td
——/ {00 H + P(¢)AH + 0(¢)|VH|*} dxdl (1.5)
Td

/ /Td — 1)+ D(¢r) (7" = 1)} dudt.

and it was clarified that these conditions are needed to obtain a sharp interface
limit for (1.2) leading to the motion by mean curvature.

In these settings, our goal can be stated that, restricting the form of a family
of functions {¢.}..o so that functions generating the transition layer around an
arbitrary fixed geometric flow {I';},c0.1], we show a “formal” I'-convergence from

S:(¢:) to
= [ [ 0 gy,
Iy

where v;, h; are respectively the normal Ve1001ty and the mean curvature of I';, H?*
is the (d — 1)-dimensional Hausdorff measure and 6, 1 are respectively the mobility
and the transport coefficient determined by P, B and D (see (2.7) for details). To
state the form of the family of functions {¢.}..¢, we define a regularized version
of a signed distance function from I'; as follows. For a family of oriented smooth
hyper-surfaces I' = {I';};co.r) with T, = 99, for some open Q, C T* and with the
finite surface area for any t € [0,7], choose d(-,t) as a regularized version of the
signed distance from I'; satisfying

it a) = {dlst(ai,Ft) if +¢Q, and dist(z,T,) < 1,

1.6
—dist(x, ;) if z €, and dist(z,I'}) < 1. (1.6)

Then, the main result in this paper is stated as follows.

Theorem 1.1. Assume the properties (A1)-(A4) hold. Let T' = {I';};co.1) be a family
of oriented smooth hyper-surfaces with T'; = 0S), for some open Q; C T¢ and with
the finite surface area for any t € [0,T). Let also u be the unique smooth solution to
(1.8). For smooth functions Q : [0,T] x T x R — Rand R. : [0,T] x T — R, define
the function ¢. : [0,7] x T¢ — [0,1] by

o:(t,z) =1 (@ +eQ (t, x, @)) +eR.(t,x). (1.7)

Then we have the following.



1. If () and R. satisfy

0Q] | s~ 1%V7Q
o (HWZZ TryE ) <% 9

(t,2,6)€[0,7]xTdxR i—0

lim< sup (|R5|+|6th|+|VR€|+|V2RE|)>:0, (1.9)
(

e=0 \ (1,2)€[0,7]x T4
then
liminf S.(¢p.) > Sac(L).
e—0

2. There exists @ such that, choosing () = @ and R. =0, it holds that
lin% Se(@z) = Sac(T).

2 QOutline of the proof

We here discuss the outline of the proof in the case when R. = 0 for simplicity. We
denote by H,... the maximizer (depending on ¢) of the maximum problem (1.4),
which satisfies the Euler-Lagrange equation

B(qzs)eHmax@ _ D(¢)6_Hmax¢s
g2 '

(2.1)

o+ V - [20(¢)V Himaxe] = AP()) +

To compute the limit of S.(¢.) as = — 0, our first purpose is to calculate the power
series expansion of S.(¢.) in £, namely, to decompose S.(¢.) as the following form:

Su(6) =Y e /Ad¢Q<,, tx))ddt 2.2)

keZ

where gzb’g? is a function depending on ). A key tool to obtain this kind of decom-
position of S.(¢.) is the decomposition of the maximizer H,,.. (depending on ¢.)
as

Hupax o (t, @) = e Hy (t, 2, d(t, x) [€) + 2K (t, x), (2.3)

where H, is a unique solution to a linearized problem of (4.1) and is determined
by the function ) appeared in the choice of ¢.. We then apply the Taylor expan-
sion for the integrands of S.(¢.) to conclude that, concerning the form (2.2); (i)
S.(¢.) consists of terms with the coefficient * with £ > —1; (ii) as ¢ — 0, the term
with coefficient ¢! is of constant order and converges to the iterated integral of
gbg?l(t,a:,g) along t € [0,7], z € T';, and £ € R; (iii) the other terms vanish as ¢ — 0.
The conditions (ii) and (iii) follows from the condition (i) by applying the following
proposition:

