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1 Introduction

This survey paper presents recent results on the large-time behavior of the one-dimensional
barotropic compressible Navier-Stokes equations. In particular, we summarize the two
results from [11] and [4], establishing the time asymptotic behaviors of the Navier-Stokes
equations, whose initial data is perturbed from a Riemann data. Precisely, in [11], the
large-time behavior of the composite waves of shock and rarefaction is investigated, while
the case of composite waves of two shocks is studied in [4]. The main tool used in
these literatures is the so-called “method of a-contraction with shift”, which is recently
developed by the second author and Vasseur [7, 24]. The purpose of the paper is to
introduce state-of-the-art results on these problems and to explain the key idea of the
method of a-contraction with shift.

We consider the following one-dimensional compressible barotropic Navier-Stokes sys-
tem, which is described by the Lagrangian mass coordinates:

vn—u, =0, xeR, t>0

u

w ), = () Y

v
subject to the initial data

(v(t,x),u(t,x))|i=0 = (vo(z),up(x)), x€R.

Here, the unknown functions v = v(t, ) > 0 and u = u(t, x) represent the specific volume
and the velocity of the fluid, respectively. The pressure function p = p(v) is given by the
~v-law as p(v) = bv~7, with b > 0 and v > 1. Finally, a positive constant > 0 denotes the
viscosity coefficient of the fluid. For convenience, we normalize the coefficients as b = 1
and g = 1. We consider the initial data (vg,ug) of the system (1.1) which connects the
prescribed far-field constant states:

lim (vo(z),up(x)) = (v, us). (1.2)
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A heuristic argument (see e.g. [15]) deduces that the large-time behavior of solutions
(v,u) to the Navier-Stokes equations (1.1) has a close relationship with the Riemann
problem of the associated Euler equations:

vw—u, =0 z€eR, t>0,

1.3
e+ p(v)s = 0, -
subject to the Riemann initial data
(v_,u_), x<0,
t t —0 = 1.4
(0(t, ) ult, 2)eco {m,m, T (1.4

Riemann Problem for the Euler equations

We first discuss the Riemann problem for the inviscid model (1.3)—(1.4). The Euler
equations (1.3) can be rewritten in the form of hyperbolic system of conservation laws:

Ut +f(U)Z = 07

where f(v,u) = (—u,p(v)) is the flux function in conserved variables U = (v, u). This
system is strictly hyperbolic, since the derivative of flux function f,

br= (p’(()v) _01>

is diagonalizable and has two distinct real eigenvalues, \j(v) = —\/—p'(v) < 0 and
Xo(v) = y/—p'(v) > 0, and corresponding right eigenvectors, r1(v) = (1,—X;(v)) and
ra(v) = (1, =A2(v)). Since p'(v) < 0 and p”(v) > 0, both characteristic fields are genuinely
nonlinear :

DAy -7y = %(—p'(y))—lﬂp"(v) S0, D1y — —%(—p'(v))-lﬂp"(v) < 0.

Thus, the Riemann problem (1.3)—(1.4) has four families of simple wave solutions: 1-
rarefaction wave, 2-rarefaction wave, 1-shock wave, and 2-shock wave. Each simple wave
is defined by its associated curve, and the Riemann solution is determined by a combi-
nation of at most two simple waves. In addition, each curve is defined in the appropriate
neighborhood of a given constant left state (v, ur) or right state (vg,ug). Given the
right state (vg, ur) € Ry x R, we present the construction of each simple wave as follows.

We first review the rarefaction waves. The l-rarefaction curve Ry (vg,ug) is defined by
the integral curve of the right eigenvector r; which passes through (vg,ug) and satisfies
A (v) < Ai(vg), and the 2-rarefaction curve Ry(vg,ug) is defined in the same way by
using As :

Ri(vg,ug) := {(v,u) | u=wug— /U Ai(s)ds,  Ni(v) < )\i(UR)} (1=1,2). (L.5)
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When the initial data (1.4) of the Riemann problem is given by (v_,u_) = (vp,ur), (v, uy) =

(vg,uR), such that (v_,u_) € Ry(vy,uy), a solution to (1.3)—(1.4) is given by the 1-
rarefaction wave (v}, u]) defined as

(v_,u_), x < A(vo)t,
(oF ) (2 /t) = { 1q 21 <I§i)1 Mo AM(v )t <a < A(vg)t, (1.6)
(vy, uy), x> A (vy)t.

