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Abstract

This paper examines a continuous-time optimal trade execution problem under a tran-
sient market impact model. We also analyze the effect of an exogenous random factor that
affects the market price on the optimal trade execution strategy. Our execution problem is
formulated as a continuous-time stochastic control problem over a finite horizon of maximiz-
ing the expected utility from the final wealth of a risk-averse large trader. By examining
the Hamilton-Jacobi-Bellman (HJB) equation, we characterize the optimal trade execution
strategy and its associated optimal value function. The trade execution strategy becomes
a time-dependent affine function of state variables. Further, the time-dependent coefficients
could be derived from a solution of a system of ordinary differential equations (ODEs) with
terminal conditions, which is numerically tractable. In addition, we conduct simulation-based
numerical experiments and confirm that the optimal execution strategy captures various fea-
tures observed in financial markets.

1 Introduction

Optimal execution problems, originated by the seminal papers Bertsimas and Lo [5] and Alm-
gren and Chriss [2], have attracted widespread interest over the past two decades. In financial
markets, an institutional trader called large trader (e.g., pension funds, life insurance compa-
nies) executes (trades) a large amount of orders, moving financial asset prices in an unfavorable
direction. The effect caused by the large traders on the prices is called market impact (or price
impact). The readers may refer to, e.g., Cartea et al. [12], Guéant [30], Laruelle and Lehalle [37],
and Shimoshimizu [57] for a wide range of different configurations of optimal execution problems.

The following three market impacts are among the most discussed types: temporary, per-
manent, and transient market impacts. A temporary market impact refers to a part of the
market impact that fades away immediately after the execution, while a permanent market
impact is a part of the market impact that remains in the rest of the trading window. On
the contrary, transient market impacts, recognized as a striking feature of market impacts, is
referred to as the effect of market impact that decays over the trading window and is empirically
confirmed (Bouchaud et al. [8]; Gatheral [25]). The transiency of the market impact indicates
that a shortage of liquidity caused by a large trader’s execution results in an imbalance between
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buy/sell orders in a financial market. There is considerable literature on execution problems
in the presence of transient market impact (e.g., Gatheral et al. [27]; Kuno and Ohnishi [35];
Kuno et al. [36]; Schied and Zhang [55]; Tsoukalas et al. [60]; Luo and Schied [39]; Ohnishi and
Shimoshimizu [47, 48, 49, 50]; Fukasawa et al. [23, 24]; Neuman and Vo8 [43, 44]; Cordoni and
Lillo [16, 17] to mention only a few).

In addition to the market impacts, other exogenous factors often have a detrimental ef-
fect on the market price of a financial asset. For example, existing empirical and theoretical
studies demonstrate that the order flow of small traders incurs a price impact (Potters and
Bouchaud [52]; Cartea and Jaimungal [11, 10]) and influences an (optimal) execution strategy
(Cartea and Jaimungal [11, 10]; Fukasawa et al. [23, 24]; Ohnishi and Shimoshimizu [48, 49, 50]).
Another example of such an exogenous factor is the order book imbalance (OBI), which refers
to the difference between the volume at the best buy price and the one at the best sell price
divided by its sum and has a mean-reversion property (Lehalle and Neuman [38]). Existing
studies show that OBI causes price fluctuation (e.g., Cont et al. [15]; Stoikov [58]) and thus
influences an (optimal) execution strategy Lehalle and Neuman [38]. These examples indicate
that an exogenous stochastic factor can affect the price of a financial asset, which in turn affects
the optimal execution strategy or trade performance of a large trader.

Based on the background described so far, this paper examines an optimal execution strategy
for a large trader under the existence of market impacts and an exogenous stochastic factor,
both of which affect the price of a financial asset. In our analysis, we assume that temporary,
permanent, and transient market impacts exist and that the exogenous stochastic factor is
represented by a generalized Ornstein—Uhlenbeck (OU) process. The main objective of this
paper is to analyze how a large trader, taking environmental uncertainties into account, optimally
executes her orders. We particularly examine an optimal execution problem under the existence
of an exogenous stochastic factor that affects the market price. We obtain an explicit optimal
execution strategy and theoretically show that the exogenous stochastic factor directly influences
the optimal execution strategy. Our theoretical analysis also enables us to predict the future
inventory through only the information about the current state. Our numerical experiments
reveal several features observed in financial markets: The higher environmental uncertainty
(and the terminal cost per unit at the end of the trading horizon, respectively), the faster the
optimal execution speed to avoid future price fluctuation driven by the uncertainty (to avoid
the liquidation with high cost at the end).

The contribution of this paper is summarized as follows. We first derive an explicit optimal
execution strategy that involves the effect of an exogenous stochastic factor on the price of a
financial asset. Our model also provides an explicit formula for predicting the future inventory
given the information about the current state variable for the model in the absence of transient
market impacts. By the formula, practitioners as large traders in financial markets can manage
their inventory, which may be of great importance from the viewpoint of execution control.
Furthermore, our numerical examples quantify how environmental uncertainty influences the
optimal execution strategy. In particular, we find that if a risk-averse large trader has an initial
inventory below some fixed level, there exists a round trip trading through which the large trader
can increase her expected utility.

This paper proceeds as follows. In Section 2, we construct a market model which characterizes
the generalized market impact model. We solve the maximization problem of the expected
utility of a risk-averse large trader in Section 3. Section 4 is devoted to conducting numerical
experiments to see how problem parameters influence the optimal execution strategy. Finally,
Section 5 concludes. The proofs are shown in the appendices.



