The existence of L^2 -normalized solutions in the L^2 -critical setting

Norihisa Ikoma ¹

¹ Department of Mathematics, Faculty of Science and Technology, Keio University

Yagami Campus: 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 2238522, JAPAN

Abstract

The note surveys the result and idea of proof in [CiGaIkTa-1]. Moreover, the existence of multiple L^2 -normalized solutions is also given, which is not contained in [CiGaIkTa-1] and this result is motivated by [CiGaIkTa-2]. A proof of this multiplicity result is based on the uniqueness and nondegeneracy of positive radial solutions to $-\Delta u + u = |u|^{p-1}u$ in \mathbf{R}^N .

1 Introduction

The L²-normalized problem is to find a pair $(\mu, u) \in \mathbf{R} \times H^1(\mathbf{R}^N)$ satisfying

(1.1)
$$-\Delta u + \mu u = g(u) \quad \text{in } \mathbf{R}^N, \quad \frac{1}{2} \int_{\mathbf{R}^N} u^2 \, \mathrm{d}x = m.$$

Here $N \geq 2$, and $g \in C(\mathbf{R})$ and $m \in (0, \infty)$ are a given nonlinearity and a constant. The study of the existence of L^2 -normalized solutions and their properties are related to the stability of standing wave solutions of

$$(1.2) i\partial_t \psi + \Delta_x \psi + f(|\psi|)\psi = 0.$$

Here the standing wave solutions of (1.2) are solutions of the form $\psi(t, x) = e^{i\mu t}u(x)$. For the details, we refer to Cazenave [Ca03].

Pioneer works for (1.1) are [St80, St82, CaLi82] and recently the L^2 -normalized problem is actively studied. For references, we refer to [CiGaIkTa-1]. The aim of this note is to provide the result and idea of the proof in [CiGaIkTa-1] as well as to give another multiplicity result which is not given in [CiGaIkTa-1]. This multiplicity result is motivated by the function given in [CiGaIkTa-2]. To state the result in [CiGaIkTa-1], set

$$p := 1 + \frac{4}{N}.$$

This exponent plays an important role in the study of the L^2 -normalized problem. In what follows, we always assume the following condition:

(g1) Set $h(s) := g(s) - |s|^{p-1}s$. Then h satisfies

$$\lim_{s \to 0^+} \frac{h(s)}{|s|^{p-1}s} = 0, \quad \lim_{s \to \infty} \frac{h(s)}{s} = 0.$$

Notice that if g satisfies (g1), then this case is included in the L^2 -critical case. The L^2 -critical case is not well studied and references for this case are limited. Here we mention the works Schino [Sc22] (the existence of the minimizer) and Jeanjean, Zhang and Zhong [JeZhZh24] (the existence of positive solutions based on the fixed point index and continuation arguments).

The existence of positive solutions to (1.1) is delicate in the L^2 -critical case. In fact, it is known (cf. Kwong [Kw89]) that the equation

$$(1.3) -\Delta u + u = |u|^{p-1}u \text{in } \mathbf{R}^N, \quad u \in H^1(\mathbf{R}^N)$$

has a unique positive radial solution and we denote it by ω_1 . For any $\mu > 0$, the equation

$$-\Delta u + \mu u = u^p$$
 in \mathbf{R}^N , $u \in H^1(\mathbf{R}^N)$

admits a unique positive radial solution given by $\omega_{\mu}(x) := \mu^{1/(p-1)}\omega_1(\mu^{1/2}x) = \mu^{N/4}\omega_1(\mu^{1/2}x)$. Notice that

$$m_1 := \frac{1}{2} \|\omega_1\|_{L^2(\mathbf{R}^N)}^2 = \frac{1}{2} \|\omega_\mu\|_{L^2(\mathbf{R}^N)}^2$$
 for every $\mu > 0$.

On the other hand, if $(\mu, u) \in \mathbf{R} \times H^1(\mathbf{R}^N)$ is a solution of (1.1) with $g(s) = |s|^{p-1}s$, then u satisfies the Pohozaev identity (see Berestycki and Lions [BeLi83, Proposition 1]):

$$0 = \frac{N-2}{2} \|\nabla u\|_{L^{2}(\mathbf{R}^{N})}^{2} + N\left(\frac{\mu}{2} \|u\|_{L^{2}(\mathbf{R}^{N})}^{2} - \frac{1}{p+1} \|u\|_{L^{p+1}(\mathbf{R}^{N})}^{p+1}\right).$$

Since $\|\nabla u\|_{L^2(\mathbf{R}^N)}^2 + \mu \|u\|_{L^2(\mathbf{R}^N)}^2 = \|u\|_{L^{p+1}(\mathbf{R}^N)}^{p+1}$, it follows that

$$\mu \|u\|_{L^2(\mathbf{R}^N)}^2 = \left(\frac{N}{p+1} - \frac{N-2}{2}\right) \|u\|_{L^{p+1}(\mathbf{R}^N)}^{p+1} > 0,$$

which yields $\mu > 0$. Thus, (1.1) with $g(s) = |s|^{p-1}s$ admits a positive radial solution if and only if $m = m_1$.

By the above consideration, in [CiGaIkTa-1], the existence of positive solutions to (1.1) with $m = m_1$ is discussed and the following result is obtained:

Theorem 1.1 ([CiGaIkTa-1]). Suppose (g1) and the following condition:

(g2) There is no positive radial solution to $-\Delta u = g(u)$ in \mathbf{R}^N with $\nabla u \in L^2(\mathbf{R}^N)$ and $u \in L^{p+1}(\mathbf{R}^N)$.

Then (1.1) with $m=m_1$ admits a solution $(\mu,u)\in(0,\infty)\times H^1_{\mathrm{rad}}(\mathbf{R}^N)$ such that u>0 in \mathbf{R}^N .

Remark 1.2. (i) According to (g1) and the result by Alarcón, García-Melián and Quaas [AlGaQu16], when $2 \le N \le 4$ and g(s) > 0 for all s > 0, the equation

$$-\Delta u = g(u) \quad \text{in } \mathbf{R}^N$$

has no positive solution. Thus, in this case, (g2) is not necessary.

- (ii) A similar condition to (g2) is used in [JeZhZh24].
- (iii) One simple condition to verify (g2) is

$$0 \le \frac{N-2}{2}g(s)s - NG(s) \quad \text{in } [0, \infty).$$

For the details, see [CiGaIkTa-1].

1.1 Idea of proof of Theorem 1.1

To prove Theorem 1.1, without loss of generality, we may assume that g is odd. Indeed, since we are interested in positive solutions, we modify the values g(s) for $s \leq 0$ to obtain the odd extension \tilde{g} of g and use \tilde{g} instead of g. If the existence of positive solutions to (1.1) is shown with \tilde{g} , then these are also positive solutions of (1.1) with g. Therefore, from now on, we assume that g is odd in addition to (g1) and (g2).

In [CiGaIkTa-1], the Lagrangian function approach in Hirata and Tanaka [HiTa19] is utilized and critical points of the following functional are found:

$$I(\lambda, u) := \int_{\mathbf{R}^N} \frac{1}{2} |\nabla u|^2 - G(u) \, \mathrm{d}x + e^{\lambda} \left(\frac{1}{2} \int_{\mathbf{R}^N} u^2 \, \mathrm{d}x - m_1 \right) : \mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N) \to \mathbf{R}.$$

It is easily seen that any critical point (λ, u) of I is a solution of (1.1) with $\mu = e^{\lambda}$ and $m = m_1$. Inspired by works [BaLi90, BaLio97, Ta00], two minimax values \underline{b} and \overline{b} are introduced to find critical points of I. To define these values, by Gagliardo-Nirenberg's inequality and (g1), we shall prove that there exists some A > 0 such that

$$I(\lambda, u) \ge -2Am_1$$
 for each $(\lambda, u) \in \mathbf{R} \times H^1_{\text{rad}}(\mathbf{R}^N)$ with $\frac{1}{2} \int_{\mathbf{R}^N} u^2 \, \mathrm{d}x = m_1$.