Moreover, the 1-Riemann invariant z; is given by z1(v,u) = u— [" A\;(s) ds and it satisfies
21 (v (x/t),uj(z/t)) = z1(vg,us). This implies that the Riemann invariant is constant
along the rarefaction curve R;. The case of 2-rarefaction wave (v5,u}) is defined in the
same way by using Ao in (1.6).

On the other hand, the shock curve S(vg,ur) passing through (vg,ug) is defined by
using the Rankine-Hugoniot condition and the Lax-entropy condition. In fact, the shock
curve S(vg,ug) is an one-parameter family of solution (v,u) with the shock speed o to
the Rankine-Hugoniot condition: there exists o such that

{—J(UR —v) — (ug —u) =0, (1.7)

~o(ug — u) + (p(vg) — p(v)) = 0.

This condition defines two shock speeds o = o; (i = 1,2), which are given as

- _\/_M, e \/_p<vR> o)

Furthermore, under the Rankine-Hugoniot condition, Lax’s entropy condition is assumed
to be mathematically and physically reasonable:

v > VR, u>ug, (i=1); v < Vg, u>ug, (i =2). (1.8)
Therefore, for each i = 1,2, the i-shock curve S;(vr,uy) is defined by
Si(vr,ug) :=={(v,u) | u=ugr+o0;(vg —v), \i(v) > N(vr)}, (i=1,2). (1.9)

Then, for (v_,u_) € S;(v4,u; ), where the initial data (1.4) is prescribed with (v_,u_) =
(vp,ur), (vy,us) = (vg, ur), the traveling wave solution (v$, u?) to (1.3), called the i-shock
wave, is defined as

(08, 1) (@, t) = {(”—’“—)’ vl ). (1.10)

(Vi uy), x> o4,

Generally, for any given end states (v_,u_), (vy,uy) € Ry X R, there exists a unique
intermediate state (v,,,u,,) € Ry x R such that (v, u,,) is on the curve Ry(v,,uy) or
So(vy, uy) from (vi,uy), and (v_,u_) is on the curve Ry(Up, Up) or S1(Vn, ) from



(U, U ). In this case, the Riemann solution (7,u) to (1.3)—(1.4) is given by the compo-
sition of the two associated waves

(T, ) (t,z) = (U1, 1) (t, ) + (Ta, U2) (£, ) — (U, Upy),

where (7;,u;) are either i-rarefaction or i-shock, depending on the far-field values (v, u~).
Of course, if the two end states are connected by a single rarefaction or shock curve, the
Riemann solution degenerates to a single self-similar solution. For example it is the 1-
rarefaction or 1-shock if (v_,u_) = (v, u,) and it is the 2-rarefaction or 2-shock if

(Umv UM) = (U+v U+)'

Time-asymptotic behavior of the Navier-Stokes system

We now briefly discuss the previous results on the time-asymptotic behavior of the viscous
system (1.1) with (1.2). The time-asymptotic behavior depends on the associated Rie-
mann solution to the inviscid model (1.3)—(1.4). When the Riemann data (1.4) generates
a i-shock, then solutions of (1.1)-(1.2), as time goes to infinity, would tend to the viscous
counterpart for (1.1), called viscous shock, as the traveling wave solution (v;, u;) satisfying
the following ODE:

—oi(@i)' — (W) =0,
—oi(u;) + p(v;) = <(1LT)/) ;
(51,171)(—00) = (U_,U_), (fﬁlaal)("i_oo) = (Umvum)v

(527172)(_00) = (Umvum)v (’1727172)("1—00) = <U+7u+)'

(1.11)

The time-asymptotic behavior towards the viscous shock wave is first studied by Mat-
sumura and Nishihara [16] and the same result is shown by Goodman [3]|, where the
general system with artificial diffusion. These results are based on the celebrated anti-
derivative method, together with the zero mass condition, but later on, this zero mass
condition is removed by introducing the constant shift [12, 14, 22]. Masica and Zumbrum
introduced the spectral stability of viscous shock under the spectral condition, which is
a slightly weaker condition that the zero mass condition. Finally, the case of degenerate
viscosity [19] and the general class of viscosity [1] are also established.

On the other hand, the time-asymptotic stability of rarefaction wave is developed
by using a completely different approach, based on the energy method. The stability
of rarefaction wave for the Navier-Stokes equations was first developed by Matsumura
and Nishihara [17, 18] and the result is generalized to the Navier-Stokes-Fourier system
(13, 20].