2 Market Model

We assume that in a financial market, a risk-averse large trader is obligated to purchase Q (€ R)
volume of a risky asset in a time window [0,7]. Let Q¢ (€ R) be the cumulative purchase up
to time ¢ € [0, 7] of the large trader. Then, the number of shares that remained to purchase at
time ¢ € [0, 7] is described as

Qr=9-Q, (2.1)

with the initial and terminal conditions: Q, = Q and Q7 = 0. We consider a continuous trading
strategy:

dQ: = Qudt. (2.2)

It is assumed that @ is continuously differentiable in time ¢ € [0,7]. We denote by the positive
and negative Q; the acquisition and liquidation of the risky asset, respectively. This leads to
a similar setup for a selling problem. The execution price of an asset P is assumed to follow
a linear market impact model (e.g., Bertsimas and Lo [5]; Almgren and Chriss [2]; Gatheral
et al. [27]; Obizhaeva and Wang [46]; Kuno and Ohnishi [35]; Cartea and Jaimungal [10, 11];
Kuno et al. [36]; Lehalle and Neuman [38]; Ohnishi and Shimoshimizu [48, 49, 50]; Fukasawa et
al. [23, 24]):

P, = Pi+ MQ, (2.3)

where P, (€ R) represents the market price of the asset at time ¢ € [0,7] and A\; (€ R44) is a
market impact coefficient at time ¢ € [0, T].

In the sequel of this paper, we assume that the buy- and sell-trade of the large trader induce
the same (instantaneous) market impact, although it would be different in the real market. We
can, however, justify this assumption from the statistical analysis of market data shown by, for
instance, Cartea and Jaimungal [10, 11]. The large trader’s wealth process at time t € [0,7],
denoted by W%, evolves as

AW, = —PdQ; = —P,Q,dt — — <Pt n AtQt) Oqdt. (2.4)

Besides the above (instantaneous) market impact, we consider the permanent and transient
parts of the market impact. The residual effect of past market impacts is defined, with the
deterministic linear temporary market impact coefficient ay € Ry, as

t
R, =e "Ry +/ e_p(t_s)asx\stdt, (2.5)
0
or
th = —ptht + Oét)\tQtdt. (26)

We define this transient market impact by employing the exponential decay kernel G: Ry =
[0, T] — R+:

G(t) =e ", (2.7)

where p € R stands for the deterministic resilience speed.d This residual effect indicates that
the market impact decays gradually over the trading window [0,7]. Ry is assumed to be zero

IMuch of theoretical analysis, such as in Obizhaeva and Wang [46], Tsoukalas et al. [60], deal with a (deter-
ministic and) time-independent resilience speed. Many empirical kinds of research, however, demonstrate that
liquidity is variable over time, suggesting that the resilience speed is time-dependent. Our analysis allows the
time-dependence for the resilience speed, i.e., p; for all t € [0,T], as considered in Fruth et al. [22]. Notwith-
standing a meaningful extension from the viewpoint of real market analysis, we henceforth formulate the model
without a time-dependent parameter (i.e., with p) since the dependence will not offer additional intriguing results
in the following analysis.



in the following analysis. The assumption is quite plausible from the fact that the trader has
no market impact on any risky asset before liquidating/acquiring the risky asset, and thereby
there exist no residual effects caused by the trader on the price before the execution. Note that
ozt)\tQt represents the temporary market impact caused by the large trader.

The market price is assumed to consist of the sum of the following two components:

P, =P/ + R, (2.8)

where Ptf for t € [0,T] stands for what we call the fundamental price of the risky asset. This
assumption stems from the definition of the transient market impact. The transient market
impact is the discounted sum of the past temporary market impact. Thus, the transient market
impact can be deemed to not influence the fundamental part of the market price. We define the
dynamics of the fundamental price as follows:

ar! = (mt@t + It) dt + dZ. (2.9)

Here 3;\;Q; represents the permanent market impact caused by the large trader. Contrary to the
transient market impact, the permanent market impact influences the market price by definition,
which in turn suggests that the permanent market impact directly affects the fundamental part
of the market price. Z; represents the effect of some public news/information about the economic
situation which may affect the market price (or quoted price). Adding to these two factors, we
assume that what we define as Markovian environment affects the fundamental price of the risky
asset.

Remark 2.1 (Interpretation of Markovian environment). The interpretation of the Markovian
environment can be various and needs to be considered carefully. {Z;}o<;<7 represents some
“state” of the financial asset market or trading system of the exchange at time t that affects in a
linear functional form the drift term of the price process of the financial asset that is the subject
of our trade execution. We assume that it follows an Ornstein-Uhlenbeck type, Gaussian, and
Markovian process.

e A classic and important example would be the continuous-time dynamic model version
of the single factor model of asset price returns motivated by the Capital Asset Pricing
Model (CAPM), a static equilibrium model of a financial asset market. Originating from
the discrete-time CAPM (by, e.g., Sharpe [56]), the continuous-time CAPM relation is
investigated by, for instance, Merton [40, 41], and implicitly by Cox et al. [18]. In our
model, the rate of return on the market portfolio or its proxy, the asset market index,
represents the state of the asset market.