Since $I(\lambda,0) \to -\infty$ as $\lambda \to \infty$ and $I(\lambda,tu) = -\infty$ as $t \to \infty$ when $u \not\equiv 0$, the set $\mathbf{R} \times \{u \in H^1_{\mathrm{rad}}(\mathbf{R}^N) \mid \frac{1}{2} \int_{\mathbf{R}^N} u^2 \, \mathrm{d}x = m_1\}$ separates

$$\{ (\lambda, u) \in \mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N) \mid I(\lambda, u) < -2Am_1 \}$$

into at least two parts. We next find $\zeta_0 \in C(\mathbf{R}, H^1_{rad}(\mathbf{R}^N))$ which enjoys the following properties:

(i)
$$I(\lambda, \zeta_0(\lambda)) < -2Am_1 - 1 - e^{\lambda}m_1$$
 for all $\lambda \in \mathbf{R}$;

(ii)
$$\frac{1}{2} \int_{\mathbf{R}^N} (\zeta_0(\lambda))^2 dx > m_1 \text{ for all } \lambda \in \mathbf{R};$$

(iii) As
$$|\lambda| \to \infty$$
, $\max_{0 \le t \le 1} I(\lambda, t\zeta_0(\lambda)) \to 0$.

Finally, we set

$$\gamma_0(\lambda, t) := (\lambda, t\zeta_0(\lambda)) : \mathbf{R} \times [0, 1] \to \mathbf{R} \times H^1_{\text{rad}}(\mathbf{R}^N),$$

$$\mathcal{C}(L) := \{((-\infty, -L] \cup [L, \infty)) \times [0, 1]\} \cup \{[-L, L] \times ([0, L^{-1}] \cup [1 - L^{-1}, 1])\}.$$

Then the values b and \overline{b} are defined as follows:

$$\underline{b} := \inf_{\gamma \in \underline{\Gamma}} \max_{0 \le t \le 1} I(\gamma(t)), \quad \overline{b} := \inf_{\gamma \in \overline{\Gamma}} \sup_{(\lambda, t) \in \mathbf{R} \times [0, 1]} I(\gamma(\lambda, t)),$$

where

$$\underline{\Gamma} := \left\{ \gamma \in C([0,1], \mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N)) \mid I(\gamma(0)) \ll 1, \ \gamma(1) = (\lambda_{\gamma}, \zeta_0(\lambda_{\gamma})) \text{ for some } \lambda_{\gamma} \in \mathbf{R} \right\},$$

$$\overline{\Gamma} := \left\{ \gamma \in C(\mathbf{R} \times [0,1], \mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N)) \mid \gamma = \gamma_0 \text{ on } C(L_{\gamma}) \text{ for some } L_{\gamma} > 1 \right\}.$$

We aim to prove that \underline{b} or \overline{b} is a critical value of I. To this end, we first establish

(1.4)
$$\underline{b} \le b(\lambda) \le \overline{b} \quad \text{for every } \lambda \in \mathbf{R}.$$

Here $b(\lambda)$ is the mountain pass value of the functional $H^1_{\mathrm{rad}}(\mathbf{R}^N) \ni u \mapsto I(\lambda, u)$:

$$b(\lambda) := \inf_{\gamma \in \Gamma_{\lambda}} \max_{0 \le t \le 1} I(\lambda, \gamma(t)),$$

$$\Gamma_{\lambda} := \left\{ \gamma \in C([0, 1], H^{1}_{\text{rad}}(\mathbf{R}^{N})) \mid \gamma(0) = 0, \ I(\lambda, \gamma(1)) < -e^{\lambda} m_{1} \right\}.$$

Since it can be shown that $b(\lambda) \to 0$ as $|\lambda| \to \infty$, (1.4) yields

$$\underline{b} \le 0 \le \overline{b}$$
.

From these two inequalities, we consider the following three cases:

(a)
$$\underline{b} < 0$$
, (b) $0 < \overline{b}$, (c) $\underline{b} = 0 = \overline{b}$.

In case (a) (resp. (b)), the value \underline{b} (resp. \overline{b}) becomes a critical value of I. In particular, if $\underline{b} < 0 < \overline{b}$ hold, then there are at least two positive solutions (λ_1, u_1) and (λ_2, u_2) of (1.1) with $m = m_1$ with $I(\lambda_1, u_1) = \underline{b} < 0 < \overline{b} = I(\lambda_2, u_2)$. On the other hand, in case (c), we may prove that for each $\lambda \in \mathbf{R}$, any positive mountain pass solution to

(1.5)
$$-\Delta u + e^{\lambda} u = g(u) \quad \text{in } \mathbf{R}^N, \quad u \in H^1_{\text{rad}}(\mathbf{R}^N)$$

turns out to be a positive solution of (1.1) with $m = m_1$. More precisely, let $\lambda \in \mathbf{R}$ and $u \in H^1_{\mathrm{rad}}(\mathbf{R}^N)$ be a solution of (1.5) corresponding to $b(\lambda)$. Notice that u can be chosen as a positive function. Then $\int_{\mathbf{R}^N} u^2 \, \mathrm{d}x = 2m_1$, and hence $(\lambda, u) \in \mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N)$ is a solution of (1.1). Thus, in case (c), there are infinitely many positive solutions of (1.1) with $m = m_1$. Though we may prove that case (c) occurs when $g(s) = |s|^{p-1}s$, it is not known that there is a nontrivial g in which case (c) holds.

To implement the above argument, in [CiGaIkTa-1], Palais-Smale-Pohozaev-Cerami sequences ((PSPC) sequences in short) and the Palais-Smale-Pohozaev-Cerami condition ((PSPC) condition in short) are introduced. Here $((\lambda_j, u_j))_{j=1}^{\infty} \subset \mathbf{R} \times H^1_{rad}(\mathbf{R}^N)$ is called a (PSPC) sequence at level $c \in \mathbf{R}$ ((PSPC)_c sequence in short) provided

(1.6)
$$I(\lambda_j, u_j) \to c, \quad \left(1 + \|u_j\|_{H^1(\mathbf{R}^N)}\right) \|\partial_u I(\lambda_j, u_j)\|_{(H^1_{\text{rad}}(\mathbf{R}^N))^*} \to 0,$$
$$|\partial_\lambda I(\lambda_j, u_j)| \to 0, \quad P(\lambda_j, u_j) \to 0,$$

where P is a functional corresponding to the Pohozaev identity defined by

$$P(\lambda, u) := \frac{N-2}{2} \int_{\mathbf{R}^N} |\nabla u|^2 dx + N \int_{\mathbf{R}^N} \frac{e^{\lambda}}{2} u^2 - G(u) dx.$$

Then I is said to satisfy the (PSPC)_c condition if every (PSPC)_c sequence is relatively compact in $\mathbf{R} \times H^1_{\mathrm{rad}}(\mathbf{R}^N)$. If we replace $(1 + \|u_j\|_{H^1(\mathbf{R}^N)})$ by 1 in (1.6), then this notion is introduced in [HiTa19]. Condition (1.6) is motivated by Cerami [Ce78] and under (g1) and (g2), I satisfies the (PSPC)_c condition for all $c \in \mathbf{R} \setminus \{0\}$. By this compactness condition, we may show that \underline{b} (resp. \overline{b}) is a critical value of I when $\underline{b} < 0$ (resp. $\overline{b} > 0$). On the other hand, in case (c), since $\underline{b} = 0 = \overline{b}$, this idea does not work. Instead, we use the existence of optimal path for $b(\lambda)$ due to Jeanjean and Tanaka [JeTa03].

