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Abstract

The note surveys the result and idea of proof in [CiGalkTa-1]. Moreover, the existence
of multiple L?-normalized solutions is also given, which is not contained in [CiGalkTa-1]
and this result is motivated by [CiGalkTa-2]. A proof of this multiplicity result is based
on the uniqueness and nondegeneracy of positive radial solutions to —Au + u = |u[P~lu
in RV,

1 Introduction

The L?>-normalized problem is to find a pair (i, u) € R x H*(RY) satisfying

1
(1.1) —Au+ pu = g(u) in RV, —/ u? dz = m.

2 RN
Here N > 2, and g € C'(R) and m € (0, 00) are a given nonlinearity and a constant. The study
of the existence of L?-normalized solutions and their properties are related to the stability of
standing wave solutions of

(1.2) D)+ Dyt + F(|0]) = 0.

Here the standing wave solutions of (1.2) are solutions of the form ¢ (¢, x) = e*u(x). For the
details, we refer to Cazenave [Ca03].

Pioneer works for (1.1) are [St80, St82, CaLi82] and recently the L?*-normalized problem is
actively studied. For references, we refer to [CiGalkTa-1]. The aim of this note is to provide
the result and idea of the proof in [CiGalkTa-1] as well as to give another multiplicity result
which is not given in [CiGalkTa-1]. This multiplicity result is motivated by the function given
in [CiGalkTa-2]. To state the result in [CiGalkTa-1], set

4
=14+ —.

This exponent plays an important role in the study of the L?-normalized problem. In what
follows, we always assume the following condition:



(g1) Set h(s) := g(s) — |s|"'s. Then h satisfies

h(:
lim ) o gim M)

s—0+ |5|p_15 s—o0 S

Notice that if ¢ satisfies (gl), then this case is included in the L?-critical case. The L*-critical
case is not well studied and references for this case are limited. Here we mention the works
Schino [Sc22] (the existence of the minimizer) and Jeanjean, Zhang and Zhong [JeZhZh24] (the
existence of positive solutions based on the fixed point index and continuation arguments).

The existence of positive solutions to (1.1) is delicate in the L2-critical case. In fact, it is
known (cf. Kwong [Kw89]) that the equation

(1.3) —Au+u=uf'u nRY, wuwe H(RY)
has a unique positive radial solution and we denote it by w;. For any p > 0, the equation
—Au+pu=1" inRY, uwe H(RY)
admits a unique positive radial solution given by wy,(z) := p¥/®PVw, (u'/2z) = pN 4w, (p/?x).
Notice that
1 2 1 2
my = §HWIHL2(RN) = inlLHLQ(RN) for every p > 0.

On the other hand, if (11,u) € R x H'(RY) is a solution of (1.1) with g(s) = |s|""'s, then u
satisfies the Pohozaev identity (see Berestycki and Lions [BeLi83, Proposition 1]):

N -2 2 H 2 1 1
0= 25219l + 8 Sl = Il )
Since ||VuHi2(RN) + /,LHUH%Q(RN) = ||uH’;i1(RN), it follows that
N N-2
2 1
A P— (p+1 S )||u||’;:ﬂ(RN) -0,

which yields > 0. Thus, (1.1) with g(s) = |s|"'s admits a positive radial solution if and only
if m=ms.

By the above consideration, in [CiGalkTa-1], the existence of positive solutions to (1.1) with
m = m; is discussed and the following result is obtained:

Theorem 1.1 ( [CiGalkTa-1]). Suppose (gl) and the following condition:

(g2) There is no positive radial solution to —Au = g(u) in RN with Vu € L*(RY) and
u € LPTH(RYN).

Then (1.1) with m = my admits a solution (u,u) € (0,00) x H}

rad

(RY) such that u > 0 in RY.