e Many existing studies consider an effect on the risky asset price by a mean-reverting process
expressing aggregate orders submitted by small traders. It is empirically shown that the
market impacts caused by small traders are larger than those caused by large traders
(Potters and Bouchaud [52]). Cartea and Jaimungal [10, 11] examine an expected cost
minimization problem under the existence of small traders. Also, Fukasawa et al. [23] and
Ohnishi and Shimoshimizu [48, 49] investigate an expected utility maximization problem
incorporating the effect caused by small traders. These studies show that the aggregate
past orders posed by small traders do influence the optimal execution strategy of a large
trader. In line with these studies, we can consider (Bt)\tQt + 7,) as the permanent market
impact caused by market traders.

e Some studies also study other features that influence the stock price. Lehalle and Neu-
man [38], for instance, finds that the order book imbalance (OBI in abbreviation), defined



by Imb, with the volumes V? of the best bid and V¢ of the best ask defined as

V;b_‘/tu

Tmby = ———L,
Vi + Ve

(2.10)
has a predictability of future price movements. According to the empirical analysis, one
can interpret Z; as the effect of the order book imbalance on the fundamental price. We
should note that the OBI does not directly affect the fundamental price as the form (2.9).
The OBI is assumed to, for example, influence the fundamental price as a linear form.
That is, Z; is assumed to be a linear function of OBI as

It = mtImbt, (211)

for some deterministic coefficient function ;. This relationship is empirically confirmed
by Lehalle and Neuman [38].] Others, for example, Stoikov and Waeber [59], also show
the predictability of the imbalance between the top of book bid and ask sizes, the so-called
order flow imbalance (OFT). Bechler and Ludkovski [4] examine an optimal execution
strategy taking into account the OFTI.

Remark 2.2 (Related literature and the differences). There are some papers closely related to
our analysis. For example, Lehalle and Neuman [38] consider the effect of market microstructure
signal on the risky asset price in the presence of transient market impacts. Another paper Cartea
and Jaimungal [10] investigates an optimal execution problem in the presence of temporary and
permanent market impacts. The market model is similar to those papers, in particular, the
one of Lehalle and Neuman [38]. We should here note that some differences exist between
their models and our model. First of all, as explicitly stated in the next section, our model
considers an expected (CARA) utility maximization problem, although Lehalle and Neuman [38]
and Cartea and Jaimungal [10] study an expected cost minimization problem. Examining the
execution problem from an expected utility maximization enables us to consider the risk-averse
property more accurately than other models focusing on the expected cost minimization problem.
Lehalle and Neuman [38], in addition, do not consider the permanent market impact term as
(2.9). (They assume that the market impact affects only the market price dynamics.) Also,
Cartea and Jaimungal [10] does not include the transient part of the market impact, although
the transient market impact plays a key role in our analysis. Our analysis sheds light on an
optimal execution problem including all the fundamental aspects of market impact and the large

I Existing studies illuminate the effect of microstructural factors on the market price of a financial asset. In
particular, how price dynamics of a financial asset are determined through the order book has attracted widespread
interest among academic researchers and practitioners. We may recognize the mid-price as the price of a financial
asset without any price impact caused by (large) order submissions. Another feature that may be of interest to
practitioners is the weighted mid-price defined by the order book imbalance the total volume at the best bid Q°
and the total volume at the best ask Q® as w := Q°/(Q" + Q%).

Both types of “mid-price” have the advantage of being easily obtained from market data, although existing
studies have shown their shortcomings (e.g., Gatheral and Oomen [26]; Robert and Rosenbaum [53]). Stoikov [58]
then defines the notion of micro-price. The micro-price P™°"° incorporates the effect of mid-price M, order book
imbalance I, and the bid-ask spread S := P® — P% into the components of the underlying price: in mathematical
form, we can write the dependence as

P = M +g(I, S), (2.12)

using a function g, which can be empirically estimated.

Theoretical studies have analyzed a trade execution strategy that exploits predictable (microstructural) factors
(e.g., Garleanu and Pedersen [28, 29]; Chan and Sircar [14]; Cartea et al. [9]; Forde et al. [20]; Fouque et al. [21];
Neuman and VoB [43, 44]; Drissi [19]). Among them, Cartea and Jaimungal [10] and Lehalle and Neuman [38]
are closely related to our analysis. They investigate the influence of Markovian microstructure signal on a single
large trader’s optimal execution strategy.



trader’s property in one model. In addition, Bergault et al. [7] examine an optimal execution
problem when the price dynamics of multiple risky assets are described by a multidimensional
OU process. Drissi [19] studies an optimal market making problem in a similar price dynamics
setting.”™ Our model differs from these two studies because we assume that the drift of the
price dynamics is characterized by an OU process. We additionally account for transient market
impacts in the price dynamics.

The more mathematically formal setting of the above model is as follows. Let (2, F, {F¢}o<i<7, P)
be a filtered probability space. The processes of the Markovian environment Z; and the effect Z;
caused by public news or information on the (quoted) price are defined on the space as follows:
dZ; = (af — b T;) dt + o dBE; (2.13)
dZ; = pZdt + oZdBY, (2.14)
where Bf and BZ stand for standard Brownian motions with B = BZ = 0 a.s., p € R, and

Zp = 0 except the numerical experiment in Section 4. Eq. (2.13) is a generalized Ornstein—
Uhlenbeck (OU) type process. The explicit solution is given by

t t
It:IOBZ(O,t)+/ afBZ(s,t)dH/ olBL(s,t)dBZ, (2.15)
0 0

where for z,y € R,

BT (z,y) = exp {— /Iy bfdu} . (2.16)

We also assume that the filtration {F;}o<i<7 is the natural filtration generated by (BZ, BY),
that is,

Fi=0o{(BL,B?),0<s<t}, (2.17)

S

and satisfies the usual conditions. The quadratic co-variation of B and Bf takes the following
form:

d(B%, B?);, = pH2dt. (2.18)

This equation implies that these two processes are allowed to be correlated with each other.
Note that af, b7, oF, u? ,of in the dynamics of Z; and Z; are all deterministic in time ¢.

