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1 Introduction

In this note, we consider the following nonlinear diffusion equation:

Opue = div (a€V|u€|p_1u€) in Q x1I,
(F:)

|U5|p_1u6|89 - 07 uElt:O = U,

where € is a bounded domain of RY with smooth boundary 9Q, N > 1, I = (0,7),
0 <p< 400, e >0and ug € LPTH(Q). Let O = (0,1)Y and J = (0,1). Let
a=a(y,s) € [WH(R; L®°RM))]V*N be an N x N symmetric matrix field satisfying
(O x J)-periodicity and the uniform ellipticity, i.e., there exists A > 0 such that A|¢[? <
a(y,s)é - & < [¢)? for all ¢ € RY and a.e. (y,s) € RN x R,. The coefficient matrix field
ac is given as a. = a(£, %) forz € Qand t € I.

Homogenization is known as a method of asymptotic analysis for complex structures
and systems. Actually, it is often used to replace heterogeneous materials with a large
number of microstructures, such as composite materials, with an equivalent homoge-
neous material; for instance, it is applied to models of heat conduction in composite
materials. Such models are often described as linear diffusion equations (LDEs), and
then their space-time homogenization oscillating both in space and time has been studied

in various mathematical fields.

* This note is based on joint work with Professor Goro Akagi from Tohoku University. The author
is partially supported by JSPS KAKENHI Grant Numbers JP22K20331 and JP23K12997.



Space-time homogenization problems for linear diffusion equations were first studied
by Bensoussan, Lions and Papanicolaou in [8] based on a method of asymptotic ez-
pansion, and then various methods have been developed (see, e.g., [14] for two-scale
convergence theory and [5] for unfolding method). Furthermore, homogenization prob-
lems for parabolic equations have been studied not only for linear ones but also for
nonlinear ones. In [15, 18, 24], doubly-nonlinear parabolic equations are treated, and
moreover, as for degenerate p-Laplace parabolic equations, homogenization problems
involving scale parameters (e.g., 7 > 0 of div[A(Z, Eir, Vu.)]) are discussed in [13, 25].

In this note, the critical case of porous medium types is treated, and in particular, it

is revealed that the difference between degeneracy and singularity of diffusion is deeply

related to the representation of the so-called homogenized matrices.

2 Main results
We first define weak solutions u. = u.(x,t) : Q@ x I — R of (P:) as follows:

Definition 2.1. A function ue = u.(x,t) : Q@ x I — R is called a weak solution to (P:),

if the following conditions are all satisfied:

(1) ue € WE2(I, H-1(Q) N LPTYQ x 1), |uc [P~ u. € L2(1; HE(Q)) and u.(t) — ug
strongly in H=1(Q) as t — 0.
(ii) It holds that
(O gy + [ @V (e ) (w.) - Vo) do =0
Q

for a.e. t € I and all ¢ € H}(Q).

Remark 2.2. For p # 1, the nonlinear diffusion equation (P:) is called a porous medium
equation (PME) if 1 < p < +o00 and a fast diffusion equation (FDE) if 0 < p < 1 (see
[21, 22] for details). The well-posedness for (P:) can be obtained by [1, 2].

Now, our main results read,

Theorem 2.3. Let e, — 04 be an arbitrary sequence in (0,400). In addition, suppose
that ug € L?(Q) for p € (0,1). Let ue, be the unique weak solution to (P.,) . Then

there exist a subsequence of (£,) and functions

we WEA(I HHQ) N LPYY(Q x 1) N Cear(T; L2()),
z€ LA(Q x I; L*(J; I (O)/R))

per



such that |u[P~tu € L3(I; H} (D)),
lue, [P ue, — [ulPtu weakly in L*(I; H}(S2)),
Ue, —> U strongly in LP(I; LP*1(Q))
for any p € [1,4+00) and
ac, V|ue, [P u.,