1.2 Another multiplicity result

As pointed in Section 1.1, when $\underline{b} < 0 < \overline{b}$ and g is odd, (1.1) with $m = m_1$ has at least two positive solutions. In [CiGaIkTa-2], an example of g enjoying $\underline{b} < 0 < \overline{b}$ is also given. On the other hand, when case (c) happens, there are infinitely many positive solutions of (1.1) with $m = m_1$, however, we do not know examples of g other than $|s|^{p-1}s$ in which case (c) occurs.

In this note, we shall prove another multiplicity result motivated by [CiGaIkTa-2].

Theorem 1.3. For any $k \in \mathbb{N}$ there exists $g_k \in C(\mathbf{R})$ verifying (g1) and $g_k \not\equiv |s|^{p-1}s$ such that (1.1) with $g = g_k$ and $m = m_1$ has positive solutions $((\mu_i, u_i))_{i=1}^k \subset \mathbb{R} \times H^1_{\mathrm{rad}}(\mathbb{R}^N)$ such that

$$0 < \mu_1 < \mu_2 < \dots < \mu_k, \quad u_i > 0 \quad in \mathbf{R}^N \quad (1 \le i \le k),$$

 $u_i \ne \omega_\mu \quad for each \ i = 1, \dots, k \ and \ \mu \in (0, \infty).$

Though finding g_k in Theorem 1.3 is motivated by nonlinearities treated in [CiGaIkTa-2], the proof of Theorem 1.3 is different from [CiGaIkTa-1]. Indeed, for each $k \in \mathbb{N}$, we aim to find $g_k \in C(\mathbf{R})$ such that (g1) holds and

- (A) there exists $(u_{\lambda})_{\lambda \in \mathbf{R}} \subset H^1_{\mathrm{rad}}(\mathbf{R}^N)$ such that $\mathbf{R} \ni \lambda \mapsto u_{\lambda} \in H^1_{\mathrm{rad}}(\mathbf{R}^N)$ is of class C^1 and u_{λ} is a positive solution of (1.5) with $I(\lambda, u_{\lambda}) = b(\lambda)$ for each $\lambda \in \mathbf{R}$;
- (B) the function defined by $\mathbf{R} \ni \lambda \mapsto b(\lambda)$ admits critical points $-\infty < \lambda_1 < \lambda_2 < \cdots < \lambda_k < \infty$.

If (A) and (B) hold, then $((e^{\lambda_i}, u_{\lambda_i}))_{1 \leq i \leq k}$ are the desired solutions of (1.1) with $g = g_k$ and $m = m_1$. Indeed, since u_{λ_i} is a positive solution of (1.5), it is enough to prove $\int_{\mathbf{R}^N} |u_{\lambda_i}|^2 dx = 2m_1$. This can be seen from

$$0 = \frac{\mathrm{d}}{\mathrm{d}\lambda}b(\lambda)|_{\lambda = \lambda_i} = \frac{\mathrm{d}}{\mathrm{d}\lambda}I(\lambda, u_\lambda)|_{\lambda = \lambda_i} = \partial_\lambda I(\lambda_i, u_{\lambda_i}) + \partial_u I(\lambda_i, u_{\lambda_i}) \frac{\mathrm{d}}{\mathrm{d}\lambda}u_\lambda|_{\lambda = \lambda_i} = \partial_\lambda I(\lambda_i, u_{\lambda_i}).$$

In the rest of this note, we shall find g_k satisfying $g_k \not\equiv |s|^{p-1}s$, (g1), (A) and (B).

2 Proof of Theorem 1.3

As pointed in the end of Section 1.2, for any given $k \in \mathbb{N}$, we shall find $g_k \in C(\mathbb{R})$ satisfying $g_k \not\equiv |s|^{p-1}s$, (g1), (A) and (B).

Notation: In the rest of this note, we shall use the following notations.

(i) For any $q \in [1, \infty]$ and domain $\Omega \subset \mathbf{R}^N$,

$$\|u\|_{q,\Omega} := \begin{cases} \int_{\Omega} |u|^{q+1} dx & \text{when } 1 \leq q < \infty, \\ \operatorname{ess\,sup} |u| & \text{when } q = \infty. \end{cases}$$

When $\Omega = \mathbf{R}^N$, we simply write $\|u\|_{q,\mathbf{R}^N} = \|u\|_q$ and also introduce the following notation:

$$\langle u, v \rangle_{H^1} := \int_{\mathbf{R}^N} \nabla u \cdot \nabla v + uv \, \mathrm{d}x \,, \quad \|u\|_{H^1} := \sqrt{\langle u, u \rangle_{H^1}}.$$

- (ii) $H := H^1_{\mathrm{rad}}(\mathbf{R}^N)$.
- (iii) For each $\lambda \in \mathbf{R}$, write $\mu = e^{\lambda}$. For instance, I can be written as

$$I(\lambda, u) = \frac{1}{2} \|\nabla u\|_{2}^{2} - \int_{\mathbf{R}^{N}} G(u) + \mu \left(\frac{\|u\|_{2}^{2}}{2} - m_{1}\right).$$

Motivated by the nonlinearities treated in [CiGaIkTa-2], we shall treat the following class of nonlinearities:

(2.1)
$$g_{a,\eta}(s) := (1 + \eta a(s))s_+^p, \quad G_{a,\eta}(s) := \int_0^s g_{a,\eta}(t) dt = \int_0^s (1 + \eta a(t))t_+^p dt.$$

Here $s_{+} := \max\{0, s\}, \eta \in (0, 1/2]$ and a satisfies the following conditions for some $L \geq 1$:

(2.2)
$$a \in C_c^1((0,\infty)), -1 \le a(s) \le 1 \text{ for any } s \in \mathbf{R},$$

 $|a(s)| = 1 \text{ for all } s \in [1/L, L], |sa'(s)| \le 4(e-1) \text{ for every } s \in \mathbf{R}.$

Denote by \mathcal{A}_L the set of all a satisfying (2.2). We remark that for each $L \geq 1$, $\mathcal{A}_L \neq \emptyset$. Indeed, consider

$$a_0(s) := \begin{cases} 0 & \text{if } 0 \le s \le \frac{1}{4L}, \\ \log (4L(e-1)s + 2 - e) & \text{if } \frac{1}{4L} < s \le \frac{1}{2L}, \\ 1 & \text{if } \frac{1}{2L} \le s \le 2L, \\ 1 - \log \left(\frac{e-1}{2L}s + 2 - e\right) & \text{if } 2L < s \le 4L, \\ 0 & \text{if } 4L < s. \end{cases}$$
Example 2. Continuous and $|sa_2'(s)| \le 2(e-1)$ for any $s \in [0, \infty) \setminus \{1, e^{-1}\}$.

Since a_0 is Lipschitz continuous and $|sa_0'(s)| \leq 2(e-1)$ for any $s \in [0, \infty) \setminus \{1/4L, 1/2L, 2L, 4L\}$, using a mollifier, we may find a with $a \in \mathcal{A}_L$. Remark also that if $a \in \mathcal{A}_L$, then $-a \in \mathcal{A}_L$.