Remark 2.3. When af = 0 for all t € [0,T], Eq. (2.13) is called a generalized Langevin equation.
Also, in the context of the (affine) term structure modeling, a general dynamics of short rate
model described by Eq. (2.13) is flexible for real data by just allowing the time-dependency for

oF:
T T T1nT T atI T1nT
dIt = (CLt — b It) dt + ag dBt = b ﬁ — It dt + g dBt . (219)

(See, e.g., Hull and White [31] and Hull [32].) Therefore, we can assume that dynamics (2.13)
or (2.19) describe any factors that affect a financial asset price and have a mean-reverting

property.

**The author also analyzes an optimal execution problem with Bayesian learning of the drift in the asset price.



If we assume that the information flow accessible for the large trader is carried by the
filtration {F;}o<i<r, then the executed volume @ of the large trader by time ¢ € [0,7] is an
Fi-measurable (real-valued) random variable. Thus, the set of admissible execution strategies
is defined as follows:

A= {{Qt}0§t§T|{E}OStST—adapted process with a continuously differentiable path,
Qo =0.Qr=2}. (220)

According to the dynamics of the market model, it turns out that the wealth process, price dy-
namics, remaining execution volume, and residual effect depend on the process of the cumulative
purchase (or liquidation) denoted by @ = {Qs}o<s<¢:

AW = ~PRAQ, = ~PPQudt = — (PP + MQ1) Quat;

dPP = B\Qdt + T,dt + dZ; + dRY;

Q7 = —dQ, = —Qudt;

dR% = —pRYdt + a;\Qydt.
However, to simplify the notations, we suppress the superscript ) in the above expre_ssions
representing the dependence on ) to each state variable, and simply use the ones (W, P;, Q;, Ry)

defined in the previous description except the cases when we should emphasize the dependence
explicitly.

3 Performance Criteria and HJB Equation

In this section, we formulate and solve an HJB equation, from which we obtain an optimal
execution strategy and a value function.

3.1 Performance Criteria of the Large Trader: A Hard Constraint

We first define the state of the process at time ¢ € [0,7]. The state, denoted by s, is a 5-tuple
and is defined as

si =Wy, PL,QyRi,T)" eRP (=RxRxRxRxXR)=S§. (3.21)

As we have mentioned above, each component of the state is dependent on the process of the
cumulative purchase/liquidation: {Qs}o<s<t-

The utility function of the large trader is assumed to take the form of a Constant Absolute
Risk Aversion (CARA) von Neumann—Morgenstern (vN-M) utility function. The utility payoff
(or reward) arises only from the terminal wealth at maturity:

(3.22)

_J—exp{—Wr}, if Qp = 0;
gT(ST) . {_007 lf @T 7& 07

where v € R4 denotes the risk-aversion parameter. We define the (conditional) expected utility
of the large trader at time ¢ € [0,7] on an execution strategy @ = {Q¢}o<t<T as

V2 =B [gr(s)| 7] = B[ —exp { WP} 150, + (—00) 1 g0 o |F]. e 0T,
(3.23)



where 14 represents the indicator function for a measurable set (or an event) A € F.
Let the optimal (expected utility) value from time ¢ € [0,7] by

V; == esssup VtQ, t €10,T]. (3.24)
QeA
From the Markov property of the state dynamics, V; depends on the history or information F;
only through the (controlled) state s; € S and we denote this functional dependence by the
optimal value function as

14 [ta Wtapta@ta RtaIt] = ‘/ta te [OaT] (325)

3.2 In the Case with Target Close Order: A Soft Constraint

We consider a model with a closing price. The time framework ¢ € [0,7] is the same in the
model described above. However, we add an assumption that a large trader can execute her
remaining execution volume at the terminal, @7, with closing price Pr. We further assume
that the trading at time T imposes the large trader to pay the additive cost x7 per unit of the
remaining volume.

According to the above settings, the value function at maturity becomes

V[T, sr] = —exp { - V[WT —(Pr+ XT@T)@T] }, (3.26)

and the conditional expectational utility at time ¢ € [0, 7] is defined by

VtQ =E [— exp { -7 [WT —(Pr+ XT@T)@T] } ‘Ft} . (3.27)

This formulation is similar to Cartea and Jaimungal [10, 11], which incorporate the (quadratic)
cost of trading the remaining execution at maturity into the performance criteria. The term
XT (@T)2 corresponds to a quadratic transaction cost emerging at the terminal. Existing studies
formulate a model with quadratic transaction costs and give it some economic meaning. For
example, Garleanu and Pedersen [28, 29] solve a portfolio selection problem with quadratic
transaction costs, meaning that the buying or selling a unit of risky asset incurs an additional
cost proportional to the number of buying/selling assets (which we can regard as market impact).
A plausible interpretation for the formulation of Eq. (3.26) would seem to be that the large trader
can execute the orders remaining at the terminal 7" in a dark pool. Consider the following case
that a brokerage has to buy 9Q (€ R) volume which a client asked her to manage in a daily lit
market. These insights infer that analyzing the optimal execution strategies in the soft constraint
case lays the foundation of how a large trader should allocate the execution volumes (or speeds)
in the lit and dark pool.

