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1 Introduction

In this note, we report a result which is obtained in a joint work with Takafumi Akahori (Shizuoka
University), Slim Ibrahim (Victoria University) and Masataka Shibata (Meijo University). We

consider the following semilinear elliptic equations:

—Au~+wu — [ulP " u— |u Pu=0 in R?, (1.1)

where d > 3,w > 0,1 <p < 2*—1and 2" = dQTd2. The equation (1.1) derives from the following

Schrodinger equations:
i)+ A+ [P + [P "2 =0  in R x RY (1.2)
Indeed, if we consider the so-called standing wave solution, which is a solution (1.2) of the form
P(t,x) = e™tuy,(x) (w>0),

we see that u,, satisfies (1.1).

Here, we pay our attention to positive solutions u to (1.1). From the result of Gidas, Ni and
Nirenberg [7], we see that u is radially symmetric and monotone decreasing in |z| > 0. It follows
from the result of Wei and Wu [12] that when d = 3 and 1 < p < 3, (1.1) has two distinct solutions
if w > 0 is sufficiently large (Unusually, positive solution to (1.1) is not unique). This result
coincides with the numerical computation by Davila, del Pino and I. Guerra [8] and Yagasaki [13].
One of the positive solutions is the ground state. We are concerned with the one, which is different

from the ground state.

2 Ground State

First of all, let us explain about the ground state. If we define an action functional by

o
L2%)

1 w 1 1 1
Su(u) = 3 IVullzz + Z[lullzz - mll“”’;ﬂ — oellu

we see that u € H'(R?) is a solution to (1.1) if and only if u is a critical point of the functional

S,. To seek a critical point of S, we consider the following minimization problem:

my, = inf {S,(u): w e H'(RY)\ {0}, NV, (u) =0},
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where the Nehari functional NV, is defined by

o*

1
Noo(w) == (S},(w),u) = | Vulfz + wlullZs — [lull 7 — llull7--

We call a minimizer for m,, a ground state. Zhang and Zou [14] showed that the ground state
exists for any w >0 whend >4 and 1 <p<2*—1lord=3and 3<p<2*—1(=5). In [4] and
[12], it is shown independently that there exists w. > 0 such that the ground state exists for any
w € (0,w.) and does not exist for any w € (w,,c0). In addition, at w = w,, the ground state exists
when 1 <p <3 (p# 3).

Remark 2.1. (i) We do not know whether the ground state exists or not at w = w. when d = 3

and p = 3.

(i) The reason why the situation becomes different when d = 3 comes from an integrability of

Aubin—Talenti function

which is a solution to the following limit equations of (1.1):
AW =W?*"1 inRL

We can easily find that W € L?*(R?) when d > 5 and W & L?*(R?) when d = 3,4 *. See [{]
and [12] for about the existence and non-existence of the ground state in case of d = 3 and
1 < p <3 in detail.

3 Second positive solution

Next, we seek a positive solution, which is different from the ground state. To this end, we
consider the minimization problem related to conservation laws of (1.2). It is known that for
any g € H'(R?), there exists a unique solution ¥ in C(Iyax; H'(R?)) with 9[,—0 = o for a
maximal existence interval Iyax = (—Tiaxs Tniax) C R, and the solution 1 satisfies the following

conservation laws of the mass and the energy in this order:

M) = M(o),  EW() =E(Wo)  forall t € Ina,

where
o
Tox.

1 1 1 L1
M(u) = 5”“”%27 E(u) = §||VU||%2 - m”uﬂﬁfﬂ - ;HU

If, in addition, 1y € L*(R?, |z|?dx), then the corresponding solution v also belongs to C(Iax; L2(RY, |2|?dx))

and satisfies the so-called virial identity:

[ JaPlottode = [ (oPlio@)Pde +at i | o Vio@Tot@ds
Rd Rd R4

t pt’
+ 8/ / K@p(t")dt"dt"  for any t € Inax,
0 Jo

where d o 3
d p— .
K(u) = 8o\ u(A) b=t = [ Vull 7z m”“”lﬂﬂl — JullZa-
Note that M((AZu(X-))) = M(u) for any A > 0. Then, for each m > 0, we consider the following

minimization problem:

E(m) :=inf {E(u): u € H'(RY), M(u) =m, K(u) =0}.