It is immediate to verify that $g_{a,\eta}$ satisfies (g1) for any $\eta \in (0, 1/2]$, $L \geq 1$ and $a \in \mathcal{A}_L$. Moreover, from (2.1) and (2.2) it follows that for each $\eta > 0$ and $a \in \mathcal{A}_L$,

$$\mu^{-N/4-1}g_{a,\eta}(\mu^{N/4}s) = (1 + \eta a(\mu^{N/4}s))s_+^p$$

and

(2.3)
$$\mu^{-N/2-1}G_{a,\eta}(\mu^{N/4}s) = \mu^{-N/2-1} \int_0^{\mu^{N/4}s} (1+\eta a(\tau))\tau_+^p d\tau = \int_0^s (1+\eta a(\mu^{N/4}t))t_+^p dt = G_{a(\mu^{N/4}\cdot),\eta}(s).$$

Let $a \in \mathcal{A}_L$ and set

$$I(a, \eta; \lambda, u) := \frac{1}{2} \|\nabla u\|_2^2 - \int_{\mathbf{R}^N} G_{a, \eta}(u) \, \mathrm{d}x + \mu \left(\frac{1}{2} \|u\|_2^2 - m_1\right).$$

For our aim, it is convenient to introduce a scaled functional of I. More precisely, for $u \in H$, write $u_{\lambda}(x) := \mu^{N/4} u(\mu^{1/2} x)$ and $a_{\mu}(s) := a(\mu^{N/4} s)$. Then it follows from (2.3) that

(2.4)
$$I(a, \eta; \lambda, u_{\lambda}) = \mu \left\{ \frac{1}{2} \|\nabla u\|_{2}^{2} + \frac{1}{2} \|u\|_{2}^{2} - \mu^{-N/2-1} \int_{\mathbf{R}^{N}} G_{a,\eta} (\mu^{N/4} u(x)) dx - m_{1} \right\}$$
$$= \mu \left\{ \frac{1}{2} \|\nabla u\|_{2}^{2} + \frac{1}{2} \|u\|_{2}^{2} - \int_{\mathbf{R}^{N}} G_{a_{\mu},\eta}(u) dx - m_{1} \right\}$$
$$=: \mu \left\{ K(a, \eta; \lambda, u) - m_{1} \right\}.$$

We shall also write $b(a, \eta; \lambda)$ for the mountain pass value of $H \ni u \mapsto K(a, \eta; \lambda, u)$:

$$\begin{split} b(a,\eta;\lambda) &:= \inf_{\gamma \in \Gamma(a,\eta;\lambda)} \max_{0 \leq t \leq 1} K(a,\eta;\lambda,\gamma(t)), \\ \Gamma(a,\eta;\lambda) &:= \big\{ \; \gamma \in C([0,1], H \mid \gamma(0) = 0, \; K(a,\eta;\lambda,\gamma(1)) < 0 \; \big\} \,. \end{split}$$

It is known that $b(a, \eta; \lambda)$ is a critical value of $K(a, \eta; \lambda, \cdot)$ for each $a \in \mathcal{A}_L$, $\eta \in [-1/2, 1/2]$ and $\lambda \in \mathbf{R}$ (see [BeGaKa83, BeLi83, JeTa03]) and set

$$S_{a,\eta;\lambda} := \{ u \in H \mid \partial_u K(a,\eta;\lambda,u) = 0, K(a,\eta;\lambda,u) = b(a,\eta;\lambda) \}.$$

Since each $u \in \mathcal{S}_{a,n;\lambda}$ satisfies

$$0 = \partial_u K(a, \eta; \lambda, u) u^- = - \|u^-\|_{H^1}^2,$$

we have $u \geq 0$. By $K(a, \eta; \lambda, u) = b(a, \eta; \lambda) > 0$ and $u \not\equiv 0$, the strong maximum principle yields u > 0 in \mathbf{R}^N .

We next introduce

$$K_{1/2}(u) := \int_{\mathbf{R}^N} \frac{1}{2} |\nabla u|^2 + \frac{1}{2} u^2 - \frac{|u|^{p+1}}{2(p+1)} \, \mathrm{d}x, \quad K_{3/2}(u) := \int_{\mathbf{R}^N} \frac{1}{2} |\nabla u|^2 + \frac{1}{2} u^2 - \frac{3|u|^{p+1}}{2(p+1)} \, \mathrm{d}x$$

and write $b_{1/2}$ and $b_{3/2}$ for the mountain pass value of $K_{1/2}$ and $K_{3/2}$. Since

$$\frac{1}{2(p+1)}s_{+}^{p+1} \le G_{a_{\mu},\eta}(s) \le \frac{3}{2(p+1)}s_{+}^{p+1} \quad \text{for all } s \in \mathbf{R}, \ \eta \in \left(0, \frac{1}{2}\right], \ L \ge 1, \ a \in \mathcal{A}_L,$$

it follows that for each $(\lambda, u) \in \mathbf{R} \times H$, $\eta \in (0, 1/2]$, $L \ge 1$ and $a \in \mathcal{A}_L$,

$$K_{3/2}(u) \le K(a, \eta; \lambda, u) \le K_{1/2}(u),$$

which gives

$$0 < b_{3/2} \le b(a, \eta; \lambda) \le b_{1/2}$$
 for any $L \ge 1$, $a \in \mathcal{A}_L$, $\lambda \in \mathbf{R}$.

Now we set

$$\mathcal{G}_{a,\eta;\lambda} := \left\{ u \in H \mid K(a,\eta;\lambda,u) \in \left[\frac{b_{3/2}}{2}, 2b_{1/2} \right], \ \partial_u K(a,\eta;\lambda,u) = 0 \right\}.$$

It is easily seen that $\emptyset \neq \mathcal{S}_{a,\eta;\lambda} \subset \mathcal{G}_{a,\eta;\lambda}$.

In order to state a next result, we define Ψ_0 by

$$\Psi_0(u) := \int_{\mathbf{R}^N} \frac{1}{2} |\nabla u|^2 + \frac{1}{2} u^2 - \frac{|u|^{p+1}}{p+1} \, \mathrm{d}x \in C^2(H, \mathbf{R}).$$

Remark that Ψ_0 corresponds to (1.3) and any critical point of Ψ_0 gives a solution of (1.3). Thanks to [Kw89], Ψ_0 has only one critical point in H, which is positive in \mathbf{R}^N .

Proposition 2.1. For any $\varepsilon > 0$ there exists $\eta_{\varepsilon} \in (0, 1/2)$ such that

$$\sup \left\{ \left| K(a, \eta; \lambda, u) - m_1 \right| + \left\| u - \omega_1 \right\|_{H^1} \middle| \begin{array}{l} \lambda \in \mathbf{R}, & \eta \in (0, \eta_{\varepsilon}], & L \ge 1, \\ a \in \mathcal{A}_L, & u \in \mathcal{G}_{a, \eta; \lambda} \end{array} \right\} < \varepsilon.$$

In particular, $b(a, \eta, \lambda) \to m_1 \in [b_{3/2}, b_{1/2}]$ as $\eta \to 0^+$ uniformly with respect to $L \ge 1$, $a \in \mathcal{A}_L$ and $\lambda \in \mathbf{R}$.

Proof. We argue by contradiction and suppose that there exist $\varepsilon_0 > 0$, $(\eta_n)_{n=1}^{\infty}$, $(\lambda_n)_{n=1}^{\infty}$, $(L_n)_{n=1}^{\infty}$, $a_n \in \mathcal{A}_{L_n}$ and $u_n \in \mathcal{G}_{a_n,\eta_n;\lambda_n}$ such that

$$\eta_n \to 0$$
, $|K(a_n, \eta_n; \lambda_n, u_n) - m_1| + ||u_n - \omega_1||_{H^1} \ge \varepsilon_0$.