All of the mentioned literature above do not consider the generic composition waves.
Indeed, the stability analysis of the composite wave has been barely studied. In [5], the
stability of the composite wave of two viscous shocks for the Navier-Stokes-Fourier system
is considered, and it is mentioned in [15] that the same result can be obtained for the case of
Navier-Stokes system (1.1). However, in this literature, the strength of two viscous shocks
should have the same order of smallness. On top of that, the time-asymptotic stability of
the composite of shock and rarefaction waves is a challenging problem [16, 17], since the



two traditional approaches to obtaining the stability of shock and rarefaction waves are
incompatible with each other.
Main results and outline of the paper

The main goal of the paper is to present the results for time-asymptotic behavior of the
composition of shock and rarefaction waves, and the composition of two shocks, which
are the main results of the author’s recent papers [11] and [4] respectively. The precise
statements of the stability results read as follows.

Theorem 1.1 (Stability for composition of shock and rarefaction). For a given constant
state (vy,uy) € Ry X R, there exist positive constants &y, g such that the following holds
true.

For any (vm, um) € Sa(vi,us) and (v_,u_) € Ry(Um, um) such that

vy — V| + |, — v_| < by, (1.12)

let (v",u")($) be the 1-rarefaction solution to (1.3) with end states (v_,u_) and (Vy,, U ),
and (0°,0°)(x — oqt) the 2-viscous shock solution of (1.11) with end states (U, Uny) and
(vy,uy). Let (vo,ug) be any initial data such that

(Hvo — il r2ry) + [luo — uiHLQ(Ri)) + 1|0zvol L2 ®) + [|Ozto || L2r) < €0,

>

+

where Ry := (0,400) and R_ := (—00,0). Then, the compressible Navier-Stokes system

(1.1)~(1.2) admits a unique global-in-time solution (v,u) in the following sense: there
exists an absolutely continuous shift function X (t) such that

ol = (o7 (5) + 7 (@ = st = X(0)) = vm) € C(0, +00; H'(R)),
u(t,2) = (u () +( = 0at = X(8)) = un ) € C(0, +00; H'(R)),
U (8, ) — U5, (2 — 0at — X (¢)) € L*(0, +00; L*(R)).

Moreover, we have the large-time behavior:

lim sup |v(t,x) — <UT (%) + 07 (@ — oot — X (t)) — vm>‘ =0,

t—=+00 2R
: r z ~S(i.. _ _ —
tkinoo ilelg u(t, x) — (u (t> +u”(x — oot — X (1)) um)‘ 0,
where _
tLl]Jfrnoo | X (t)] =0. (1.13)

Theorem 1.2 (Stability for composition of two shocks). For a given constant state
(v, uy) € Ry X R, there exist positive constants oy, o such that the following holds.
For any constant states (v, un,) and (v—,u_) satisfying (4.1) with

vy — V| + |V — V=] < do, (1.14)



let (v;,w;)(x — oyt) be the i-viscous shock wave satisfying (1.11). In addition, let (v, uo)
be any initial data satisfying

Z (HUO — U:I:HLQ(]Ri) + ||U0 — ui||L2(Ri)) —+ Hagﬂ}gHLz(R) + ||8ZU0||L2(R) < €0-
+

Then, the compressible Navier-Stokes system (1.1)—(1.2) admits a unique global-in-time

solution (v,u) in the following sense: there exist absolutely continuous shift functions
Xi(t), Xo(t) such that

v(t,z) — (01 (x — o1t — X1 (t)) + oz — o9t — X3(t)) — vp) € C(0, +00; H'(R))
u(t, ) — (1 (z — o1t — Xo(t)) + Us(x — oot — Xo(t)) — um) € C(0, +00; H'(R)).

Moreover, we have the large-time behavior:

lim sup |v(t,z) — (01(z — o1t — X1 (1)) + D2z — 0ot — Xs(t)) — Um)‘ =0,

t—-+o0 z€R
lim sup |u(t, ) — (@1 (z — o1t — X1(t)) + Ua(x — o2t — Xa(t)) — um)‘ =0,
t—-+o0 zeR
where _
tngrnoo‘Xi(t)’ =0, for i=12. (1.15)
Especially, the shifts are well-separated in the following sense:
Xy(t) + ot < %t <0< %t < Xo(t) + out, t>0. (1.16)

The remaining part of the paper is organized as follows. In Section 2, we discuss
the key ideas of the proof of the main theorem, in particular, introduce the method of
a-contraction with shift and explain the background behind it. Then, we present the
outline of the proof of Theorem 1.1 and Theorem 1.2 in Section 3 and Section 4. Finally,
Section 5 is devoted to short concluding remarks.

2 Main ideas and the method of a-contraction with shifts

As we mentioned in the introduction, the main tool to obtain the desired nonlinear sta-
bility is the method of a-contraction with shifts, which was introduced in [7, 24] to study
the stability of extremal shocks for the hyperbolic system of conservation laws such as
the Euler system (1.3). We also refer to [2, 6, 8, 9, 10, 25] for the literature in which the
method of a-contraction with shift has been used to diverse models.