Formulating the terminal condition as Eq. (3.26) also plays an indispensable role from a
mathematical viewpoint. Changing the terminal condition from Egs. (3.22) to (3.26) makes
a system of (Riccati type) ordinary differential equations (ODE) (accompanied by the deriva-
tion of optimal execution strategies) analytically tractable. The relationship between the two
formulations explained above concludes this subsection.

Remark 3.1 (Relationship between Hard and Soft Constraints). We can obtain the optimal ex-
ecution strategy for the primary problem (the optimal execution problem with a hard constraint)
by xT — oo in the following problem (the optimal execution problem with a soft constraint). If
the additional trading cost x7 goes to infinity, then the large trader will not use the dark pool
and execute only in the lit pool, as shown in [Kuno et al. [36], Proposition]. This fact indicates
that the large trader does not rely on a dark pool with too high trading costs (commitment fee),
even if the dark pool protects against the leakage of information about her trading in the venue.



3.3 HJB Equation
From the dynamic programming principle, the optimal value function, denoted by

V[t si] =V [t,Ws, P, Qy, Re, Ti] (3.28)
with the terminal condition:

V [T, Wr, Pr,Qr, Ry, Ir] = —exp { —y[Wr — (Pr + x1Qr)Qr] }, (3.29)

satisfies the following Hamilton—Jacobi-Bellman (HIB) equation (or dynamic programming
equation) for the optimal execution speed Q:

sup [8tV — (P + MQO)QOWY + { = pRy + (g + B)NQr + Ty + pf }OpV — Qt%V
Q:ER

+ ( - pRt + Olt/\tQt)aRV + (atI — b%—It>8IV
1
+ 5 {(O’tZ>28PPV + QO'tZO'tIpZ’IapIV + (Ug:)281'1V}} =0, 0<t<T (3.30)
if we assume that the function V: [0,7] x S — R is in C*?: V is continuously differentiable

with respect to time and continuously twice differentiable with respect to each state variable.
Rewriting this results in

sup [— (Pt + )\tQt) QiOwV + (o + B)MQOPV — Qt%v + atAtQtaRV}
Q+ER

+ 0V + (=pRe + T + pf) OpV + (—pRy)ORV + (af — b1 L;)07V
1
+ B {(UtZ)QappV + 2afathI7ZapIV + (O‘tI)2asz} =0, 0<t<T. (3.31)
We can derive the optimal execution strategy and its associated value function of Eq. (3.25)
explicitly by appropriately guessing the form of the optimal value function and verifying the
obtained solution.
3.4 Optimal Value Function and Optimal Execution Strategy

Theorem 3.1 (Optimal Execution Strategy and Optimal Value Function).
Under a set of regularity conditions:

1. The optimal execution speed at time ¢ € [0,7], denoted as Q;" , becomes an affine func-
tion of the remaining execution volume @), and the cumulative residual effect R; and the
Markovian environment Z; at time ¢:

QF = fi(st) = ar + bQ, + Ry + ATy, 0<t<T. (3.32)

2. The optimal value function V[t, s;] :== V'[t, Wy, P, Q,, Ry, I;] at time ¢ € [0, T] is represented
as follows:

VI{t, Wy, P, Qy, R, ;] = —exp {—’Y[Wt — PQ; + G(Q)* + HQ, + LiQ,Ry + Jy(Ry)* + LRy

+ MyQ, Ty + Ny Ry + Xo(Ty)? + VAT, + Kt} },
(3.33)



where ay, by, ¢y, dy; Gy, Hy, Iy, Jy, Ly, My, Ny, X3, Yy, Ky for ¢ € [0,T] are deterministic functions of
time t which are dependent on the model parameters, and these are assumed to exist as a unique
solution of a simultaneous system of ordinary differential equations derived in the proof.

Proof. See Appendix A. O

From Theorem 3.1, the optimal execution speed Q} depends on the state s; = (Wy, P;, Q,, Ry, Z;)
of the controlled process only through the remaining execution volume @Q,, the cumulative resid-
ual effect Ry, and the Markovian environment Z;, not through the wealth W; or market price P;.
In addition, by definition of Markovian environment, the optimal execution volume @y includes
a nondeterministic term (random variable), the optimal execution strategy being a stochastic
one. Then, the following corollary immediately holds.

Corollary 3.1. If the Markovian environment Z; for all ¢ € [0, T] are deterministic, the optimal
execution speed Qf at time ¢ € [0, 7] also becomes a deterministic function of time in a class of
the static and non-randomized execution strategy.

The optimal execution expressed by Eq. (3.32) implies that the optimal trading strategy is
adaptive to different values of the Markovian environment. Lehalle and Neuman [38] show that
when considering the transient market impact, the optimal trading strategy is time-consistent
so that no different values of Z; do not change the optimal strategy. Contrary to that, the model
considered in this paper allows us to derive the optimal execution strategy for a transient market
impact model with an effect of a Markovian environment on price dynamics.

Academic literature that focus on the execution problems of a single large trader derive an
optimal execution strategy in a deterministic class. For example, Schied et al. [54] consider an
execution problem of a large trader in a continuous-time setting and derive an optimal execution
strategy in a deterministic class. However, we can confirm from our analysis that the optimal
execution strategy does not always become deterministic if a stochastic exogenous factor affects
the financial asset price.