Proposition 2.1. Let I' = {I';}co.1] be a family of oriented smooth hyper-surfaces
with Ty = 0% for some open ), C T?. Assume I'; has a finite surface area for any

€ [0,T]. Denote by d(x,t) be a regularized version of the signed distance from T,
satisfying (1.6). Let ' > 0 be an arbitrary positive constant. Then, the following
statements hold:



(1) LetR. : [0,7] x T? x R — R be a continuous function satisfying

lim sup 6'}/’|f||’]f€€(t7 z, €)| -0
20 (1,2,6)€[0,T]x T¢xR

Then, it holds that

o1
lim —
e—=0 &

T
/ R.(t,x,d(t,x)/e) dedt = 0.
o Jra

(2) Let A:[0,T] x T? x R — R be a continuous function satisfying

sup VAL, x,€)] < 0o (2.4)

(t,2,6)€[0,T]x T xR

Then, it holds that

1
lim —

T T
s—>05/0 /TdA(t,x,d(t,:c)/s) d:cdt:/o /rt/RA(t’x’g) dedH (d)dt.  (2.5)

Brief proof of Proposition 2.1. We give a brief proof for the case (2). For each ¢, we
divide the integral domain T? by

Di(t):={x € T: |d(t,z)| <x} and Dy(t):={x cT: |d(t,x)| > r}

for a sufficiently small constant x > 0. The conditions (2.4) yields

e :
—/ / A(t,z,d(t,x)/e) dedt| < ge‘” " 50 as £— 0,
€Jo Iy <

where C' is a constant independent of . The remained integral can be calculated
as

1 [T
—/ / A(t,z,d(t,x)/e) dxdt
€Jo Jpi(

T K
= 1/ / / A(t, 2, s/e) HOY (da)dsdt
€ Jo —k J{z:d(t,x)=s}

1 A K
-1 / / / Aty + sny(y), 5/2)] det (Ve 1d(y) + sV m(y))| HO (dy)dsdt
0 —K Ft

T K/e
_ / / / Aty + =5ny(y), 3)] det (Ve Id(y) + £5Vrme(y)| HO= (dy)dsidt,
0 — I':

K/e

where y is a point on I';, n; is a unit normal vector of I';, Vr, is the divergence
operator on I'; and Id is the identity map on T¢. We note that the co-area for-
mula (see [6, Theorem 3.10] for example) have been used at the first equality and
| det(Vp,Id(y) + €5V, n.(y))| H1(dy) describes the surface area element of the sur-
face {x : d(t,z) = s}. The above calculations yields (2.5) by letting ¢ — 0. O



We now return to the consideration of the limit for the power series expansion
(2.2). Since the maximizer H,,, . is uniquely determined depending on ¢. and the
form of ¢. is restricted as in (1.7) (with R. = 0), the limit of = [ gzﬁc‘glda:dt can
be represented as a functional of (). The minimizing problem of the functional
with respect to ) is solvable, which shows that the minimum value is 5,(I") and
Q) in Theorem 1.1 can be chosen as the minimizer. In this paper, the following
sections will include notes not written in the original paper [10], as well as the
mathematical structure that yields the propositions in each step of the proof of the
main theorem described at the beginning of this section.

Remark 2.2. In order to apply Proposition 2.1, we have to prove that the func-
tion Hl(t z, &) obtained in the decomposition (2.3) and the minimizer Q respectively
satisfy the exponential decay estimate with respect to & as in (2.4) and the decay
estimate with respect to § as in (1.8). Although similar estimates were discussed
in the case P(p) = p/2 (see [2]), in our problem, the inability to write H, and Q)
in the form of variable separations necessitated a slight re-consideration of the es-
timates in the previous study. In the previous problem, H, and Q are separable
as Hi(t,z,&) = A(t,x)h(&) and Q(t,x,&) = B(t,z)Q*(§). In this paper, we omit the
details of the arguments on the above estimates in our problem.