*When d = 4, W € L?T¢(R?) for any & > 0.




Here, the following L2-critical exponent

4
*:1 i
D +d

plays an important result. To explain the exponent p,, we consider the following nonlinear
Schrédinger equations:
i0pp + A+ [Pl =0 in R x RY (3.1)

The equation (3.1) is scale invariant. More precisely, putting
Palt,z) == AT TR ) (A > 0), (32)
we see that if (¢, z) satisfies (3.1), so does 1. Note that

A0, )22 = A7 T (0, )22 (A > 0).

Thus, the scaling (3.2) preserves the L?-norm when p = 1+4/d. For this, the exponent p, = 1+4/d
is referred to as “L2-critical”.

We now go back to our equation (1.1). From the result of Soave [10], we know the following:
Theorem 3.1 (Soave [10]). Letd >3 and 14+ 4 <p <2* —1.

(i) For each m > 0, there exists a minimizer for E(m), which satisfies (1.1) with w = w(m) for
some w(m) > 0.

(i) E(m) is non-increasing in m > 0.
Remark 3.1. Soave [10], Jeanjean and Lu [9] and Wei and Wu [11] also obtained several results
for the L?-critical and L?-subcritical case (1 <p<1+3).

Theorem 3.2 (Wei and Wu [12]). Let d = 3 and 1+ 4 < p < 3 and w(m) > 0 be the number

given in Theorem 3.1. Then, we have lim,,_ow(m) = 0.

We denote the minimizer for E(m) by Ry ). Let us explain briefly that for sufficiently small
m >0, we have Ry, (m) # Qu(m), Where Q) is the ground state in case of w = w(m). We rescale
Q. as follows:
Qu(z) = wp%l@w(w%w).
Then, @w satisfies

2 —(p+1) ~

AQu+Qu— QP —w P T Q2 =0 inR% (3.3)

By a standard argument, we see that

lim [|Qu = Ullm: =0, (3.4)
where U € H'(RY) is the unique positive solution to the following scalar field equations:
~AU+U-U?=0  inR? (3.5)
This yields that
. __2 .4 . ~
lim w71 Qu 3 = lim [Quli2 = U3
Note that ——23 +§ > 0 for 1 + 3 < p < 2* — 1. Thus, we have lim, 0 [|Qu]7. = oo if
143 < p<2*—1. From this and lim,, o w(m) = 0 (see Theorem 3.2), we find that ||Ryn)|z2 =
2m < || Qu(m) || 2 for sufficiently small m > 0, which implies that R () # Qu(m). Note that both

Qu(m) and R, are positive and satisfy (1.1) with w = w(m). Thus, non-uniqueness of positive

solutions holds in case of d =3 and 1 < p < 3.

Remark 3.2. Contrary to the case where d = 3 and 1 < p < 3, in [1, Proposition C.1], it is shown
that (1.1) admits a unique positive solution for any w > 0 when 3 < d <6 and ﬁ <p<2¥—1.



4 Main result

We study the uniqueness and non-degeneracy of the minimizer R, for sufficiently small m > 0.

Here, we say that R, () is non-degenerate in HY (R?) if the linearized equation
Lp4+2=0 in R4,
has no non-trivial solution in H}  (R?), where

Lyt = —A+w(m) —pRI — (2 = 1)R., 2.

w(m)

Theorem 4.1. There exists m1 > 0 such that Ry is unique up to phase transition and non-
degenerate in H} (R?) for m € (0,m1).

rad

The proof of the uniqueness is based on that of Wei and Wu [11]. For the proof of the non-
degeneracy of R, we follow the argument of [1, 3, 5]. However, the details are different and we
need to overcome several difficulties.
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