To illustrate a key idea of the method for the viscous system (1.1), consider the entropy
n of the Euler system (1.3) defined as

1

i) i= 5 + QW) QW)=



where U = (v,u). Then, the relative entropy n(U|U) between two states U and U is
defined as
— — — — |u—ul? _
n(UU) :=n(U) =n(U) = Dn(U)(U = U) = —— + Q(v|),

where Q(v|v) := Q(v) — Q(T) — Q'(V)(v — v). Since Q(v) is a strictly convex function in
v, Q(|") is locally quadratic in the sense that for any 0 < a < b, there exists C' > 0 such
that

C Moy — va|* < Q(v1|vp) < Cloy — vyf?, Yoy, v € [a, b].

From the definition the relative entropy n(U|U) is nonnegative and it vanishes if and only
if U = U. Therefore, the relative entropy can be understood as a pseudo-metric between
the conserved quantities U and U. The relative entropy was used to derive the contraction
property of the rarefaction wave. Indeed, if U is a rarefaction wave, and U is any weak
entropic solution to (1.3), then it can be shown in [23] that

d _
— dx < 0.
G Uiy dz <o

However, this nice contraction property does not hold when U is a shock. A similar type
of contraction property for the shock can be recovered only after adding weight and shift
to the relative entropy. When U(x — ot) is a single viscous shock, it was proved in [10]
that there exist a monotonic function a = a(x) and a shift X (¢) such that the weighted
relative entropy with the shift is not increasing in time:

d

7 Ra(x — ot — X())nU(t,2)|U(x — ot — X(t)))dx < 0. (2.1)

The method of a-contraction with shift is to derive a similar contraction property to the
given system, by defining appropriate weight function a and the shift X. In the present
paper, we will explain how the method of a-contraction with shift can be applied to the
system of Navier-Stokes equations, for the case of composite waves of shock-rarefaction
and shock-shock. In what follows, we provide a sketch of the process to obtain the a-
contraction with shift. For a precise design of the weight function and shift for each case
we consider, we refer to Section 3 and Section 4 respectively.

First of all, by a standard computation based on the relative entropy method, the
left-hand side of (2.1) can be decomposed into three parts (as in Lemma 3.1 for example):

LHS = X' ()Y (U) + J*4(U) — g&ed(U),

where J4(U) and J8°°4(U) consist of all bad terms and all good terms respectively,
where the “good term” means that it has a definite positive sign. To make the right-
hand side non-positive, we might use the typical energy method for parabolic equations.
However, since the barotropic Naiver-Stokes system has the diffusion in one variable only
(more precisely, in the u variable for (1.1)), the weight function @ would be found to
provide an additional good term in terms of the v variable, by which the bad terms could



be represented only by the u variables. Indeed, since ¢ is a non-zero constant, constructing
a monotone function a satisfying oa’ > 0, we have a good term

—a/}Ra'(x —ot — Xt))nUt,2)|U(x — ot — X(t))) da.

In fact, the weight function a will be defined by the first component © of the viscous
shock such that a’ localizes the perturbation in space as done by 7', and the image of
a is a bounded open interval. Using the above term, we maximize, over all v > 0, the
worst hyperbolic terms related to the v variable, from which the remaining bad terms are
related to the w variable only, and localized by a’ or ©¥'. To absorb the remaining bad
terms by the diffusion term, we may use the following Poincaré-type inequality.

Lemma 2.1. [10, Lemma 2.9] For any f : [0,1] — R satisfying f01 y(1 —y)|f'|Pdy < oo,

/Olf—/olfdy

However, to apply Lemma 2.1, we may need the other good term as an average of linear
perturbation on wu-variable, which together with the bad terms would give a variance of
the perturbation that could be absorbed by the diffusion as in the Poincaré-type inequal-
ity. Here, the desired good term would be extracted from the shift part X'(¢)Y (U) by
a sophisticated construction of the shift X (¢). This gives the desired contraction estimate.

2

1 1
dy < 5/0 y(L—=y)|f'PPdy. (2.2)

We now provide the detailed construction of the weight function a and the shift X to
obtain the desired estimates for each case of shock-rarefaction and shock-shock composi-
tion. We also briefly explain how the desired estimates yield the time-asymptotic behavior
of the Navier-Stokes system, in the main theorems.

Notation. For a function x — F(z), we use the notation FX(x) := F(z — X (t)).