By $u_n \in \mathcal{G}_{a_n,\eta_n;\lambda_n}$, $(K(a_n,\eta_n;\lambda_n,u_n))_{n=1}^{\infty}$ is bounded, and hence we may assume

$$K(a_n, \eta_n; \lambda_n, u_n) \to b_\infty \in \left[\frac{b_{3/2}}{2}, 2b_{1/2}\right].$$

Furthermore, since $\partial_u K(a_n, \eta_n; \lambda_n, u_n) = 0$, the Pohozaev identity holds:

$$0 = \frac{N-2}{2} \|\nabla u_n\|_2^2 - N \int_{\mathbf{R}^N} \frac{1}{2} u_n^2 - G_{(a_n)\mu_n,\eta_n}(u_n) \, \mathrm{d}x = NK(a_n,\eta_n;\lambda_n,u_n) - \|\nabla u_n\|_2^2.$$

Thus, $(\nabla u_n)_n$ is bounded in $L^2(\mathbf{R}^N)$.

Next, since $||a_n||_{L^{\infty}(\mathbf{R})} = 1$, the Gagliardo-Nirenberg's inequality gives

$$b_{\infty} + o(1) = K(a_n, \eta_n; \lambda_n, u_n) - \frac{\partial_u K(a_n, \eta_n; \lambda_n, u_n) u_n}{p+1}$$

$$\geq \frac{p-1}{2(p+1)} \|u_n\|_{H^1}^2 - C\eta_n \|u_n\|_{p+1}^{p+1} \geq \frac{p-1}{2(p+1)} \|u_n\|_{H^1}^2 - C\eta_n \|\nabla u_n\|_2^2 \|u_n\|_2^{4/N}.$$

By $\eta_n \to 0$, $N \geq 2$ and the boundedness of $(\|\nabla u_n\|_2)_n$, we see that $(u_n)_{n=1}^{\infty}$ is bounded in H. Taking a subsequence if necessary, we may suppose $u_n \to u_{\infty}$ weakly in H and $u_n \to u_{\infty}$ strongly in $L^q(\mathbf{R}^N)$ for all $q \in (2, 2^*)$. The fact $u_n > 0$ in \mathbf{R}^N implies $u_{\infty} \geq 0$ in \mathbf{R}^N . Since $\eta_n(a_n)_{\mu_n} \to 0$ strongly in $L^{\infty}(\mathbf{R})$, it follows that

$$\int_{\mathbf{R}^N} \nabla u_{\infty} \cdot \nabla \varphi + u_{\infty} \varphi - u_{\infty}^p \varphi \, \mathrm{d}x = 0 \quad \text{for any } \varphi \in H,$$

that is $\Psi'_0(u_\infty) = 0$ and u_∞ is a solution of (1.3). Moreover, notice that

$$\|u_{\infty}\|_{H^{1}}^{2} \leq \liminf_{n \to \infty} \|u_{n}\|_{H^{1}}^{2} = \int_{\mathbf{R}^{N}} \left(1 + \eta_{n} a_{n} \left(\mu_{n}^{N/4} u_{n}(x)\right)\right) u_{n}^{p+1} dx \to \int_{\mathbf{R}^{N}} u_{\infty}^{p+1} dx = \|u_{\infty}\|_{H^{1}}^{2},$$

which gives $u_n \to u_\infty$ strongly in H. In particular,

$$0 < \frac{b_{3/2}}{2} \le \Psi_0(u_\infty) = \lim_{n \to \infty} K(a_n, \eta_n; \lambda_n, u_n) \le 2b_{1/2},$$

which means that u_{∞} is a radial positive solution of (1.3) and $u_{\infty} = \omega_1$ holds by [Kw89]. Using the Pohozaev identity

$$0 = \frac{N-2}{2} \|\nabla \omega_1\|_2^2 + N \int_{\mathbf{R}^N} \frac{\omega_1^2}{2} - \frac{\omega_1^{p+1}}{p+1} \, \mathrm{d}x, \quad \frac{1}{2} \|\omega_1\|_2^2 = m_1,$$

we observe that $m_1 = \Psi_0(u_\infty)$. This leads to the following contradiction:

$$0 < \varepsilon_0 \le \lim_{n \to \infty} \{ |K(a_n, \mu_n; \lambda_n, u_n) - m_1| + ||u_n - \omega_1||_{H^1} \} = 0.$$

Thus, Proposition 2.1 holds.

To proceed, we remark that ω_1 is nondegenerate thanks to [Kw89], namely,

(2.5)
$$\Psi_0''(\omega_1): H \to H^* \text{ is invertible.}$$

Thus, there exists $\rho_0 > 0$ such that for $T \in \mathcal{L}(H, H^*)$,

(2.6)
$$||T - \Psi_0''(\omega_1)||_{\mathcal{L}(H,H^*)} \le \rho_0 \quad \Rightarrow \quad T \text{ is invertible.}$$

Proposition 2.2. There exists $\eta_0 \in (0, 1/2)$ such that for each $\eta \in (0, \eta_0]$, $L \geq 1$, $a \in \mathcal{A}_L$ and $\lambda \in \mathbf{R}$, $\mathcal{G}_{a,\eta;\lambda} = \{u_{a,\eta;\lambda}\} = \mathcal{S}_{a,\eta;\lambda}$ and the map $\mathbf{R} \ni \lambda \mapsto u_{a,\eta;\lambda} \in H$ is of class C^1 . In particular, $\mathbf{R} \ni \lambda \mapsto b(a, \eta; \lambda) \in \mathbf{R}$ is of class C^1 .

Proof. We first prove $\mathcal{G}_{a,\eta;\lambda} = \{ u_{a,\eta;\lambda} \} (= \mathcal{S}_{a,\eta;\lambda})$ by contradiction and suppose that there exist $(\eta_n)_n, (L_n)_n, a_n \in \mathcal{A}_{L_n}, (\lambda_n)_n$ and $u_n, v_n \in \mathcal{G}_{a_n,\eta_n;\lambda_n}$ so that

$$\eta_n \to 0, \quad u_n \neq v_n.$$

By Proposition 2.1 we know that $||u_n - \omega_1||_{H^1} \to 0$ and $||v_n - \omega_1||_{H^1} \to 0$. Set

$$w_n(x) := \frac{u_n(x) - v_n(x)}{\|u_n - v_n\|_{H^1}}.$$

Since $\partial_u K(a_n, \eta_n; \lambda_n, u_n) = 0 = \partial_u K(a_n, \eta_n; \lambda_n, v_n)$, it follows that

$$(2.7) \quad -\Delta w_n + w_n = \frac{1}{\|u_n - v_n\|_{H^1}} \left[(u_n^p - v_n^p) + \eta_n \left(a_n \left(\mu_n^{N/4} u_n(x) \right) u_n^p - a_n \left(\mu_n^{N/4} v_n(x) \right) v_n^p(x) \right) \right]$$

$$= p \int_0^1 \left(\theta u_n + (1 - \theta) v_n \right)^{p-1} d\theta \, w_n + \frac{\eta_n}{\|u_n - v_n\|_{H^1}} f_n,$$

where

$$f_n(x) := a_n \left(\mu_n^{N/4} u_n(x) \right) u_n^p(x) - a_n \left(\mu_n^{N/4} v_n(x) \right) v_n^p(x).$$