The optimal execution speed satisfies the following functional equation (for each w € Q):

QF = ar + b Q; + et Ry + di Ty

t t
=a; + bt/ Q,Zdu + ¢ (e_ptRo + / Qulge P Q,Zdu) + di Iy
0 0

t
g+ [ Kltu)Qidu, (3.34)
0
where
gt ‘= Qg + Cte_ptR() + dtIt, (335)
K(t,u) = b + agrge P e, (3.36)

Eq. (3.34) is a Volterra integral equation of the second kind. Since the function g and the integral
kernel K are continuous, the equation has a unique solution (Yosida [61]).
3.5 Special case: No transient market impact

As a special case, we examine an optimal execution strategy for the model described so far
without transient market impacts. If a; is zero, the residual effect of past market impacts
becomes zero since we assume that Ry = 0. Moreover, in the case that the residual speed goes
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to infinity, the residual effect of past market impacts becomes zero for all ¢ € [0, 7] since from
Eq. (2.5),

t
lim R; = lim (e_pth + / e—P(t—S)aSASQSdt) =0, (3.37)
0

p—00 pP—00
holds for all ¢t € [0, T]. In both cases, the market price dynamics become
dP; = BAQudt + Tydt + dZy, (3.38)

that is, we have a permanent impact model with Markovian environment. In this case, our model
partially includes the so-called “target zone models,” in which the price of an asset traded by
a large trader has one or more barriers and is reflected at the barriers (e.g., Krugman [34];
Neuman and Schied [42]; Belak et al. [6]). To be precise, if the large trader executes no orders,
the price is capped by the mean-reverting process Z;. This model is motivated by the fact that
monetary authorities (e.g., central banks) keep a currency exchange rate above some threshold.
In the case without transient market impacts, by setting the state variables as s; :== (W, Py, Q,, Z;)
we have the following results:

Corollary 3.2. Under the financial market considered in Section 2 without transient market im-
pacts, the optimal execution speed becomes an affine function of the current remained execution
volume and Markovian environment:

QF = @ + bQ, + di Ty, (3.39)

where ay, Bt, and d; are all deterministic functions of time. Then, the inventory at time ¢ for
0 <t < T has an explicit form as follows:

t t _
Q, =B%0,)Q + / B (u, t)a,du + / B(u, t)d T du, (3.40)
0 0

where for z,y € R,

BY(z,y) = —exp {— / ’ Bsds} . (3.41)

In this case, the ansatz of the optimal value function is given by

V[t, St] = —exXp { — V[Wt — R&@t + ét(@t)2 + E[t@t + Mt@tl—t + Xt(It)2 =+ Y~;§Zt + f{t:| }
(3.42)

Proof. See Appendix B. O

By stochastic Fubini theorem,
/Ot B®(u, t)d,T,du = /Ot B (u,t)d, (IOBI(O,U) + /Ou aBL(1,u)dl + /Ou ngI(l,u)dBlI> du
_1 /0 "BZ(0, u)B?(u, £)d,du + /0 Lo ( /l t BI(l,u)Bb(u,t)Judu) dl
+ /Ot of (/t BI(l,u)Bb(u,t)Judu) dBZ, (3.43)

l
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holds. Thus, we can rewrite Eq. (3.40) as

t t t
@t:B(O,t)QJr/ 3Eldl+/ ot (/ Bf(z,u)Bb(z,t)cZudu> dBf, (3.44)
0 0

l

where
~ t ~
X, = B, t)a; + ZoBL(0,1)B(1, t)d; + af ( / BT (1,u)B(l, t)dudu> . (3.45)
l

Eq. (3.40) implies that the process of the remaining execution volume becomes a Gaussian (Ito)
process under the optimal execution strategy.
From these results, the following proposition holds:

Proposition 3.1. The mean (or average) inventory at time ¢ conditioned on Fg for 0 < s <
t <T, captured by ]E[@t|.7-"s], becomes

t —
E[Q,|F] = e 1 0NG, + 9,/ T, + jos. (3.46)
where
¢ 7 u ~
Det ::/ e Jubdle= JIHRAM, du; (3.47)
% . t . t - .
Bst = / e~ Jutidlg, di + / e Jubidl ( / aLe” Im bkdkdm) d,du. (3.48)

Also, the conditional covariance of the inventory at time ¢ conditioned on Fs for 0 < s <t <
v < T, captured by Cov[Qy, Q,|Fs], is given by

Cov[Qy, Q| Fs] = / th(l,t)Ql(l,v)dl, (3.49)
where

A1) = oF /l "BE(1, ) B (1) . (3.50)
Proof. See Appendix C. O

Eq. (3.46) enables us to predict the future inventory given the current state. In particular,
we have

E[Qr| 7] = e 1 UG, + 9,5 T, + 3o, (3.51)

for 0 < s < T, indicating that we can predict the inventory at the end of the trading horizon
through the information about the current state at time s (Q; and Zs). Also, the conditional
variance for the future inventory is quantified as

V[Qp|F] = /ST A(1,t)%dl = /ST(JII)2 (/lT BI(l,u)Bb(u,t)Judu>2dl. (3.52)

Remark 3.2. If b2 = 0, by a similar calculation conducted in Appendix C we obtain

E[Q:|Fs] =€~ JodG 4§ T+ G (3.53)
where
t
Pst = / e Ju il du; (3.54)
st t . t
dsit = / e Jutidly, du + aI/ e~ Jutidlg, (u — s)du. (3.55)
S S
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Table 1: Benchmark values for parameters.