3 Proof of Theorem 1.1

In this section, we provide the a priori estimates for the composition waves of shock and
rarefaction, and the sketch of proof for the time asymptotic stability of it. Without loss
of generality, we consider the end states (vy,us) such that there exists a unique state
(Um, Up,) which is connected with (v_,u_) by l-rarefaction wave and with (v,,uy) by
2-shock curve. That is, there exists a unique (vy,, u,,) such that

U = Uy, —/ i A(s)ds, A(v=) < Ai(vm), V- < U, U < Upy;

~03 (04 — V) = (s — ) =0, o \/_pm) — p(vm) (3.1)
—02(Uy — Up) + (p(v4) — p(vm)) = 0, . ’

U < VU4, U, > Us.

Vg — Uy



Then, the Euler equations (1.3) with (1.4)-(3.1) admit a unique self-similar solution,
the so-called Riemann solution (7,u), represented by the composition (7, @) = (v}, u]) +
(v5,u3) — (U, up,) of 1-rarefaction wave (v}, u]) and 2-shock wave (v§, u§) defined as (see

e.g. [21])

(v_,u_), r < A(vo)t,
ol =\ N/t
(v}, ul)(x/t) = { ! m/v) A(vo)t <z < A(vp)t,
= [0
(Umvum)7 T > Al(vm)t

Um), T < oo,

vy, ud)(t, z) = (vm,
(27 2)<t7 ) {<

vy, Uy), T > oot

For convenience, we use the notation o := g9. We rewrite the Navier-Stokes system
(1.1) using the variable associated to the speed of shock & =z — ot:

vy — ovg —ug = 0,
U, 3.2
u — oug + p(v)g = <f>€ . (3.2)

In order to compare the solution to (3.2) with the Composition of the rarefaction and
shock, we consider the smooth approximate rarefaction wave (07, u%) defined as

ol (t,x)
@, af) (t, 2) = (Afl(w(l +t,2)), U —/ A1(s) ds) ,

where w(t, x) is the smooth solution to the Burgers equation w; + ww, = 0 subject to the

initial data
Wy, + W Wy, — W_

2 + 2
and (v_,v,) = (A} (w_), \; ' (wy,)). Then, it is well-known in [17] that the approximated
rarefaction wave is asymptotically the same as the original rarefaction wave:

w(0,x) =

tanh z,

lim sup |07, @")(t,z) — (v",u")(x/t)| = 0. (3.3)

t—-+oo z€R

Thanks to the estimate (3.3), it suffices to derive the stability estimate for the approxi-
mated rarefaction (0%, %), instead of the exact rarefaction (v",u"). To this end, we define
the superposition wave of the approximated rarefaction wave and the viscous shock wave
shifted by X (¢) as

(@,0)(1,€) := (@ (t, & + at) + () (&) = v, (1, €+ o) + (@) (E) —um).  (3.4)
The key step for the proof of Theorem 1.1 is to show the a priori estimates as follows.

Proposition 3.1. For a given constant state (vy,uy) € Ry X R, there ezist positive
constants &g, €1 such that the following holds.



Suppose that (v,u) is the solution to (1.1) on [0,T] for some T > 0, and (v,u) be the
superposition wave of approximated rarefaction and viscous shock defined in (3.4) with
shift X defined in (3.9). Assume that both the rarefaction and shock strengths satisfy
Or = |vm —v_|,d5 := vy — V| < dp and that

v—UE C([Ov T]a Hl(R))v
u—i € C(0, T); H(R)) N LX(0,T; H*(R)),
and
[0 = 0| oo 0.1 ®)) + [0 = Ull oo 0,711 (m)) < €1
Then, for allt < T,

t
sup (Hv — V|| ey + [Ju — 17||H1(R)) +1/ 55/ | X|? ds
te€[0,T) 0

+ \//t(gsw) +GR(U) + D(U) + Di(U) + Dy(U)) ds

< Co (lvo — B0, )l sy + o — T(0, )| s iy) + Codl®

(3.5)

and .
X ()] < Coll(v —0)(t, )| ®),

where Cy is independent constant of T and
0= [ 1) llo -7 de. ") = [ o~ P ds.
0)i= [ 1octoto) — @) e mwwaém—mﬁﬁ,

Z/R!(u—ﬂ)éé\ dg.

The H'-stability estimate (3.5) is the main estimate that will be used to derive the
time-asymptotic behavior of the Navier-Stokes system, and in particular, the lower order
estimate, i.e., the L2-estimate is at the heart of the entire analysis. In order to obtain
the L2-estimate, we will basically use the method of a-contraction with shift. Below, we
show several main steps for the L?-estimate.