Remark 1.2. (i) According to (gl) and the result by Alarcén, Garcia-Melidn and Quaas
[AlGaQul6], when 2 < N <4 and ¢(s) > 0 for all s > 0, the equation

~Au = g(u) in RY
has no positive solution. Thus, in this case, (g2) is not necessary.
(ii) A similar condition to (g2) is used in [JeZhZh24].

(iii) Ome simple condition to verify (g2) is

OSN_z

g(s)s — NG(s) in [0,00).

For the details, see [CiGalkTa-1].



1.1 Idea of proof of Theorem 1.1

To prove Theorem 1.1, without loss of generality, we may assume that g is odd. Indeed, since
we are interested in positive solutions, we modify the values g(s) for s < 0 to obtain the odd
extension g of g and use g instead of g. If the existence of positive solutions to (1.1) is shown
with g, then these are also positive solutions of (1.1) with g. Therefore, from now on, we
assume that ¢ is odd in addition to (gl) and (g2).

In [CiGalkTa-1], the Lagrangian function approach in Hirata and Tanaka [HiTal9] is utilized
and critical points of the following functional are found:

1 1
I\ u) = / Z|Vu)? — G(u) dz + (5/ u? dz — ml) ‘R x H. (RY) = R.
RV RV

It is easily seen that any critical point (X, u) of I is a solution of (1.1) with u = ¢* and m = m;.
Inspired by works [BaLi90, BaLio97, Ta00], two minimax values b and b are introduced to find
critical points of I. To define these values, by Gagliardo—Nirenberg’s inequality and (gl), we
shall prove that there exists some A > 0 such that

1
I(\,u) > —2Am; for each (\,u) € R x H. (R") with 5/ u? dr = my.
RN
Since I(A,0) — —oo as A — oo and I(\,tu) = —oo0 as t — oo when u # 0, the set R X
{ue H 4R") |35 [gyu®dz = my } separates
{(\u) e Rx H,

rad

RY) | I(\u) < —2Am; }

into at least two parts. We next find {, € C(R, H].

rad
(i) T(\, Go(N) < —2Am; — 1 — ety for all A € R;

1

(i) /R (GO de > my for all A € R;

(111) As |/\| — 00, MaXp<i<1 ](/\ﬂféo(/\)) — 0.

(RY)) which enjoys the following properties:

Finally, we set

YA 1) == (N t(N) : R x [0,1] = R x H-(RY),

C(L) == {((—o00,—L]U[L,00)) x [0,1]} U{[-L, L] x ([0, L "Ju[1— L ' 1])}.
Then the values b and b are defined as follows:

b:=inf max I(y(t)), b:=inf sup I(y(\ 1)),

veLosi<l 7L (A t)eRX[0,1]
where
Li={y€C(0,1],R x H,z(R")) | I(+(0)) < 1, 7(1) = (A Co(A,)) for some A, € R},
I={7eCRx[0,1],Rx H,o(R"))|~v =1 on C(L,) for some L, >1}.

We aim to prove that b or b is a critical value of I. To this end, we first establish
(1.4) b<b(A\)<b forevery A € R.

Here b(\) is the mountain pass value of the functional H. ,(RY) 3 u — I(\, u):

b(A) := inf max I(\,y(¢)),

~ETy, 0<t<1

Dy = {7 € C((0.1], HiygRY)) [ 7(0) = 0, I(A\, (1)) < —e*m }.



Since it can be shown that b(\) — 0 as |A| — oo, (1.4) yields
b<0<b.
From these two inequalities, we consider the following three cases:
(a)b<0, (b)0<b, (c)b=0=b.