— Jnom = {a(-,) (V]ulP'u + Vyz)>y , weakly in [L2(Q x DY

Here and henceforth, H) (O)/R = {g € H].

loc

(RY): g is O-periodic and ({g), =
Jo9(y)dy = 0}, V,, denotes the gradient operator with respect to y and (-), s denotes

the mean over L1 x J, that 1is,

1
9)y.s =/ / g(y,s)dyds  for g€ L' (O x J).
0 O

Moreover, the limit u solves the weak form of the homogenized equation,

(Oeu(t), By + /Q Jhom(z.1) - Vo(x)dz =0 for ¢ € HA(S),
u(-,0) =ugp in Q

(Po)

for a.e. tel.
Furthermore, the homogenized diffusion flux jhon, is characterized as follows:

Theorem 2.4. In addition to all the assumptions of Theorem 2.3, suppose that ug > 0
forp =2,

ug € L¥7P(Q) if pe (0,1]; logug € LL.(Q) if p=3;u) P € LL.(Q) if p e (3,+00).

Let u be a limit of weak solutions (u.,) to (P:,) as a sequence €, — 04+ and let u be
a weak solution of the homogenized equation (Ppy). Then z = z(x,t,y,s) appeared in

Theorem 2.3 is represented as

Mz

z(x,t,y,s) = v(x,t))Pk(x, t,y, s),

k:l

where
Pt pe(0,2),
u? if pe€[2,+00)

and ® € L>(Q x I; L?(J; H: . (O)/R)) is the corrector characterized as follows:

per



(i)  Incasep € (0,1] (i.e., FDE and LDE), ®), = ®(z,t,y,s) solves the cell problem,

1—17|u(.1:,t)|1_p85<13k(m, t,y,s) =divy (a(y, s) [VyPr(z,t,y,s) +ex]) inOxJ,
(I)k(x’t’y70) :(I)k(l'7t7yal) in [

for each (xz,t) € Q x I. Here {ex} = {[0jk]j=1,2,...n} stands for a canonical basis
of RN,
(ii))  In case p € (1,400) (i.e., PME), ®y is given by

(I)k(iﬁ,t,y,s): {p|u(«1n )l k(«L, ,y,é) Zf UJ(VL7 )7& ,

where Uy, = Wy (x,t,y,s) solves the cell problem,

88\Pk(xa Ly, S) - dlvy (a(ya 3) [p|U(£L', t)|p_lvy\:[/k(x7 Ly, S) + ek}) in [ x Ja
Up(x,t,y,0) = Up(x,t,y,1) in O
for each (z,t) € [u # 0] := {(x,t) € Q x I: u(z,t) # 0}.
Moreover, the homogenized flux jnom(x,t) can be written as

jhom(l'» t) - ahom($7 t)V’U(I', t),

where anom 1S the homogenized matrix given by

1 .
(1) (hom (T, t)er = ./0 ./D a(y,s) [VyPr(z,t,y,s) + eg] dyds.

Remark 2.5. The homogenized matrix (1) is described in terms of solutions to cell
problems. For the nonlinear diffusion case p # 1, the cell problem involves the limit
u(x,t) of solutions, which is a function of (z,t). Thus ® also depends on (z,t), and
hence, so does apom. On the other hand, for the linear diffusion case p = 1, ¢ is inde-
pendent of (x,t). Thus apem is a constant N x N matrix. In particular, it is noteworthy

that the representation of apem depends on p € (0, +00) since it is determined by ®y.
As for the qualitative properties of apom, we have

Propositon 2.6 (cf. [2, Proposition 1.8]). Under the same assumptions as in Theorem
2.4, let anom and {Pp}r=12.. n~ be defined as in Theorem 2.4. Then the following (i)
and (i) hold true:



(i) (Improved uniform ellipticity) It holds that
N 1
5> (1+ / CRTRRI ds) P
k=1 0
N
< tnon(r 0-€ <) (1 ¥ / 94118 s ) e

for any & = [€klk=12... v €RYN and a.e. (v,t) € QA x I.
(ii) (Symmetry and asymmetry) The homogenized matrix apom(x,t) is not symmetric

(respectively, symmetric) when u(x,t) # 0 (respectively, u(x,t) = 0).