Parameters u? of of pb o P At al b p vy xr T

Benchmark values 0 0.1 0.1 0 0.5 05 0.001 05 05 0.1 0001 001 1

4 Numerical examples

Theorem 3.1 characterizes how Markovian environment affects the large trader’s optimal exe-
cution strategy. We can identify the effect of Markovian environment on the optimal execution
strategy as environmental uncertainty. In this section, we examine how a large trader facing
environmental uncertainty executes her orders in a financial market by comparative statics and
simulation-based analyses.

We assume the time homogeneity of the time-dependent parameters. The benchmark values
for parameters in this section are shown in Table 1. It should be noted that the initial value of
Markovian environment is set as zero in the rest of this paper except Subsubsection 4.3.2.

Remark 4.1 (Implications of parameters). We set oy = 3 = 0.5 as the benchmark values.
These parameter values imply that the instantaneous market impact caused by the large traders
at time ¢ € [0,7] is just half decomposed into temporary and permanent market impacts. In
addition, under the benchmark parameters setting, the dynamics of Markovian environment are
given by

dZ; = (0.5 — 0.5Z;)dt + 0.1dBf = 0.5(1 — Z)dt + 0.1d B, (4.56)

which implies that Markovian environment tends to push up the market price. Also, the pa-
rameter o denotes how high the environmental uncertainty is.

4.1 Comparative statics for coefficients

We first conduct comparative statics for the coefficients of state variables in the optimal execution
speed (i.e., at, by, ¢, di). In particular, we focus on how these coefficients are influenced by the
parameters defining Markovian environment (aZ,b?, and o) and execution cost at the terminal
(x7). This analysis allows us to see how a large trader incorporates Markovian environment
into the optimal execution strategy. Figures 1 to 4 illustrate the comparative statics for the
coefficients with different values of the parameters.

From Figs. 1 to 4, we numerically find that the coefficient of residual effect (¢;) seems to
be negative. We can interpret this result from the following insights: The residual effect is
the discounted sum of the past market impacts caused by the large trader’s order submissions.
Thus, the negativity of ¢; implies that a large trader reduces the execution speed in accordance
with the degree to which she has incurred the market impacts. This result reflects the following
viewpoint: The more the large trader has caused market impacts, the more unpreferable the
future price movement is. Thus, the large trader slows down the execution if she poses large
orders before some trading time. There are many other insights observed from Figs. 1 to 4 as
follows:

e The part corresponding to the constant term (a;) decrease as environmental uncertainty
increases. This result infers that the large trader tends to avoid the loss from price fluc-
tuation driven by environmental uncertainty. In addition, as a” (and thus mean-reversion
level) increases, the coefficient rises more, and the feature is remarkable at the beginning
of the trading window. When a? is large, Markovian environment pushes up the market
price, which is unpreferable for the large trader with positive initial inventory, and vice
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versa. Therefore, the large trader with positive initial inventory should liquidate her orders
at the beginning before the market (execution) price becomes high.

e The coefficient of the remaining execution volume (b;) increases in the first half of the
trading window as environmental uncertainty increases. The large trader is risk-averse and
avoids future fluctuation caused by environmental uncertainty. Thus, this result implies
that the large trader executes fast when environmental uncertainty increases. On the
contrary, the coefficient decreases at the end of the trading window as the terminal cost
(per unit) increases. The large trader executes faster at the end of the trading window as
the terminal cost increases more to reduce the terminal payment of additional costs.

e The coefficient of the residual effect of past market impacts (¢;) increases in the first half
of the trading window as environmental uncertainty increases. Combining this result with
the negativity of the coefficient, the large trader reduces the degree of incorporating the
residual effect of past market impacts into optimal execution strategy and facilitates her
execution to avoid environmental uncertainty. In addition, high terminal cost leads to the
increase of the coefficient. With high terminal costs, the large trader is keen to execute
orders fast not to remain some volumes that she must unwind at maturity.

e The coefficient of Markovian environment (d;) increases in the first half of the trading
window as environmental uncertainty increases. In addition, as the terminal cost is higher,
the coefficient decreases more. These results imply that a risk-averse large trader avoids
incorporating Markovian environment into the optimal execution strategy under a market
with high environmental uncertainty or high terminal cost. Also, the faster the mean-
reversion speed, the less the coefficient becomes.

Remark 4.2 (Effect of mean-reversion level of markovian environment). The parameter a

and thus the mean-reversion level of Markovian environment does not influence the coefficients
bi,ct,di. 'We can mathematically confirm this result from the system of ODEs (Egs. (A.72)
to (A.81)).

Remark 4.3 (Effect of mean-reversion speed of markovian environment). The coefficient d; may
not become zero even when parameter b’ is zero. This result implies that our continuous-time
model is not the limit version of the discrete-time analog since the coefficient d; becomes zero if
bt is zero.

4.2 Simulation of optimal execution

We next examine how optimal execution strategy differs depending on the market situation as
well as the large trader’s initial inventory. As stated in Subsection 3.4, the optimal execution
speed lies in a class of stochastic strategies. Therefore, we run the simulation for N = 100
sample pathes to obtain 100 realized optimal execution strategy captured by @t(k) for t € [0, T
and k € {1,...,N}. For each k € {1,...,N}, Q,(k) represents the kth sample path of the
large trader’s remaining execution volume for ¢t € [0,7]. The reason that we only show 100
sample paths is that more sample paths make the realization of optimal execution strategies
unidentifiable.