In case (a) (resp. (b)), the value b (resp. b) becomes a critical value of I. In particular, if
b < 0 < b hold, then there are at least two positive solutions (A;, ;) and (Mg, ug) of (1.1) with
m = my with I(A\,u;) =b < 0 < b= I(\y,us). On the other hand, in case (c), we may prove
that for each A € R, any positive mountain pass solution to

(1.5) —Au+4eru=gu) inRN, wecH!

rad

(R)

turns out to be a positive solution of (1.1) with m = m;. More precisely, let A € R and

u € H!,(RY) be a solution of (1.5) corresponding to b(\). Notice that u can be chosen as
a positive function. Then [;y u?dz = 2my, and hence (A\,u) € R x H} 4(R") is a solution

of (1.1). Thus, in case (c), there are infinitely many positive solutions of (1.1) with m = m;.
Though we may prove that case (¢) occurs when g(s) = |s|"~'s, it is not known that there is a
nontrivial g in which case (c) holds.

To implement the above argument, in [CiGalkTa-1|, Palais—Smale—Pohozaev—Cerami se-
quences ((PSPC) sequences in short) and the Palais—Smale—Pohozaev—Cerami condition ((PSPC)
condition in short) are introduced. Here (();,u;))52, C R x H}4(R"Y) is called a (PSPC) se-
quence at level ¢ € R ((PSPC), sequence in short) provided

10, w3) = e (1 Tl gam 10 Oy ) g vy — 0.
O TNy =+ 0. P(A ) =0,

(1.6)

where P is a functional corresponding to the Pohozaev identity defined by

A
P@my:ﬂlz/ VuPde+ N [ S~ Glu)da.

2 Jav ay 2
Then I is said to satisfy the (PSPC), condition if every (PSPC), sequence is relatively compact
in R x H! ,(RY). If we replace (1 + ||uj||H1(RN)) by 1 in (1.6), then this notion is introduced
in [HiTal9]. Condition (1.6) is motivated by Cerami [Ce78] and under (g1) and (g2), I satisfies
the (PSPC), condition for all ¢ € R\ {0}. By this compactness condition, we may show that
b (resp. b) is a critical value of I when b < 0 (resp. b > 0). On the other hand, in case (c),
since b = 0 = b, this idea does not work. Instead, we use the existence of optimal path for b(\)

due to Jeanjean and Tanaka [JeTa03].

1.2 Another multiplicity result

As pointed in Section 1.1, when b < 0 < b and g is odd, (1.1) with m = m; has at least two

positive solutions. In [CiGalkTa-2], an example of g enjoying b < 0 < b is also given. On the

other hand, when case (c) happens, there are infinitely many positive solutions of (1.1) with

m = my, however, we do not know examples of g other than |s[" s in which case (c) occurs.
In this note, we shall prove another multiplicity result motivated by [CiGalkTa-2].

Theorem 1.3. For any k € N there exists g, € C(R) verifying (g1) and g, # |s|"'s such that
(1.1) with g = g, and m = my has positive solutions ((u;,u;))F_, C R x HL (RY) such that

rad
0< iy <plo<--<py u>0 mRY (1<i<k),
u; #wy, foreachi=1,....k and p € (0, 00).



Though finding g in Theorem 1.3 is motivated by nonlinearities treated in [CiGalkTa-2],
the proof of Theorem 1.3 is different from [CiGalkTa-1|. Indeed, for each k € N, we aim to
find g, € C(R) such that (gl) holds and

(A) there exists (uy)raer C HL4(RY) such that R o X\ — uy € H!(RY) is of class C'' and

uy is a positive solution of (1.5) with I(\,uy) = b(A) for each A € R;

(B) the function defined by R 2 A +— b(\) admits critical points —oo < A\; < Ay < -+ < A, <
0.

If (A) and (B) hold, then ((e*,uy,))1<i<x are the desired solutions of (1.1) with ¢ = g; and
m = my. Indeed, since u,, is a positive solution of (1.5), it is enough to prove [g |u,\i|2 dx =
2m;. This can be seen from

d

d d
0= ab()\)h:Ai = — T\ w\)|aey; = I (N uy,) + 0l (N wy,) —unlazn, = WL ( A, wy,).

dA dA
In the rest of this note, we shall find g, satisfying g, # |s|""'s, (g1), (A) and (B).