As mentioned in [2, 6, 12, 14, 18], the gradient Vv, does not converge to Vv strongly

in [L2(Q x I)]V in general. Indeed, one can prove that

N
(2) Vv, —Vov-— Z(@mkv)vyfbk(w,t, o=, £) — 0 strongly in [L*( x I)]"

k=1
and hence, due to the oscillation of ®;, the breaking of strong compactness in
L3(I; HE () is obtained. However, to guarantee strong convergence (2), we shall
require regularities:Vou € [L7(Q x I)]N and V,®; € [LP(Q x I)]V along with %—i—/l) =3
Hence additional assumptions for the coefficient a(y,s) and given data will also be
required. This note provides a corrector result (introduced by [10]) without assumptions

for the smoothness of a(y, s).

Theorem 2.7. Let u be a limit of weak solutions (u., ) to (P:,) as a sequence £, — 04

such that u is a weak solution to (Py) and let @y be the corrector given by Theorem 2.4.

Set

V. — |u€n|p—1u€n if p € (072)7 V= |u|p—1u ifp e (072)7
o uf if p € [2,+00), | w? if p € [2,+00).
Then it holds that

lim
En—>0+

van Vv — Zuen x U En (V (I)k)

L2(QxI)
where Ue, 1is the averaging operator (see Definition 4.4 below).
Remark 2.8. Theorem 2.7 also implies the breaking of strong compactness in

L3(I; HE(2)) for the pressure v., € L*(I; H}(€2)) since the oscillating corrector terms

do not vanish as €, — 0.



3 Uniform estimates and convergence

In this section, we shall derive uniform estimates for (v.) and (vg/ Py and discuss their

convergence to prove Theorems 2.3 and 2.4.

Lemma 3.1. Let 0 < p < +00. For each ¢ > 0 let u. € L*(I; H}(Q)) be the unique

weak solution of (P.) and set v. = |u.|P~tu.. Then the following (i)—(iv) hold true:
(i) (ve) and (vsl/p) are bounded in L2>(I; HY(Q)) N L®(I; LP+tD/P(Q))  and
L (I; LPT1(Q)), respectively.
(i) (9pwl'?) is bounded in L2(I; H~1(Q)).
(iii) (vgl/p) is bounded in L>(I; L*(R))).
(iv) (v;/p) is bounded in L°°(I; L3~P(Q)) N L3(I; H}(Y)), provided that p € (0,2) and
wo € L3P(Q).
Proof. See [2, Lemma 4.1]. O

As for p > 2, we have the following local uniform estimates:

Lemma 3.2. Under the same assumptions as in Theorem 2.4, for any w € €2, there
exists a constant C,, > 0 such that the following holds true:
(i) In case 2 <p < 3,
T
|19 ol e < .

(ii) In case p =3,

T
sup </ U [— IOg 1);/17(.71-)] de') + / ||V'U;/p(t)||%2(w) dt S Cw;
[ve' P (1) <1]Nw 0

tel

provided that logug € L (Q).

loc

(iii) In case p > 3,
T
SUP (/ U§3_p)/p('vt) dx) +/ ||VU;/p(t)H%2(w) dt < Cw»
tel w 0
provided that uy ? € L ().

Proof. See [3, Lemma 3.1]. O

By Lemmas 3.1 and 3.2, we have



Propositon 3.3. Under the same assumptions as in Theorem 2.3, there exist a subse-
quence (,,) of (€) and v € L*(I; H}(Q)) N L (I; LPTY/P(Q)) such that

Ve, —+ U weakly in L*(I; Hy (),

velip — /P strongly in C(I; H~*(Q)),
at/uggp — Ow'P weakly in L*(I; H1(Q)),

Ve, —+ U strongly in LP(I; LPTY/P(Q)),

vgip — /P strongly in LP(I; LPT1(1)),
Vfu;{p — Vol'? weakly in [L*(I; L} (w))]Y

for any p € [1,400) and w € Q.