By writing

$$A_n(x,\theta) := a'_n \left(\mu_n^{N/4} [\theta u_n(x) + (1-\theta)v_n(x)] \right) \mu_n^{N/4} [\theta u_n(x) + (1-\theta)v_n(x)],$$

it is readily checked that if $u_n(x) < v_n(x)$, then

$$f_{n}(x) = \left[a_{n}\left(\mu_{n}^{N/4}u_{n}(x)\right) - a_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right)\right]u_{n}^{p}(x) + a_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right)\left[u_{n}^{p}(x) - v_{n}^{p}(x)\right]$$

$$= \int_{0}^{1} a'_{n}\left(\mu_{n}^{N/4}\left[\theta u_{n}(x) + (1-\theta)v_{n}(x)\right]\right) d\theta \,\mu_{n}^{N/4}\left(u_{n}(x) - v_{n}(x)\right)u_{n}^{p}(x)$$

$$+ pa_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right)\int_{0}^{1} \left[\theta u_{n}(x) + (1-\theta)v_{n}(x)\right]^{p-1} d\theta \,(u_{n}(x) - v_{n}(x))$$

$$= \int_{0}^{1} A_{n}(x,\theta) \frac{u_{n}(x)}{(1-\theta)u_{n}(x) + \theta v_{n}(x)} d\theta \,u_{n}^{p-1}(x)\left(u_{n}(x) - v_{n}(x)\right)$$

$$+ pa_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right)\int_{0}^{1} \left[\theta u_{n}(x) + (1-\theta)v_{n}(x)\right]^{p-1} d\theta \,(u_{n}(x) - v_{n}(x)).$$

In a similar way, when $v_n(x) < u_n(x)$, we have

$$f_{n}(x) = -\left\{a_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right)v_{n}^{p}(x) - a_{n}\left(\mu_{n}^{N/4}u_{n}(x)\right)u_{n}^{p}(x)\right\}$$

$$= -\left[a_{n}\left(\mu_{n}^{N/4}v_{n}(x)\right) - a_{n}\left(\mu_{n}^{N/4}u_{n}(x)\right)\right]v_{n}^{p}(x) - a_{n}\left(\mu_{n}^{N/4}u_{n}(x)\right)\left[v_{n}^{p}(x) - u_{n}^{p}(x)\right]$$

$$= -\int_{0}^{1}A_{n}(x, 1 - \theta)\frac{v_{n}(x)}{\theta v_{n}(x) + (1 - \theta)u_{n}(x)} d\theta v_{n}^{p-1}(x)(v_{n}(x) - u_{n}(x))$$

$$- pa_{n}\left(\mu_{n}^{N/4}u_{n}(x)\right)\int_{0}^{1}\left[\theta v_{n}(x) + (1 - \theta)u_{n}(x)\right]^{p-1} d\theta \left(v_{n}(x) - u_{n}(x)\right).$$

Notice that (2.2) yields $|A_n(x,\theta)| \le 4(e-1)$ and $|a_n(s)| \le 1$. Moreover, from (2.8), (2.9) and

$$0 < \frac{u_n(x)}{(1-\theta)u_n(x) + \theta v_n(x)} \le 1 \quad \text{for all } \theta \in [0,1] \text{ if } u_n(x) < v_n(x),$$

$$0 < \frac{v_n(x)}{(1-\theta)v_n(x) + \theta u_n(x)} \le 1 \quad \text{for all } \theta \in [0,1] \text{ if } v_n(x) < u_n(x).$$

it follows that for some $C_0 > 0$, which is independent of n,

$$|f_n(x)| \le C_0 \{u_n(x)^{p-1} + v_n(x)^{p-1}\} |u_n(x) - v_n(x)|.$$

Recalling $\eta_n \to 0$ and $u_n, v_n \to \omega_1$ strongly in $H^1(\mathbf{R}^N)$, we see that

$$\left\| \frac{\eta_n}{\|u_n - v_n\|_{H^1}} f_n \right\|_{H^*} \le C_1 \eta_n \to 0.$$

Let $w_n \rightharpoonup w_\infty \in H$ weakly in $H^1(\mathbf{R}^N)$. Then, (2.7) gives

$$-\Delta w_{\infty} + w_{\infty} = p\omega_1^{p-1} w_{\infty} \quad \text{in } \mathbf{R}^N,$$

which can be expressed as $\Psi_0''(\omega_1)w_{\infty} = 0$ in H^* . Thus, (2.5) implies $w_{\infty} \equiv 0$. However, this yields $w_n \to 0$ strongly in $L^q(\mathbf{R}^N)$ for any $q \in (2, 2^*)$ and (2.7) leads to the following contradiction:

$$1 = \|w_n\|_{H^1}^2 \le p \int_{\mathbf{R}^N} \int_0^1 \left\{ (1 - \theta)u_n + \theta v_n \right\}^{p-1} d\theta \, w_n^2 dx + C_1 \eta_n \|w_n\|_{H^1} \to 0 \quad \text{as } n \to \infty.$$

Hence, there exists $\eta_0 \in (0, 1/2)$ such that $\mathcal{G}_{a,\eta;\lambda} = \{u_{a,\eta;\lambda}\}$ holds for any $\eta \in (0, \eta_0], L \geq 1$, $a \in \mathcal{A}_L$ and $\lambda \in \mathbf{R}$.

For the assertion of the regularity of $\lambda \mapsto u_{a,\eta;\lambda}$, fix $\eta \in (0,\eta_0]$, $L \geq 1$ and $a \in \mathcal{A}_L$. Notice that

$$\mathbf{R} \times H \ni (\lambda, u) \mapsto \partial_u K(a, \eta; \lambda, u) \in H^*$$

is of class C^1 and

$$\left[\partial_u^2 K(a,\eta;\lambda,u) - \Psi_0''(u)\right](\varphi,\psi) = \eta \int_{\mathbf{R}^N} \left[a'\left(\mu^{N/4}u\right)\mu^{N/4}u_+ + pa(\mu^{N/4}u)\right]u_+^{p-1}\varphi\psi \,\mathrm{d}x \,.$$

Therefore, by

$$\begin{aligned} & \left\| \partial_{u}^{2} K(a, \eta; \lambda, u_{a, \eta; \lambda}) - \Psi_{0}''(\omega_{1}) \right\|_{\mathcal{L}(H, H^{*})} \\ & \leq & \left\| \partial_{u}^{2} K(a, \eta; \lambda, u_{a, \eta; \lambda}) - \Psi_{0}''(u_{a, \eta; \lambda}) \right\|_{\mathcal{L}(H, H^{*})} + \left\| \Psi_{0}''(u_{a, \eta; \lambda}) - \Psi_{0}''(\omega_{1}) \right\|_{\mathcal{L}(H, H^{*})} \end{aligned}$$

and (2.2), for some $C_1 > 0$, we see that

$$\sup \left\{ \|\partial_u^2 K(a, \eta; \lambda, u_{a, \eta; \lambda}) - \Psi_0''(\omega_1)\|_{\mathcal{L}(H, H^*)} \mid \eta \in (0, \eta_0], \ L \ge 1, \ a \in \mathcal{A}_L, \ \lambda \in \mathbf{R} \right\}$$

$$\le C_1 \eta_0 + \sup \left\{ \|\Psi_0''(u_{a, \eta; \lambda}) - \Psi_0''(\omega_1)\|_{\mathcal{L}(H, H^*)} \mid \eta \in (0, \eta_0], \ L \ge 1, \ a \in \mathcal{A}_L, \ \lambda \in \mathbf{R} \right\}.$$

By recalling ρ_0 in (2.6) and shrinking $\eta_0 \in (0, 1/2)$ if necessary, Proposition 2.1 implies that

$$\sup \left\{ \left\| \partial_u^2 K(a, \eta; \lambda, u_{a, \eta; \lambda}) - \Psi_0''(\omega_1) \right\|_{\mathcal{L}(H, H^*)} \mid \eta \in (0, \eta_0], \ L \ge 1, \ a \in \mathcal{A}_L, \ \lambda \in \mathbf{R} \right\} \le \rho_0.$$

From (2.6) we conclude that $\partial_u^2 K(a, \eta; \lambda, u_{a,\eta;\lambda})$ is invertible for every $\eta \in (0, \eta_0]$, $L \geq 1$, $a \in \mathcal{A}_L$ and $\lambda \in \mathbf{R}$. Since $\partial_u K(a, \eta; \lambda, u_{a,\eta;\lambda}) = 0$, the implicit function theorem and the fact $S_{a,\eta;\lambda} = \{u_{a,\eta;\lambda}\} = \mathcal{G}_{a,\eta;\lambda}$ with $b(a,\eta,\lambda) \in [b_{3/2}, b_{1/2}]$ yield that $\mathbf{R} \ni \lambda \mapsto u_{a,\eta;\lambda}$ is of class C^1 .