To discuss the power series expansion (2.2) and the minimizing problem of S (Q)
in more detail, we introduce several notions and known theorems are listed. We
first discuss on the ODE (1.3). A standard theory as in [13, Lemma 2.6.1] can be
applied to obtain the following properties:

Lemma 2.3 (Application of [13, Lemma 2.6.1]). Assume that smooth functions P :
[0,1] = [0,00), B,D :[0,1] - Rand W : [0,1] — R satisfy the properties (A1)—(A4).
Then, (1.3) admits a unique smooth solution. Furthermore, there exist v > 0 and
C > 0 such that

@) >0 for eR, [T @]+ @@+ |a"(€) < Ce ™ for £ eR.

The exponential decay of u is key estimate to apply Proposition 2.1. In the
following arguments, we also use the composition function of P and u which is
denoted by v := P(u). Let the linear operator L; : H*(R) — L*(R) defined by

Lath(€) = [20(a(€)/ (€)' — [B(a(€)) + D(@())] (&) (2.6)
for v € H*(R). Let v be the constant defined by

v = (T, (—La)0) 12 /2,

where (-, )2 denotes the standard L?-norm on R. We also define the constants 6;, 0,

by
I P+ —
0, = / \V2W(p) dp, 02 = / P'(p)\/ 2W (p) dp,
p- p—

where the function 1V is defined as



Note that it holds that (@', ¢');2 = 01, (¢?/,7");2 = 6,. Then, the mobility 1 and the
transport coefficient ¢ can be chosen as

pi=v/03, 0:=0,/01, (2.7)

respectively.

3 Decomposition of maximizer H,,,, .

The decomposition (2.3) can be obtained by applying the Taylor expansion for each
term in (4.1). For simplicity, let d. := d(¢, x)/e here. For example, a simple calcula-
tion yields by using the form of ¢. in (1.7) (with R. = 0)

atd(t, ZU)
9

0. =W (d. +Q(t, z,d.)) < +c0,Q(t, x,d.) + 0:Q(t, x, d.)dd(t, CL’))

and the Taylor expansion (for @' (d. + Q(t, r,d.)) at the point d.) implies
' (de +eQ(t,x,d.)) = @' (de) + e (d. + £0Q(t, x,d.))Q(t, x,d.),
where 6 € (0,1) is a constant, which give us the quantity

f)td(t, CL')

O (t, ) = ﬂ/(ds) -

_I_ Rg(t’ ‘/1;7 df)?

where the remainder R. : [0,7] x T? x R — R satisfies

lim sup sup EI2 IR (t,2,6)| < 0. 3.1)
e=0  (t,x,6)€[0,T]xTdxR

This estimate follows from the exponential decay estimate of 4. By applying a
similar argument for the remained terms in (4.1), we obtain

ﬂ’(de)% +€%
~ 5_12(<P o ﬂ)//(da) + (Bou)(d.) — (Do ﬂ)(da))
+ é((P ou)"(d.)+ (Bou)(d.) — (Do a)’(d€)> (3.2)

((a 0 @)/ (d.)V Hypaxo + (0 0 a)(dg)AHma&E)

N %((p 0 @) Ad +2(P 0 @) (d)%Q + (P 0 1) Q)

4 612((3 0 @)(de) + (D0)(d:) ) Hinas o

Due to the ODE (1.3), the second line and third line vanish, which yields that H,,.. -
converges 0 as = — 0 with the order at least O(¢) so that the orders with respect to
e on the both sides in (3.2) are balanced. Therefore, H,,,, . should be decomposable

as in (2.3) and ﬁl should satisfies
LoH\(t,2,€) = T (€)Ad(t, 2) + 20" (€)0eQ(t, x, ) + T (€)ZQ(t, x,€) — T (£)D,d(t, ). (3.3)

As a result, the following proposition holds:



Proposition 3.1. Let ) : [0,7] x T¢ x R — R be a smooth function satisfying (1.8).
Define ¢. : [0,T] x T¢ — [0,1] by (1.7) with R. = 0. Let Hpax : [0,T] x T — R and
H, : [0,7] x T x R — R be the solution of (4.1) and (3.3), respectively. Define the
function K. : [0,7] x T? — R through the decomposition

Huax o (t, 1) = eHy (t, 2, d2) + 2K.(t,z) for (t,x) € [0,T] x T

Then, there exists 0 < 7 < ~ such that

sup el Z Z |82V3H1| < 00, (3.4)

(t,2,£)€[0,T]x T xR i—0 =0

€20 | (t,2)€l0,T]xT

m{ sup |IA(8|+5|VIA(6|} < 0

4 The power series expansion of S.(¢.)
We next discuss the power series expansion of S.(¢.) as in (2.2). Since H,,y . is the

maximizer for the maximum problem as in (1.4), integrating by parts for (1.5) and
substituting the Euler-Lagrange equation into it yields

1 T
(¢e) = —/ 0(0)|V Hipax < |* dxdt
£ 0 Td
1 T
+t3 / / B(¢:) (1 — e 4 Hypay cefte) dadt (4.1)
9 0 Td

1 T
+ _3/ D(¢€) (1 _ e_HmaxA,s _ Hmaxvee_Hmax,e) d.]:dt
£ 0 Td

Furthermore, due to the decomposition (2.3), we have by applying the Taylor ex-
pansion (as to obtain (3.2))

// (@(d) @Atz d.))? + BEED) £ D) 7 2 g

2
+/ / Rs(t,x,ds) dxdt,
o Jrd

where R. is a remainder satisfying (3.1). Therefore, letting ¢ — 0, we obtain by
applying Proposition 2.1

lim Se (ng)

Recalhng the definition of L; in (2.6), since H; is the solution of (3.3), the limit can

be re-written as
lim 5.(6.) = ///% )~ By dedH™ (x)dt
Iy



where Fg : [0,7] x T¢ x R — R is a function defined (depending on () as

Fo(t, 7, &) == @ (§)D,d(t, x) — v () Ad(t, x) — 20" (€) ) Qt, 7, §) — 7' (€)FQ(t. . ).
Thus, it is sufficient to prove that

T
inf / / / Fo(—La) ™' Fy dedM™ " (z)dt = Sae(T) 4.2)
Q@ Jo Jr,Jr

and the minimum is achieved when () = @ to prove the second claim in Theorem
1.1.

Remark 4.1. In the first claim in Theorem 1.1, the vanishing property R. = 01is not
assumed, and thus the decomposition of Hy,.x - asin (2.3) is not applicable according
to the assumption in Proposition 3.1. However, due to the definition of S. as in (1.4),
we have

S.(6) > T (),

where H, is the solution of (3.3) (which is defined depending on ()). Although the
Euler-Lagrange equation cannot be applied as when R. = 0, the limit of the func-

tional J;ﬁl (¢-) can be calculated by using the Taylor expansion and the estimate of
H,in (3.4) as

R T
o () = / / / Fo(—La) ™ Fy dedH™ (z)dt.
o Jr.Jr
The above explanation also explains why only the lower semi-continuity, not the
full-convergence, can be shown when R. # (.
5 Minimizing problem

In this section, for each fixed point (¢,z) € [0,7] x T¢, we discuss the minimizing
problem

iQf/FQ(—La)_lF@ dg,
@ Jr

where Q : [0,T] x T? x R — R is a smooth function satisfying

2 +10:Q| + |92Q
up Q| + 10:Q| + |9 Q| . 5.1)
(t,2,€)€[0,T]x T4 xR 1+ [¢|

Our purpose is to prove the following proposition:

Proposition 5.1. Let Q) : [0, T] x T? x R be a smooth function satisfying (5.1). Then,
it holds that

(D,d — OAd)?