With an advantage in the calculation by introducing the variables U = (v, h) with
h = u — (Inv), associated with the BD entropy [1], it would be easier to get the L*-
estimate. So, we rewrite the system (1.3) into

— hy = (Inv) 4y,

hy + p(v), = 0. (3.6)

Notice that the above system has a parabolic regularization on the v-variable, contrary
to the regularization on the u-variable for the original system (1.1). This would be better

for our analysis, since the hyperbolic part of the system is linear in w (or i) but nonlinear

10



in v (via the pressure).
Let

S (V6N | (TR E+ at) + (0%)X(E) — vm
76 = (f0) = (G €)1 oy ) >0
where the shift X is defined as below. Let d5 := |vy — vy| ~ |us — uy| and 0 :=
| U, — v_| ~ |ty — u_|. We construct the weight function a(§) = a(x — ot) as
A -
o) =1+ 5 (pvm) - p(°(6))), (3.8)

where the constant ) is chosen such that dg < A < Cv/dg. Moreover, we construct the
shift X (¢) as a solution to the following ODE:

X@:_%l [ S0 w0) = p@)ds = [ o@D (39

subject to the initial value X (0) = 0, where A% := @5 — (In?" )e and M is chosen as

M = % with oy, := /=P (V).

First, we compute the evolution of the weighted relative entropy with shift, and then
maximize the worst hyperbolic terms related to the h variable over all A, from which the
remaining hyperbolic terms are related to the v variable only, as in the following lemma.

Lemma 3.1. Let U be a solution to (3.6) and U be the shifted wave defined in (3.7).
Then,

G [0, d = XY ©) + BO) - 6W) (3.10)
where
—— [ @il de + / V()T U - 0) de.
::2i / X|p O -+ [ @Dl de
— (D aX(n(v) = (T 285]9—@
- [P a ) - p) e + [ 0¥ (o) - o)
p(’U) p( ) . D n ;JS X Hfi}/
— [ @ 0elpto) = p@) EEL L@ de + [ ¥ (p(e) = p7)(0(7°) ~ e
— [ =B ") - (e e
g =2 ? h—h p(v);p(?}) dé—l—a/Ra? (v|v) d¢

2
+ [ T de+ [ Ssjodpto) - o) de

11



We may decompose each of Y, B and G as

where
W)= [ S0 - p@) s V) i= - [ @I - D
Y},(U) — /RQX(]VZS)? <h _'ﬁ . p(v) —p(v)) d¢

Ys(U) := —%/Ragf (h—E—M> (h—ﬁ+M> de,

o

B = o [ @lplo) p@F e, BoU) = [ o@)Ep0l0) de
Bu(t) = = [ @200 p0) - (o) e

Bi(U) = [ oot~ 0 e
Bu(U) = — [ @eu(p(o) o)) oo e

S10) = [ @ (plo) — p(@) () ~ D e

Sy(U) = — / X (h— F)p(@) — p(") — p(7°)%)e de.
and

)T P =@

g

G1(U) = %/Ra? dg,

GoV) = [ QUi s, G = [ ¥ @l plol)de

D)= [ Sslocolv) ~p) e

However, it follows from the construction of the shift X that

M
5 (Yl + Yz).

X(t) = 5

12



Using this, we estimate the time derivative of the weighted relative entropy as

= | U0t €))de
05 | 3
= 5P+ Bi+ By = Ga = 1D

~-
main part

05 v oo ° a1
~ 57X +X§;K+Z;Bi+51+52—G1—G -0
where B; and B, are the main bad terms, as the hyperbolic that should be sharply
controlled, and the remaining parabolic terms can be handled relatively easily. We use
the sharp Poincaré-type inequality in Lemma 2.1 to control the main part. To this end,
we rewrite the main parts in terms of the new variables y and w:

p(vm) = p(%(§ = X(1)))

g ’

w:=p) —p) and y:= (3.11)

where for any fixed ¢ € [0,7], the change of variable: £ — X (t) € R +— y € (0,1) makes
sense, since X (t) is bounded on [0, 7] by the a priori assumption.
Applying the Poincaré-type inequality to the main part, we obtain

(main part) < —C / (@)X |[p(w) — p(@)? de +C / 0¥ Ip(v) — p(@)[* de

e / 0 WR_Ume@) @) de.