From here we fix η_0 as in Proposition 2.2. To find a distinct k critical points of $\mathbf{R} \ni \lambda \mapsto b(a, \eta_0; \lambda)$, we notice that for $\alpha \in [-\eta_0, \eta_0]$, the equation

(2.10)
$$-\Delta u + u = (1+\alpha)|u|^{p-1}u \text{ in } \mathbf{R}^{N}$$

has a unique radial positive solution given by $(1 + \alpha)^{-1/(p-1)}\omega_1$ and it is the mountain pass solution. Therefore, the mountain pass value corresponding to (2.10) is $(1+\alpha)^{-2/(p-1)}m_1$. Now we show the following result essentially obtained in [CiGaIkTa-2]:

Proposition 2.3. As $L \to \infty$,

$$\sup_{\substack{a \in \mathcal{A}_L \\ a=1 \text{ on } [L^{-1}, L]}} \left| b(a, \eta_0; 0) - (1 + \eta_0)^{-2/(p-1)} m_1 \right|$$

$$+ \sup_{\substack{a \in \mathcal{A}_L \\ a=-1 \text{ on } [L^{-1}, L]}} \left| b(a, \eta_0; 0) - (1 - \eta_0)^{-2/(p-1)} m_1 \right| \to 0.$$

Proof. We may prove this proposition as in [CiGaIkTa-2] and Proposition 2.1, and hence we only give a sketch of the proof. We argue indirectly and suppose that there exist $\varepsilon_0 > 0$, $(L_n)_n$ and $a_n \in \mathcal{A}_{L_n}$ such that

$$L_n \to \infty$$
, $a_n \equiv 1$ on $[L_n^{-1}, L_n]$, $\varepsilon_0 \le |b(a_n, \eta_0; 0) - (1 + \eta_0)^{-2/(p-1)} m_1|$.

Let $u_n \in \mathcal{S}_{a_n,\eta_0;0}$. Then $u_n > 0$ in \mathbf{R}^N , $(u_n)_{n=1}^{\infty}$ is bounded in $H^1(\mathbf{R}^N)$ through the Pohozaev identity and we may assume $u_n \rightharpoonup u_{\infty}$ weakly in $H^1(\mathbf{R}^N)$. Since

$$(1 + \eta_0 a_n(s)) s_+^p \to (1 + \eta_0) s_+^p \text{ in } L_{loc}^{\infty}(\mathbf{R}),$$

 u_{∞} satisfies

$$\int_{\mathbf{R}^N} \nabla u_{\infty} \cdot \nabla \varphi + u_{\infty} \varphi \, \mathrm{d}x = \int_{\mathbf{R}^N} (1 + \eta_0) u_{\infty}^p \varphi \, \mathrm{d}x \quad \text{for every } \varphi \in H$$

and

$$||u_{\infty}||_{H^{1}}^{2} = \int_{\mathbf{R}^{N}} (1+\eta_{0}) u_{\infty}^{p+1} dx = \lim_{n \to \infty} \int_{\mathbf{R}^{N}} (1+\eta_{0} a_{n}(u_{n})) u_{n}^{p+1} dx = \lim_{n \to \infty} ||u_{n}||_{H^{1}}^{2}.$$

Thus, $u_n \to u_\infty$ strongly in $H^1(\mathbf{R}^N)$ and

$$0 < b_{1/2} \le \frac{1}{2} \|\nabla u_{\infty}\|_{2}^{2} + \frac{1}{2} \|u_{\infty}\|_{2}^{2} - \frac{1 + \eta_{0}}{p+1} \|u_{\infty}\|_{p+1}^{p+1}.$$

Hence, u_{∞} is a positive radial solution of $-\Delta u + u = (1 + \eta_0)u^p$ in \mathbf{R}^N and $u_{\infty} = (1 + \eta_0)^{-1/(p-1)}\omega_1$, which yields

$$(1+\eta_0)^{-2/(p-1)}m_1 = \frac{1}{2}\|\nabla u_\infty\|_2^2 + \frac{1}{2}\|u_\infty\|_2^2 - \frac{1+\eta_0}{p+1}\|u_\infty\|_{p+1}^{p+1} = \lim_{n\to\infty} K(a_n, \eta_0; 0, u_n)$$
$$= \lim_{n\to\infty} b(a_n, \eta_0; 0).$$

This is a contradiction. We can prove other assertion similarly and Proposition 2.3 holds.

We now prove Theorem 1.3:

Proof of Theorem 1.3. Let $\eta = \eta_0$, $L \ge 1$ and $a \in \mathcal{A}_L$. By Proposition 2.2, $\mathbf{R} \ni \lambda \mapsto u_{a,\lambda} := u_{a,\eta_0;\lambda} \in H$ is of class C^1 . Write $v_{a,\lambda}(x) := \mu^{N/4} u_{a,\lambda}(\mu^{1/2} x)$. From (2.4), it follows that

$$(2.11) I(\lambda, v_{a,\lambda}) = \mu \left\{ \frac{1}{2} \|\nabla u_{a,\lambda}\|_{2}^{2} + \frac{1}{2} \|u_{a,\lambda}\|_{2}^{2} - \mu^{-N/2-1} \int_{\mathbf{R}^{N}} G_{a,\eta_{0}}(\mu^{N/4} u_{a,\lambda}(x)) dx - m_{1} \right\}$$
$$= \mu \{ K(a, \eta_{0}; \lambda, u_{a,\lambda}) - m_{1} \}.$$

In particular, $\partial_u I(\lambda, v_{a,\lambda}) = 0$ for any $L \geq 1$, $a \in \mathcal{A}_L$ and $\lambda \in \mathbf{R}$. Furthermore, by $\mu = e^{\lambda}$ and (2.11),

$$\begin{split} &\partial_{\lambda}(I(\lambda, v_{a,\lambda})) \\ &= \mu \bigg\{ \frac{1}{2} \|\nabla u_{a,\lambda}\|_{2}^{2} + \frac{1}{2} \|u_{a,\lambda}\|_{2}^{2} - \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^{N}} G_{a,\eta_{0}} \Big(\mu^{\frac{N}{4}} u_{a,\lambda} \Big) \, \mathrm{d}x - m_{1} \bigg\} \\ &+ \mu \bigg\{ \Big(\frac{N}{2} + 1 \Big) \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^{N}} G_{a,\eta_{0}} \Big(\mu^{\frac{N}{4}} u_{a,\lambda} \Big) \, \mathrm{d}x - \frac{N}{4} \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^{N}} g_{a,\eta_{0}} \Big(\mu^{\frac{N}{4}} u_{a,\lambda} \Big) \mu^{\frac{N}{4}} u_{a,\lambda} \bigg\} \, \mathrm{d}x \,. \end{split}$$

Since $u_{a,\lambda}$ is a solution to

$$-\Delta u + u = \mu^{-\frac{N}{2} - 1} g(\mu^{\frac{N}{4}} u) \mu^{\frac{N}{4}}$$
 in \mathbf{R}^{N} ,

we have

$$\|u_{a,\lambda}\|_{H^1}^2 = \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^N} g\left(\mu^{\frac{N}{4}} u_{a,\lambda}\right) \mu^{\frac{N}{4}} u_{a,\lambda} \, \mathrm{d}x$$

and the Pohozaev identity holds:

$$0 = \frac{N-2}{2} \|\nabla u_{a,\lambda}\|_{2}^{2} + N \left[\frac{1}{2} \|u_{a,\lambda}\|_{2}^{2} - \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^{N}} G(\mu^{\frac{N}{4}} u_{a,\lambda}) dx \right].$$

Using these two equations, we obtain

$$\partial_{\lambda}(I(\lambda, v_{a,\lambda})) = \mu \left\{ \frac{2-N}{4} \|u_{a,\lambda}\|_{H^{1}}^{2} + \frac{N}{2} \mu^{-\frac{N}{2}-1} \int_{\mathbf{R}^{N}} G\left(\mu^{\frac{N}{4}} u_{a,\lambda}\right) dx - m_{1} \right\}$$
$$= \mu \left\{ \frac{1}{2} \|u_{a,\lambda}\|_{2}^{2} - m_{1} \right\}.$$

Hence, to prove Theorem 1.3, it suffices to find suitable $L \geq 1$ and $a \in \mathcal{A}_L$ so that the function $\mathbf{R} \ni \lambda \mapsto I(\lambda, v_{a,\lambda})$ admits at least k distinct critical points.