2 for (t,z) € [0,7] x T

/%emﬂ%%z
R



Furthermore, a minimizer Q. is given by

Qmin(t7m7€)
YA (E R o Atz N s e (5:2)
= | | (70000 -7 @i - X0 ) 0@ dée

where \ : [0,T] x T is a smooth function defined as

=112 T TN e
)\(tx) _ 2(||U ||L2Ad(t7x) <U y U >L atd(tvx))7 (53)

<—L1177/, 17/>L2

and Qi satisfies (1.8) replaced Q by Qmin.

Brief proof of Proposition 5.1. We use Q' instead of 0:Q(t,z,€) and omit the vari-
ables ¢, z for simplicity. Noticing 2”@’ + #'Q" is perpendicular with ¥’ in L*(R), we
can re-formulate the minimizing problem as

inf {/ Fo(—Lg) ' Fg d¢ : Q satisfies (5.1)}
R
> inf {(@0,d — V'Ad — ¢, (—Lg) " (W 0d — V'Ad — )2 : 0 € L*(R) s.t. o LT},

where we denote ¢y L ¢ for ¢, ¢ € L*(R) if (¢, ¢) 2 = 0. We note that the equality
holds if a minimizer ,,;, for the latter minimizing problem exists and a solution

Qmin tO _ _
20" Q! i F UV QN = Ynin (5.4)
satisfies (5.1); hence, it is sufficient to solve the solution Q,,;, and prove that Q.

satisfies the stronger estimate (1.8) than (5.1).
We thus define functional

G(Z/)) = <T/5¢d —v'Ad — 77/), (—Lﬁ)_l(ﬂ'&gd — v Ad — 2/))>L2 for 1/1 € L2 (R)
and consider the minimizing problem

inf  G(v). (5.5)

PpeL2:p Ly

Applying the method of Lagrange multiplier, we see that a minimizer 1, € L*(R)
of (5.5) satisfies

(¢, (—La) " (W0yd — 0" Ad — throin)) 12 + (W 0yd — ' Ad — Urgin, (—La) ' d) 12 = MU', )12
for any ¢ € L*(R), where ) is the Lagrange multiplier, if the minimizer exists. Since
Ly is self-adjoint on L?(R), it is equivalent to

A
Ymin = U Od — ' Ad — §Laz7'.

Therefore, the orthogonal condition 4,,;, L ©' shows that )\ is given by (5.3) if the
minimizer v,,;, exists. We next prove that v;, is a minimizer of (5.5). For this
purpose, note that )\ is chosen so that ¢,;, | #' holds. Therefore it is enough to



prove G(¢min + ¢) > G(¢mim) for any function ¢ € L*(R) with ¢y 1L ¢’. By direct
calculations, we have

ﬁ<_ Lo, 0} 2 — (Oud(W', 0') 2 — Ad||V']|7,)*  (Dpd — OAd)?
4 u Y - = .

<—L1j17/, 1_),>L2 2#

G(q/}min) =

On the other hand, since L; is self-adjoint on L*(R) and ¢» | ¢’ holds, we obtain

2
G thmin +18) = 5 (LB T+ 5 (L, (L) sz — (6. 9) 1) + {0 (=L))o

= G(wmin> + (% <_Lﬁ>_1w>L2-
Letting ¢ := (—Lg) 4, we see

) + D(a)]¢” d§ > 0,

=
|
h
=
L
=
&

I
T
)
2
=
o
o
+
=
N

which yields

~ (0,d — OAd)?

G()) > G(Ymin) = o for ¢ € L*(R) with ¢ L 7.

Therefore, v,,;, is a minimizer of the minimizing problem (5.5).
Multiplying ' by the both sides of and integrating it, we have

_/\2 ~/ ¢ 1A 11N )\(t,ﬂf) e O ) =
PO untt. 0.0 = [ (@0ate. )~ v @0dte.0) - 251 @ ) 71 i€
which yields (5.2). We here omit the arguments on the estimate (1.8). O

Due to the Proposition 5.1, we can prove the second claim in Theorem 1.1 by
choosing ) = Qumin.
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