Combining the estimates for the remaining parts, one can deduce the final estimate for
the weighted relative entropy with the shift as

1
G e n(U\U)d§<——!X!2——G1 Cle‘éD
+ Cad a0t 1 O el + O | P)ell
+ Cer+8) | F T = vl + [TV = vl + 1FNeN @

We use Gronwall inequality, together with the estimates on the shock 7 and rarefaction
7, to derive the following control on the relative entropy:

" t t
sup /U(U|U)d€+5s/ |X|2d5+/(G1+GS—|—D)ds
0 0

te[0,7] JR

(3.12)
< [ ail00,€)de + 5"
R

The estimate on the relative entropy (3.12) is the main step to prove the key proposition,
Proposition 3.1. This estimate, together with the H'-estimate on u — @ yields the results

13



in Proposition 3.1, in particular, the estimate (3.5). Finally, for the desired asymptotic
behavior, we use the estimate (3.5) to show that the function:

9(t) == [[(v = Vel oy + (1w — WellZ2m), (3.13)
satisfies

Aﬂmw+wwwﬁ<m

which implies
lim g(¢) = 0.
t—o00
Again, together with the estimate (3.5) and the interpolation inequality implies

Jim (o = lzoeqsy + = Wl sy) = 0.
Finally, we combine the above estimate to (3.3) to derive the desired convergence. This
completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

We now establish the proof for Theorem 1.2. Since the outline of the proof is parallel to
the proof of Theorem 1.1, we focus on discussing the difference and additional difficulty,
when it comes to the composition of two shocks. To be specific, we consider the end states
(v, uy) such that there exists a unique intermediate state (v,,,u,,) which is connected
with (v_,u_) by 1-shock curve and with (v, u) by 2-shock curve. That is, there exists
a unique (v, U,;,) such that the following Rankine-Hugoniot condition and Lax entropy
condition hold:

U — U_

Vi — Uy

(4.1)

Then, the Euler equations (1.3) with (1.4)-(4.1) admit a unique self-similar solution,
the so-called Riemann solution (7, u), represented by the composition (v, @) = (v§,uf) +
(v5,u3) — (U, ) of 1-shock wave (v§,uf) and 2-shock wave (v3, u3) defined as (see e.g.

[21])

s s (v_,u_), = <oit, s s (U Um), T < 0at,
(o1, ui)(t,z) = . (v, u3)(t ) = B )
(Vs U ), > o1t (vi,uy), x> oot.

One of the main differences from Theorem 1.1 is that we need two shift functions X;
and X5, one for each shock wave. As a consequence, we will consider the superposition of
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two viscous shock waves as

(0, 0)(t, z) == (07 (x — o1t) + 032 (T — 09t) — Uy, Uyt (T — 01F) + U2 (T — 09t) — Uy )
(4.2)
which is composed of 1-viscous shock (01, uy)(x —o1t) and 2-viscous shock (v, Us)(z — oot)
satisfying (1.11).

Then, the parallel proposition to Proposition 3.1 reads as follows.

Proposition 4.1. For a given constant state (vy,uy) € Ry X R, there ezist positive
constants &g, €1 such that the following holds.

Suppose that (v,u) is the solution to (1.1) on [0,T] for some T > 0, and (v,u) be the
superposition wave of two viscous shock waves defined in (4.2). Assume that both shock
strengths satisfy 61 == |v, — v_|, 09 := |y —v_| < &y and that

v—UE C([Ov T]a Hl(R))v
u—ii € C(0, T); H'(R)) N LX(0,T; H*(R)),

and
v = 0| oo o, 1t (r)) + |40 — || Loo (0,12 (R)) < €1
Then, for allt < T,

sup (lo = Bl + [l — W) + /Zapqzds

t€[0,7]
(4.3)
¢/gs U) + D(U) + Du(U) + Do(U)) ds
< Co ([lvo = 50, )l z) + lwo — @O, )1 r)) + Cody’*
and _ _
[ X1 ()] + [ Xa(t)] + Co < [[(v = 0) (X, )| m)
where Cy 1s the constant independent of T and
2
=3 [ 1l -0 e, D)= [ outpe) ~ (@) b
i=1 /R
Dy(U) = / (u— W) dr, Dy(U) = / (1= W)al
R R
and ¢; are cutoff functions defined by
1 if < —Xl(t);glt,
¢1(t,$) = 0 Zf T > M? ¢2<t> $) = 1_¢1<t> I)
linearly decreasing from 1 to 0 otherwise,

As mentioned in the previous section, the H'-stability estimate (4.3) is the main es-
timate to derive the time-asymptotic behavior of the Navier-Stokes system. However, in
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the case of the composition of two shock waves, some problematic issues arise, compared
to the estimates in the previous section.

First, to use the method of a-contraction with shift applied to the case of a single shock
wave, we should construct two shift functions X; and X5, with two weight functions a,
and as that control perturbation near each shock wave respectively.