Proof. See [2, Lemma 4.3]. O

4 Space-time unfolding method

In this section, we briefly review the space-time unfolding method to characterize
the limit of a., Vv, as &, — 0. The unfolding method was first introduced in [9]
(see [7, 10, 11, 16] for more details), and then its space-time version was developed in
[5, 20]. This method is also known as the intermediate notion between weak convergence
and strong convergence, and weak and strong convergences for unfolded sequences are
equivalent to weak and strong two-scale convergence (see, e.g., [4, 14, 17, 19, 23, 26] for
more details).

Throughout this section, let 1 < ¢ < 400, when no confusion can arise. Moreover, ¢

denotes the Holder conjugate of g, i.e., 1/g+ 1/¢' = 1.

Definition 4.1 (cf. [5, Definition 2.1]). For e > 0, define the sets Q. C Q and I. C I
by

Q. = interior< U e(& —I-E)), Z.o={cecZN: (¢ +0) cQ},

ISSEE

L={tel:*(|L]+1) <T},

respectively. Here (& +0) denotes the cloesd e-cell [0,]N with the origin at €€ € eZN
and |-| denotes the floor function (i.e., |-| denotes the integer part of -). Set A. :=
(Qx 1)\ (Q x I.). Fore > 0, the space-time unfolding operator 72 : M(Q x I) —



M(Q x I xOxJ) is defined by
2| 4oy, 2| L] +e2 .. 0. x 1. x O
To(w)(@. .y, ) = w(elZ] +ey, e[ =] +e°s) for a.e. (x,t,y,s) € x I, x O x J,
for a.e. (x,t,y,s) € Ae x O X J,

forw € M(Q xI). Moreover, the unfolding operator (still denoted by Tz) can be defined
analogously for W € [M(Q x I)]N = M(Q x I;RY). Here M(A) stands for the set of

Lebesgue measurable functions on A C RN+,
As for the weak compactness of space-time unfolded sequences, we have

Propositon 4.2. For any bounded sequence (we) in L1(2 x I), there exist a sequence

en — 01 and a function we L1(Q x I x O x J) such that

Te, (we,) = w  weakly in LY(Q x I x O x J).

n

In addition, assume that (w.) is bounded in LI(I; W14(Q)) and w., — w strongly in
LA I) for a limit w € LI(I; WH4(Q)). Then there exist a (not relaveled) subsequence
of (en) and a function wy € LY() x I; L4(J; WL4(O)/R)) such that

per

Tz, (Vwe,) = Vw+ Vywy  weakly in [LY(Q x I x O x J)|N.

n

Proof. See [20, Proposition 2.9]. O

Remark 4.3. We note that V,w; vanishes in the sense of weak convergence due to the
periodicity in O of wy € L*(Q x I; L3(J; H! .(O)/R)). Thus the weak convergence of

per

the unfolded sequence for the gradient plays a crucial role in characterizing the limit of

the diffusion flux a.Vu,.
We next introduce the space-time averaging operator.

Definition 4.4. Under the same assumption as in Definition 4.1, the space-time aver-
aging operator U.: LI(Q x I x O x J) — L1(Q x I) is defined as follows:

1
/ / V(2] 4 co, 2| L]+ 2 {2} (L)) dodp for ace. (x,1) € Qo x L.,
U () (a,t) = { Jo Jo
0 for a.e. (x,t) € Ag,
for W e LI(Q x I xOxJ). Here {-} denotes the fraction part of - (i.e., {-} :=-—|-]).
As for the strong convergence of unfolded sequences, we have

Propositon 4.5. Let (w.) be bounded in L9(Q2 x I) and let w € L1(Q x I x O x J).