2 Proof of Theorem 1.3

As pointed in the end of Section 1.2, for any given k € N, we shall find g, € C(R) satisfying
ge Z |s/” s, (g1), (A) and (B).
Notation: In the rest of this note, we shall use the following notations.

(i) For any ¢ € [1,00] and domain Q2 C RV,

/ lu|"'dz when 1 < ¢ < o0,
0

[ully0 =
esssup |u|  when ¢ = oc.
0
When = RY, we simply write |[u||, gv = [u]|, and also introduce the following notation:
(U, V) g1 = Vu-Vo+uwvdr, |ullg =/ {u,u)m.
RN

(i) H := H!

rad

(R).

(iii) For each A € R, write u = e¢*. For instance, I can be written as

1 ul|2
I\ u) = §||Vu||§ - /RN G(u) + u(% - m1>.

Motivated by the nonlinearities treated in [CiGalkTa-2], we shall treat the following class
of nonlinearities:

*S

21 ()= () Gunls) = [ aagldt = [0+ a0 .

Here sy :=max{0,s}, n € (0,1/2] and a satisfies the following conditions for some L > 1:

a € CH(0,00)), —1<a(s)<1 foranyscR,

2.2
(22) la(s)| =1 forall s € [1/L,L], |sa'(s)]<4(e—1) foreveryseR.



Denote by Ay, the set of all a satisfying (2.2). We remark that for each L > 1, Ay # 0. Indeed,
consider

( 1

0 fo<s< —
PU=s A

1 1
10g(4L(€—1)S+2—€) 1fE<S§E7
ao(s) = {1 ifigsgm,

—1
1—log<62L S+2—€) if 2L < s < 4L,

L0 if 4L < s.

Since ay is Lipschitz continuous and |saf(s)| < 2(e—1) for any s € [0,00)\{ 1/4L,1/2L,2L,4L },
using a mollifier, we may find a with a € A;. Remark also that if a € Ay, then —a € Aj.

It is immediate to verify that g,, satisfies (gl) for any n € (0,1/2], L > 1 and a € Ay.
Moreover, from (2.1) and (2.2) it follows that for each n > 0 and a € Ay,

/fNM‘*lgam (/1,N/4S) = (1 + Ua'(/LNMS))S‘i

and

N/4g

NP Gy (W) = NP / (1+na(r))r} dr
(2.3) . 0
= / (14 na(p"*t))th dt = G (/a5 (5)-
0
Let a € Ar, and set

1 ' 1
o) = 51Vl = [ Gopf) -+ oGl = ma )

For our aim, it is convenient to introduce a scaled functional of I. More precisely, for u € H,
write uy (2) := p/*u(pt/?x) and a,(s) := a(u¥/*s). Then it follows from (2.3) that

1 1 _N/o—
o) = i IVl + gl = i [ G (o)) o

1 1

= 319l + el = [ Gl = m,
2 2 RN

= M{I((a7 Uz )‘7 U’) - ml}‘

(2.4)

We shall also write b(a,n; A) for the mountain pass value of H 3 u — K(a,n; A\, u):
b iA) = inf K P\ Y(E
(,m:2) :=__inf  max K(a,n; A, (1),

T(a,m;A) == {v € C([0,1], H [ ~(0) =0, K(a,m;X\,7(1)) <0}.

It is known that b(a,n; \) is a critical value of K(a,n; A, -) for each a € Ay, n € [-1/2,1/2] and
A € R (see [BeGaKa83,Beli83, JeTa03]) and set

Sopr i ={ue H|0K(a,n; A\ u) =0, K(a,n; A\, u)=>b(a,n;\) }.
Since each u € &\ satisfies

0=0,K(a,n; \,u)u” = —Hu‘HiIl,



we have u > 0. By K(a,n;A\,u) = b(a,n;A) > 0 and u # 0, the strong maximum principle
yields v > 0 in RY.
We next introduce