Second, we need to construct the cutoff functions ¢; as in Proposition 4.1, to apply
the Poincaré-type inequality to each wave. Indeed, since the derivative of cach weight or
shock localizes all the bad terms, but not the diffusion term, we construct ¢; to localize
the diffusion near i-wave. More specifically, ¢; (resp. ¢2) localizes the perturbation near
the 1-wave (resp. 2-wave) shifted by X; (resp. X») satisfying

Xi(t) +oit < %t <0< %t < Xo(t) +oat, >0,

and so the functions ¢; and ¢9 are well-separated as time goes on.
Again, for convenience in the calculation, we use BD-variable U = (v, h) instead of

(v,u) and define U as
O(ta) = ("ﬁ(t x)) _ (’q}fﬁ (x — o1t) + (02)*2(x — oat) — vm> 7 (4.4)

h(t,z) 5 (x — o1t) + (h) X2 (x — o3t) —

where E = u; — (Inv;),, i = 1,2. And let us discuss how to construct the weight function
and corresponding shifts X;. Since we have two shocks, we need to construct two weight
functions a; with ¢ = 1,2 as

Ap(vm) — p(vs(x — 0it)))
0; ’

a;(x —oit) =1+

and then construct the composition of the shifted weights as
a(t,r) = a* (v — o1t) + ay* (v — oqt) — 1.

Then, similar to the construction of the shift as in the previous case, we define two shifts
as the solution to the following ODEs:

fo = =50 ([ 20002 000) — s s — [ ap@ (o= )as )

R

fo =5 ([ L0200 - e - [

[ (@ - dx) |

Again, the main step of the proof of Proposition 4.1 is to estimate the weighted relative
entropy with shifts:

/]R ot &)U (4, 2)|T (¢, 2)) da.

16



Following a similar process as in the previous section, one can obtain

d -
7 Rcm(U|U)dx

25 3
= ==Y ——|Xi’+B+B,—Ga— D
H2M| |+ B+ By — Gy 1

— ~ - (4.5)
2 5 2 6 5 1

IR (}QZ}@) +Y Bt Si+8 -G~ D.

i=1 i=1 j=3 i=3

~
=Ra

We refer to Section 4.5 in [4] for the exact definition of each term in (4.5). Again, the
term R is the main part, which should be sharply controlled by using the Poincaré-type
inequality in Lemma 2.1 and the remaining term Rs can be controlled in a rather rough
way.

However, two things should be noted when using the Poincaré-type inequality. First,
since there are two shift functions X; and X, for each of the viscous shock waves, we
use the change of variable more carefully. Second, we need to localize the perturbation
near each shock wave by using the cutoff functions ¢; and ¢5. Since this procedure is
extremely complicated and technical, we omit the details.

After we estimate R and R, one can finally obtain the following control on the weight
relative entropy with the shift:

/ a(t, 2)n(U(t, 2)|U(t, z)) dz + / t (Z 5| X2+ G+ G5 + D) ds
<c /R a(0,2)(Us(@)| T (0,2)) da + Cd,

where

2

h_ﬁ_M dz,

g;

G(U) = Z [(a;) )

=Y [ I
D)= [ 1o.(oe) = D)

¢i(p(v) — p(@))[* da,

Then, the remaining part is the same as in the previous section. We first obtain the
H'-estimate on u—1u, and then consider the same quantity g(¢) defined in (3.13) to obtain
the desired time-asymptotic behavior. This completes the proof of Theorem 1.2.
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5 Concluding remarks

The results of [4] and [11], stated in the main Theorems 1.1 and 1.2, are for the barotropic
Navier-Stokes system in 1D as (1.1). The key idea to prove them is to use the method of
a-contraction with shifts. As future works, it would be natural to extend the method of
a-contraction with shifts to more complicated cases: (i) barotropic Navier-Stokes system
in multi-D; (ii) Navier-Stokes-Fourier system in 1D. Recently, in [25], the method was
extended to tackling the case (i) for a single (planar) shock wave. So, for the case (i), it
would be interesting to handle the composition wave of either shock and rarefaction or
shocks. On the other hand, it would be very challenging to extend the method to the
case (ii), and so prove the open problem: the large-time behavior of solutions perturbed
from the generic composite wave of shock, contact discontinuity, and rarefaction.

As further applications of the method, it would be interesting to study the long-time
behavior or stability for the inflow (or outflow) problem of the compressible Navier-Stokes
system in half space, and for the compressible Navier-Stokes system coupled with other
physical phenomena.
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