Then the following (i)—(iii) are equivalent:



(i) Te(we) — w strongly in LY(Q x I x O x J) and lime—o, [[, |we(2,t)|? dzdt = 0.
(i) we —U:(w) — 0 strongly in LI(2 x I).

(iii) hms—>0+ stHL‘I(QXI) = HwHLq(QXIxDxJ)-

Proof. See [20, Proposition 2.13]. O

5 Sketch of proof for Theorem 2.3

By employing Propositions 3.3 and 4.2, one can prove Theorem 2.3; indeed, there
exist a subsequence and z € L?(Q x I; L?(J; H!. (O)/R)) such that

per

7o, (Vu.,) = Vo +V,z  weakly in [L2(Q x I x O x J)]V,

n

For any ¢ € C°(2) and ¢ € C°(I), let € > 0 be small enough such that ¢ = 0 on
A.. Then we see by [11, Propositions 1.5 and 1.8] that

[ o) v

Hj ()

T
= lim <8tv€n(t)1/p, ¢> W) dt

en—04 0 HS(Q)

T
=— lim / / a (Ei, E%) Ve, (x,t) - Vo(x)p(t) dedt
0o Ja o

En—>0+

T 1
=— 1 € € sy Uy Yy * e s Uy Yy
im /0 /Q/O /Da(y,s)Tn(Vv Dz, ty,s) - Te, (Vo) (x, t,y, s) dydsdzdt

En—>0+

— _/()T/Q<a(y,s)(Vv(x,t)—|—Vyz(x,t,ya8))>yys‘v¢(x)1/)(t) dzdt,

which completes the proof.

6 Sketch of proof for Theorem 2.4

We only consider the case where 0 < p < 1 for simplicity. We first note that, for any
b € Coe,(0)/R, there exists a unique solution w € C5¢, (1) /R to

per

(3) Ayw(y) =b(y) in 0.

Set B := Vyw € [C32(O)/R]Y (Le., divyB(y) = b(y)), ¥(z,t.y,s) = () (t)b(y)c(s)
and U (z,t) = p(2)Y(t)b(2)c(Z) for any ¢ € C(Q), o € CX(I), b e C2.(0)/R and

e per

c € Cpe(J). Let &, > 0 be small enough such that W, =0 on A, . Then we observe



that

T
lim / / o/P(, )0 (20 D, (1, 1)) dadt

A
=ty e [ [ o @O el ) s

+€,}E%+/ /“”p” DY)V - BE)0sel ) drdt

‘g,}%/ | T 00(aie) - BE)oel) dade

==, / / / / (VollP) (@ t,y, ) Te, (69) (2. 1.y, 5) - By)dsc(s) dydsdudt.

Combining Lemmas 3.1 and 3.2 with Proposition 4.2, we see that there exists z €
L2 (Q x I; L*(J; H!. (O)/R)) such that

loc per
T, (Vo) = Vo + V7 weakly in [L%(w x I x O x J)|N

for any w € €, and hence,

T a4l g
/ / / / Z(x,t,y,8)0s VU (x,t,y,s)dydsdzdt
Jo JaJo JO

T
— lim / / te. Voo (2,1) - V(enT.. (z,1)) dudt
Q

En—>0+ 0
T 1
— / / / / a(y, S)(Vv(x,t) + Vyz(z,t,y, S))-Vy\ll(:c,t, y, 8) dydsdadt.
o JaJo JO

Since one can prove zZ = %|v|(1_p)/pz as in [2, Lemma 5.4], by setting z = ¥, (8., v) Pk,

we obtain the cell problem and (1) (see [2] for details).