1 1 ! 1 1 3luf "
Kl/Q(U) = / §|VU|2 + —u2 — L dl’, Ks/g(d) = / §|VU|2 + —U2 — | |
RN RN

Sl bl B
2 2(p+1) 2 2p+1)

and write by /o and bs/, for the mountain pass value of K/, and Kj3/5. Since

ms’fl < G, (s) < ﬁsﬂ“ forallse R, n € (O, %1, L>1,a€ Az,
it follows that for each (\,u) e R x H, n € (0,1/2], L > 1 and a € Ay,
Kszpo(u) < K(a,m; A u) < Kija(u),
which gives
0 <bsgp <bla,m;\) <byyp forany L>1,a€ A, A€ R.

Now we set
. . b3/2 .
Gamr i=4q ue€ H| K(a,n\u) € 5 2012 |, OuK(a,m; Au) =0 .

It is casily seen that 0 # Sy 0 C Gann-
In order to state a next result, we define Uy by

|u|p+1

- 2
P dr € C*(H,R).

1 1
Uo(u) := /RN §|Vu|2 + §u2 —

Remark that ¥, corresponds to (1.3) and any critical point of ¥, gives a solution of (1.3).
Thanks to [Kw89], Uy has only one critical point in H, which is positive in R".

Proposition 2.1. For any € > 0 there exists n. € (0,1/2) such that

AeR, ne (0,1, LZL}
< €.

su K(a,m; \,u) —mq| + |jlu —w
P{| (a,n ) 1|+ s a€ A, u€ Gaa

In particular, b(a,n, ) = mq € [bs/a,b1/2] as n — 07 uniformly with respect to L > 1, a € Ay,
and A € R.

Proof. We argue by contradiction and suppose that there exist g > 0, (7,)5 1, (A\n)22 4, (L)%,
a, € Ar, and u, € G,, ..x, such that

Tin — 0: |K(amnn; )‘mun) - mll ‘I' ||un - wl”}]l 2 €o-

By wn, € Gapuirns (K (@, s A, 1))02 is bounded, and hence we may assume
b3 /2
K(an, M An,s Un) — b € 7,251/2 .

Furthermore, since 0, K (ay,, Nn; An, uy) = 0, the Pohozaev identity holds:

N =2

1
0= 229y, ? - N/ 2 Gl (1) d = N K (a1 Ay thn) — [Vt
2 )



Thus, (Vu,), is bounded in L2(RY).
Next, since ||a,|| r=®) = 1, the Gagliardo-Nirenberg’s inequality gives

OuK (g My Ay U ),

boo + 0(1) - K(Cln, Mn; )\na un) -

p+1
p—1 2 +1 p—1 2 4/N
> 2(pﬂ)llu [ = Cmnllunllpy = 2(p+1>Hu 171 = Call V5 llunlly

By 7, — 0, N > 2 and the boundedness of (||Vuy,||2)n, we see that (u,)2, is bounded in
H. Taking a subsequence if necessary, we may suppose u, — u,, weakly in H and u, — u
strongly in LI(RY) for all ¢ € (2,2*). The fact u, > 0 in RY implies u,, > 0 in R". Since
Nn(@n )y, — 0 strongly in L*(R), it follows that

Vi - Vi + sy —ub pdr =0 for any ¢ € H,
RN

that is ¥{(ux) = 0 and uy is a solution of (1.3). Moreover, notice that

e e < it s = [ (14 a2 0)) )t o > [ e = e

which gives u,, — u strongly in H. In particular,

bs/2

0< < Ug(too) = 1im K (an, M Ans Un) < 2012,

2 n—oo

which means that u is a radial positive solution of (1.3) and 4. = w; holds by [Kw89]. Using
the Pohozaev identity

N-2 wit! 1
e A Y

we observe that m; = Wo(us ). This leads to the following contradiction:
0<eg < nll_)II;O {1 K (an; fn; Ans tn) — ma| + ||un, — wil| 0} = 0.
Thus, Proposition 2.1 holds. ]
To proceed, we remark that wy is nondegenerate thanks to [Kw89], namely,
(2.5) Uo(wy) : H— H* is invertible.
Thus, there exists pg > 0 such that for T € L(H, H*),
(2.6) 1T = Vo(w)ll gz ey < po = T is invertible.