For our aim, thanks to Proposition 2.3, there exists $L_0 > 1$ such that

(2.12)
$$b(a, \eta_0; 0) < m_1 < b(a, -\eta_0; 0)$$
 for every $a \in \mathcal{A}_{L_0}$.

We fix $a_0 \in \mathcal{A}_{L_0}$ with $a_0 \equiv 1$ on $[L_0^{-1}, L_0]$, set $\lambda_1' := 1$ and choose $\lambda_1' = 1 \ll \lambda_2' \ll \lambda_3' \ll \cdots \ll \lambda_k'$ so that

$$\operatorname{supp} a_0\left(e^{-\frac{N}{4}\lambda_i'}\cdot\right) \cap \operatorname{supp} a_0\left(e^{-\frac{N}{4}\lambda_j'}\cdot\right) = \emptyset \quad \text{for each } i, j \text{ with } i \neq j.$$

Then consider

$$a(s) := \sum_{i=0}^{k-1} (-1)^{i-1} a_0 \left(e^{-\frac{N}{4}\lambda_i'} s \right).$$

It is checked that $\widetilde{a}_i(s) := a(e^{N\lambda_i'/4}s)$ satisfies $\widetilde{a}_i(s) = (-1)^{i-1}$ on $[L_0^{-1}, L_0]$ for $i = 0, \ldots, k-1$ and $\widetilde{a}_i \in \mathcal{A}_{L_0}$. Since (2.3) gives $K(a, \eta_0; \lambda_i', u) = K(\widetilde{a}_i, \eta_0; 0, u)$, it follows that

$$b(a, \eta_0; \lambda_i') = K(a, \eta_0; \lambda_i', u_{a, \lambda_i'}) = K(\widetilde{a}_i, \eta_0; 0, u_{a, \lambda_i'}) = b(\widetilde{a}_i, \eta_0; 0).$$

Thus, we infer from (2.11) and (2.12) that

$$b(a, \eta_0; \lambda_i') \begin{cases} > m_1 & \text{if } i \text{ is even,} \\ < m_1 & \text{if } i \text{ is odd,} \end{cases} I(\lambda_i', v_{a, \lambda_i'}) \begin{cases} > 0 & \text{if } i \text{ is even,} \\ < 0 & \text{if } i \text{ is odd.} \end{cases}$$

For $i=1,\ldots,k-1$, choose $\widetilde{\lambda}_i\in(\lambda_i',\lambda_{i+1}')$ so that $I(\widetilde{\lambda}_i,v_{a,\widetilde{\lambda}_i})=0$. As proved in [CiGaIkTa-1], since $I(\lambda,v_{a,\lambda})\to 0$ as $|\lambda|\to\infty$, by setting $\widetilde{\lambda}_0:=-\infty$ and $\widetilde{\lambda}_{k+1}:=\infty$, the function $(\widetilde{\lambda}_i,\widetilde{\lambda}_{i+1})\ni\lambda\mapsto I(\lambda,v_{a,\lambda})$ takes a strictly positive maximum (resp. negative minimum) in $(\widetilde{\lambda}_i,\widetilde{\lambda}_{i+1})$ when i is even (resp. odd). Thus, let $\lambda_i\in(\widetilde{\lambda}_i,\widetilde{\lambda}_{i+1})$ be a maximum point (resp. minimum point) when i is even (resp. odd). Then

$$0 = \partial_{\lambda}(I(\lambda, v_{a,\lambda}))\big|_{\lambda = \lambda_i} \quad \text{for each } i = 1, \dots, k.$$

Since $(\lambda_i, v_{a,\lambda_i})$ is a solution of

$$-\Delta u + e^{\lambda_i} u = (1 + a(u))u^p$$
 in \mathbf{R}^N , $\frac{1}{2} \int_{\mathbf{R}^N} u^2 dx = m_1$,

 $(\lambda_i, (v_{a,\lambda_i}))_{i=1}^k$ are k distinct solutions of (1.1) with $m=m_1$. It is also clear that $(1+a(s))s^p \neq s^p$ and $v_{a,\lambda_i} \neq \omega_\mu$ since $I(\lambda_i, v_{a,\lambda_i}) > 0$ if i is even and $I(\lambda, v_{a,\lambda_i}) < 0$ if i is odd. This completes the proof.

Acknowledgments

The author would like to thank Silvia Cingolani, Marco Gallo and Kazunaga Tanaka. The author is partially supported by JSPS KAKENHI Grant Numbers JP 19H01797 and 19K03590.

References

- [AlGaQu16] S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016), no. 1, 129–158.
- [BaLi90] A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in \mathbb{R}^N , Rev. Mat. Iberoamericana 6 (1990), no. 1-2, 1-15.
- [BaLio97] A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 3, 365–413.
- [BeGaKa83] H. Berestycki, T. Gallouët and O. Kavian, Nonlinear Euclidean scalar field equations in the plane, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 5, 307–310.
- [BeLi83] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.
- [Ca03] T. Cazenave, Semilinear Schrödinger equations', Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
- [CaLi82] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549–561.
- [Ce78] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Analisi Mat. Istituto Lombardo (Rend. Sc.) A 112 (1978), 332–336.
- [CiGaIkTa-1] S. Cingolani, M. Gallo, N. Ikoma and K. Tanaka, Normalized solutions for non-linear Schrödinger equations with L^2 -critical nonlinearity. Preprint.

- [CiGaIkTa-2] In preparation.
- [HiTa19] J. Hirata and K. Tanaka, Nonlinear scalar field equations with L^2 constraint: mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud. 19 (2019), no. 2, 263–290.
- [JeTa03] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbb{R}^N , Proc. Amer. Math. Soc. 131 (2003), no. 8, 2399–2408.
- [JeZhZh24] L. Jeanjean, J. Zhang and X. Zhong, A global branch approach to normalized solutions for the Schrdinger equation, J. Math. Pures Appl. (9) 183 (2024), 44–75.
- [Kw89] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266.
- [Sc22] J. Schino, Normalized ground states to a cooperative system of Schrödinger equations with generic L^2 -subcritical or L^2 -critical nonlinearity, Adv. Differential Equations 27 (2022), no. 7-8, 467–496.
- [St80] C. Stuart, Bifurcation from the continuous spectrum in the L^2 -theory of elliptic equations on \mathbb{R}^n . Recent methods in nonlinear analysis and applications (Naples, 1980), 231–300.
- [St82] C. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. Lond. Math. Soc. (3) 45 (1982), no. 1, 169–192.
- [Ta00] K. Tanaka, Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds, Ann. Inst. Henri Poincaré 17 (2000), no. 1, 1–33.