7 Sketch of proof for Theorem 2.7

We first observe that

||Vugn VU—ZUan 2 0) U, (Vy i) HL2(Q><I)
k=1

< ||Vv€n — U, (Vv) = U, (V Z)HL2(Q><I)

N
- {[the,, (V0) = V0| o gy + e (Vy2) = D Ue, (0m,0) Ue, (V@) 2 1
k=1

= Ii" + 13" + I3m.



Then we shall estimate the terms IT", I5™ and I5" below.

To prove
(4) I =0 as g, =04,
we claim that
(5) im 90, [Fa0.n) = V00 + Vy2lFaioxrxoes

Indeed, noting by [2, Lemma 6.1] that

ve, ()P = ()P weakly in LPTY(Q)  for all t e 1,

we see by the weak form that

T T
lim sup/ / ag, Ve, - Vo, dzdt < / / ahom (7, 1) Vv - Vo dzdt.
0 Q 0 Q

En—>0+

On the other hand, by the J-periodicity of ®;, we have

En—>0+

T
lim inf/ / ae, Ve, - Vv, dzdt
0 Jo

T 1
> / / / / a(y,s)(Vu+Vyz) - (Vv + Vyz) dydsdzdt
o JaJo Jo

T
:/ / ahom (2, 1) Vv - Vo dzdt.
0 Q

Thus it follows that

T T
(6) lim / / ag, Ve, - Vo, dedt = / / ahom (z,t) Vv - Vo dazdt.
0 Q 0 Q

En—>0+

Now, let T € RV*N be a unit matrix and let v > 0 be such that (a(y, s)—1)&-€ > A€[?
for all £ € RY and some A > 0. Then we infer by the J-periodicity of @} that

T
lim inf/ / (ae, —~I) Vo, - Vo, dzdt
En—>0+ 0 Q

T 1
> / / / / (a,(y, S) - ”ﬂ[) (V?) -+ Vyz) . (V?) + Vyz) dydsdadt
0 QJO O
T
:/ / ahom (7, t)Vv - Vo dzdt
0 Q

T 1
- / / / / VI (Vv + Vyz) - (Vo + V,z) dydsdzdt,
0 QJo JO



and hence, (6) ensures that

T
limsup/ / vIVu,, - Vo, dadt
Q

En—>0+

T 1
: / / / / M(Vo +Vyz) - (Vo + Vy2) dydsdedt,
o JaJo JO

which together with the lower semi continuity yields (5). Thus (4) follows from the
implication (iii) = (ii) of Proposition 4.5.

We next claim that
(7) I5" =0 as g, — 04.

This also follows from the implication (iii) = (ii) of Proposition 4.5.
We finally show that

(8) I -0 as g, = 04.

It suffices to prove that

(9)  Ue, (Do 0)Vy@1) — Us, (D 0) Ue, (Vy@4) > 0 strongly in [L2(Q x I)]Y
To this end, we shall use the following fact:

(10) V, @) € [L®(Q x I; L2(0 x J))Y

(see [2, Appendix] for the proof). Since 0,,v is independent of (y,s) € [0 x J, noting
that, for any (£,¢) € 2., x O, = {¢ € NU{0}: e2(¢ + J) C I}, U, (D, v) can be
regarded as a constant in &, (¢ + ) x 2(¢ + J), we derive that

[z, (O 0) Vo @) — v 0) Ue, (Vy ‘I’k)HmeI)

/ / Ue, (O — Us, (02, 0)) V@) | dadt
e2(c+J) Je(e+0)

2
< ”qu)kHLOO(QxI;LZ(DxJ))||8$kv - Ue, (6-'Ekv)HL2(QXI)_> 0 as e, = 04.

(6@ {e=.

Here we used the facts (7) and (10) in the last line (see [20] for details). Thus we have
(9). Combining (4), (7) and (8), we obtain

N
[Vve, = Vo =3 Ue, (00, 0) Ue,, (Vy @) || oy 11"+ 157 + 157 =0 as 5 — 04,
k=1

which completes the proof.
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