Proposition 2.2. There ezists ny € (0,1/2) such that for each n € (0,m0], L > 1, a € AL
and X € R, Gonr = { tanr } = Samr and the map R 3 X\ — wug,n € H is of class C*. In
particular, R 3 X — b(a,n; \) € R is of class C*.

Proof. We first prove Gy y.n = { Uan:x } (= Sap:n) by contradiction and suppose that there exist
M)y (Ln)ns an € Ar,, (Ap)n and wy,, v, € G, ,:x, SO that

M — 0, U, # vy



By Proposition 2.1 we know that ||u, — w1/ — 0 and |Jv, — wq||;n — 0. Set

) =

Since Oy K (an, M Ay ) = 0 = Oy K (an, M An, Un), it follows that

= = o [ o) o ) = 00 (2) ()
=0 :p/l (Oun + (1 — 00, dOwy + — ¢
, e
where
(@) = an (1) un () )b () = an (0 on(2)) 02 (2).
By writing

An(z,0) == al (u N Qu, (2) + (1 — 0)vn(x)]) 1 N Qu, () + (1 — 0)vn(2)],
it is readily checked that if u,(z) < v,(x), then
Ful) = [on (1100 (1)) — @ (5940 (2)) J2(2) + (1200 () [ () — 02)]
= /0 ar, (" [Bun () + (1 = O)va (2)]) A0 11" (un(2) — v (@) )uih ()
8) o (0 0)) [ Bua(a) + (1= )0 @)} 48 s (0) = v, 0)

= | Al g 0 () () — 2 (0)

+ pan (uy on (1)) /0 (B () + (1 = O)va(2)]"" A8 (un(2) — va(2)).
In a similar way, when v, () < u,(z), we have

:—{an( NIy, L)Up(.L) an(,unN/4 (.L))up(L)}
—[an (1) vn () = an (pn un(2)) |08 (2) = an () un(2)) (V8 (x) — 0 ()]

. - _ l r.1— Un(2) VP (2) (v (2) — up (2
(2.9 == [ At = ) e 0 ) 0 (2) — ()

= o (1 1a(2) [ B0a) + (1= 0 @)™ 48 (o 0) = ().

Notice that (2.2) yields |A,,(x,0)] < 4(e — 1) and |a,(s)| < 1. Moreover, from (2.8), (2.9) and

Un () _

<1 for all 1] if
0< = 0 (a) 1 00u0) = or all 8 € [0, 1] if u, () < v,(z),
0< vn () <1 forall 0 € [0, 1] if v, (2) < un(x).

(1 —0)v,(z) + Ou,(z)

it follows that for some Cy > 0, which is independent of n,

[fa(@)] < Co{un(@)™" +va(2)" ™ Hun(z) — va(2)].



Recalling 1, — 0 and u,, v, — w; strongly in H'(RY), we sece that

Let w,, — ws € H weakly in H'(RY). Then, (2.7) gives

T
fn

_ < Cin, — 0.
| n, — UnHHl

H*

-1 .
— AW + Woo = pu¥' s, in RV,

which can be expressed as Vj(wi)we = 0 in H*. Thus, (2.5) implies w, = 0. However,
this yields w, — 0 strongly in LY(RY) for any ¢ € (2,2*) and (2.7) leads to the following
contradiction:

1
1= ||wn||?{1 < p/ / {(1 = 09)u, +«91}n}p_1 df w? dx + Cil|wp|lgp — 0 as n — oo.
RV Jo

Hence, there exists 79 € (0,1/2) such that G, .0 = { g } holds for any n € (0,70], L > 1,
a€ Ay and ) € R.
For the assertion of the regularity of A — gy, fix n € (0,10], L > 1 and a € Aj. Notice
that
Rx H>(\u)— d,K(a,n;\,u) € H*

is of class C'' and

(02K (a,m; A\, u) — Ug(u)] (@, ) =1 /R e (1) WM s+ pa(p ) | oy da

Therefore, by

||85K(6L, n; Av Ua,n;A) - \I]g((«{h) ||,C(H,H*)
< ||B§K(a, M5 A, Ugmn) — \I’g(ua,n;/\wg(H,H*) + {196 (uana) = qjg(wl)HE(H,H*)

and (2.2), for some '} > 0, we see that
sup{ ||83K(a,17; A, Ugp:n) — \Ilg(wl)HE(H’H*)

< Cuo+ 5up { 15 (ttar) = 5@ 11

neOm), L>1, ac A, )\GR}

ne0,m], L>1, a€ Ay, )\GR}.
By recalling po in (2.6) and shrinking 7y € (0,1/2) if necessary, Proposition 2.1 implies that

sup{ 02K (a,m; X, taysn) — \I/g(wl)HE(H’H*)

neOm), L>1, ac Ay, AeR}gpo.

From (2.6) we conclude that 92K (a,n; A, uqy:n) is invertible for every n € (0,m0), L > 1,
a € Ap and A € R. Since 9, K (a,n; A, ug ) = 0, the implicit function theorem and the fact
Samr = { U } = Gapn With b(a,n, X) € [bs/2,b1/9] yield that R 3 A = gy is of class
Ct. [ |

From here we fix 79 as in Proposition 2.2. To find a distinct %k critical points of R 3 A —
b(a, no; A), we notice that for av € [—nyg, 70, the equation

(2.10) ~Au+u=(1+a)|u'u inRY

has a unique radial positive solution given by (1 + )~ %/®Yw; and it is the mountain pass
solution. Therefore, the mountain pass value corresponding to (2.10) is (1 +a)~2/®=Ym,;. Now
we show the following result essentially obtained in [CiGalkTa-2]:



Proposition 2.3. As L — oo,

sup ‘b(a, 70;0) — (1 + 770)_2/(p_1)m1‘
acAp,
a=1on[L™1,1)

+ sup ‘b(a, 170;0) — (1 — 7]0)_2/(”_1)7711’ — 0.

a€EAL
a=—1on[L™1 1]

Proof. We may prove this proposition as in [CiGalkTa-2] and Proposition 2.1, and hence we
only give a sketch of the proof. We argue indirectly and suppose that there exist g > 0, (L),
and a, € A, such that

L,—o00, a,=1on L' L], & < ’b(amﬁo; 0) — (1 +10) %" Vi, .

Let u, € Sy, no0- Then u, > 0 in RY, (u,)2°, is bounded in H*(RY) through the Pohozaev
identity and we may assume u,, — Uy weakly in H'(R"). Since

(1 +man(s))st = (1+m0)sh  in Lig(R),

Uoo Satisfies

Vi - Vo + uxpdr = / (I+mno)ulpdx  for every p € H

RN RN

and

ol = [0 o = T [ (1) o = T

n— oo RN
Thus, u,, — U strongly in H*(RY) and

) pt1

]- 2 1 2
0 <biyp < §||Vuoo||2 + §||Uoo||2 - m”uooﬂpﬂ-

Hence, u,, is a positive radial solution of —Au+u = (1+n0)u? in RN and uq, = (1410) VP Yy,
which yields

1+n
p+1

p+1l

2 (p 1 1 .
(1+ng) 2 ® Dy, = §||V11,OOH§ + 5“1100]\3 - [ e nh_{lolo K(an,no;0,uy)

= lim b(ay,70;0).

n—oo
This is a contradiction. We can prove other assertion similarly and Proposition 2.3 holds. W
We now prove Theorem 1.3:

Proof of Theorem 1.3. Let n =19, L > 1 and a € A;. By Proposition 2.2, R 3 A — ug ) 1=
Ugpor € H is of class 1. Write vy \ () := p/4u, \(p'/%2). From (2.4), it follows that

1 1 _N/o—
(211) I\ v,) =u{§HVuu,AH§+§Hua,A F N G (1 (@) dw—ml}
R

= /L{K(CL, Mo )‘7 ua,/\) - ml}-



In particular, 8,1(\,v,) = 0 for any L > 1, a € A, and A € R. Furthermore, by p = e* and
(2.11),

8)\(1()\, Ua,/\))

1 N _ N
= u{—HV’uW\ ; — 2 1/ Ganeo (u 4 uay,\) dr — ml}
2 RN

N N
+ [L{ <5 + 1) M—%—l / Gano (u ua,A) dr — Zu‘%‘l / 9amo (ﬂua,x)ﬂua,x} dz.
RN RN

Since u, ) is a solution to

1
2
o T §Huu,/\

[z

N

—Au+u= u_%_lg(,ufu)ﬂ% in RV,

we have
_N_ N N
fuasle =050 [ oo ) ¥ o da
RN

and the Pohozaev identity holds:

N -2

1
0= 25 2l N [ Slhaaal = ¥ [ 6 () dol.
2 2 RN

Using these two equations, we obtain

2— N N
IO 0a) = 1] = el + 5 F 7 [ G (¥ ) o=
4 2 RN

1 2
=M §Hua,A||2—m1 :

Hence, to prove Theorem 1.3, it suffices to find suitable L > 1 and a € A}, so that the function
R > A I(\ v,,) admits at least & distinct critical points.
For our aim, thanks to Proposition 2.3, there exists Ly > 1 such that

(2.12) b(a,no;0) < my < b(a, —no;0) for every a € Ag,.

We fix ag € Ar, with ag = 1 on [Ly", L], set X} := 1 and choose N = 1 < M, < My < - < ),
so that
_ Ny _ Ny .. . . .
suppao(e 4 ) ﬂsuppao(e 1 J-) = for each 4, j with 7 # 7.

Then consider

a(s) := (—1)i_la0(6_%A§s>.

1=0

It is checked that @;(s) := a(eN*/4s) satisfies @;(s) = (—1)" on [Lg"', Lo] for i =0,...,k — 1
and a; € Ar,. Since (2.3) gives K(a,no; N, u) = K(a;, no; 0, u), it follows that

b(avn(); A;) = K(aﬂ?o; A;»Ua,/\;) = K(azvnﬂa O,U,L/\;) = b(azv Mo O)

Thus, we infer from (2.11) and (2.12) that

i» Va,\,
<mq ifiis odd, RN <0 if 4 is odd.

b(a,no; \;) {

> my if ¢ is even, o ) {> 0 if 7 is even,



Fori=1,...,k — 1, choose N € (A, X7, 1) so that I(Xi,vaji) = 0. As proved in [CiGalkTa-
1], since (A, v,,) — 0 as |[A\| = oo, by setting Xo = —o00 and Ay := oo, the function
s hig1) 2 A= 1 (A, va0) takes a strictly positive maximum (resp. negative minimum) in
(Xi,xi+1) when 7 is even (resp. odd). Thus, let \; € (XZ-,XM) be a maximum point (resp.
minimum point) when i is even (resp. odd). Then

0= ak(l()‘»”u,h))h:,\i foreachi=1,... k.

Since (A, v4.y,) is a solution of
1
—Au+ edu = (1+a(u))u? in RV, —/ w?dz = my,
2 RN

(A, (van;)), are k distinct solutions of (1.1) with m = m;. It is also clear that (14-a(s))s? # s?
and v, \, 7# w, since (A, v,,) > 0 if ¢ is even and (), v,),) < 0 if i is odd. This completes
the proof. [
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