4.2.1 Sample paths of @t

Our first objective in this subsection is to identify how variations in parameters affect the optimal
execution strategy and whether a kind of statistical arbitrage exists or not. We first show the
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100 paths of optimal execution strategy for large initial inventory Q = 1,000 with different
values of parameters: oZ,a”,b?, and X%-

Fig. 5 illustrates the 100 sample paths of optimal execution strategy with Q = 1,000.
Panel (a) in Fig. 5 shows that high uncertainty driven by Markovian environment induces the
large trader to change the strategy depending on the realization of Markovian environment.
This result demonstrates that a risk-averse large trader chooses an optimal execution strategy
adapted to Markovian environment to take environmental uncertainty into account. The effect
of a’ is shown in Panel (b), suggesting that as the value of a increases, the large trader ex-
ecutes faster. The mean-reverting level of the OU process describing Markovian environment
is given by a? /b’ so that an increase of a” infers that of future risky asset price (in the sense
of expectation). Thus, a risk-averse large trader executes faster when a’ is large Moreover, we
observe from anel (d) in Fig. 5 that the higher the terminal cost per execution, the faster the
large trader executes his/her orders over the trading horizon (and the less at the end of the
trading horizon). This result confirms that a risk-averse large trader tends to avoid the terminal
liquidation if the terminal cost per execution is high.

4.2.2 Utility-based statistical arbitrage

Alfonsi et al. [1] and Palmari et al. [51] consider the following concept of transaction-triggerd
price manipulation in a cost minimization framework.

Definition 4.1 (Transaction-triggerd price manipulation (Alfonsi et al. [1] and Palmari et
al. [51])). A continuous trade execution model admits transaction-triggerd price manipulation if
there exists an initial inventory Q € R and a corresponding admissible strategy Q {Qt}0<t<T S
A such that

¢(Q) > sup {@(Q) ‘sign(@t) — sign(9),Vt € [0,T] } (4.57)
QeA
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Figure 6: Comparative Statics for 100 sample paths of @t with Q = 100

where A is the set of admissible strategies that satisfies E[ fOT Q?dt] < oo, and €(Q) for Q € A
is an execution cost driven by the strategy @) € A defined as

C(Q) =E [W;? - DPO‘ fo} . (4.58)

Motivated by this notion of price manipulation, we define a concept of utility-based statistical
arbitrage.

Definition 4.2 (Utility-based statistical arbitrage). A financial market with a stochastic process
{Z+}o<t<T expressing Markovian environment admits a wutility-based statistical arbitrage for a
large trader with CARA-type utility if there exists an initial inventory £ € R, and a trade
execution strategy Q = {Q¢t}o<t<r such that

E [— exp {—’yVVYQ} ’ ]-'0} > ;ua{E [— exp {—WWIC?H .7-'0} }, (4.59)

where A (C A) is the (sub)set of admissible strategies defined as

A= {{Qt}0§t§T3 ‘{Ft}gStST—adapted process with a continuously differentiable path,

Qo = 0,Qr = Q,sign(Qy) = sign(Q), vt € [o,T]}.
(4.60)

In this subsection, we examine whether there exists a utility-based statistical arbitrage in a
financial market by simulation-based numerical experiments.

Figure 6 illustrates 100 sample paths of simulated remaining execution volume under the
optimal execution strategy. Panels (a) and (b) in Figure 6 show that a financial market admits
a utility-based statistical arbitrage for high environmental uncertainty and high mean-reversion
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level of Markovian environment. On the contrary, from Figure (¢) and (d) in Figure 6 we find
that no statistical arbitrages seemingly arise even if the mean-reversion speed and terminal cost
per unit are high.

We also observe from Figure 7 that the possibility of utility-based statistical arbitrage is
high when the initial inventory is close to zero (Q = 10).

4.3 Optimal execution speed with zero initial inventory

We finally examine a sample path of optimal execution strategy with different values of param-
eters for Q = 0. In this case, we call the trading strategy as round trip trading.

4.3.1 Existence of round trip trading

Figure 8 illustrates that there exists a round trip trading that increases the expected utility (or
Eq. (3.31)). Let 0 denote the zero-trade schedule in which Q¢ = 0 for all ¢ € [0, T].TT Then, if
V9[sg] < V¥[sq] holds for some round trip trading strategy Q* := {Q} }o<i<7 such that Q =0
and

T . O
| @as+af -0 (4.61)
0

we have

—exp{—yWo} = V°[sg] < V¥[so] = E[— exp{—7Wr}Fo] < —exp{—E[Wr|Fo]}, (4.62)

T .
/ Qsds =0,
0

HUnder this condition, we have

and thus Q = 0.
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by conditional Jensen’s inequality, which implies that Wy < E[Wp|Fo].

4.3.2 Market situation

Large traders often observe that financial markets are unstable and financial asset prices fluctuate
in a short time window. Typical examples are “Flash Clash” (Kirilenko et al. [33]) or “hot-potate
game” (CFTC-SEC [13]; Schied and Zhang [55]). Markovian environment can express market
instability by changing parameter values. To examine whether a large trader has a statistical
arbitrage in such a (volatile) market, in this section we consider the situation that the initial
value of Markovian environment is negative but the mean-reversion level is positive.

From Figs 8 and 9, we observe that the sign of optimal trade execution speed for Zy = —1 is
different from the one for Zy = 0 (except Panel (a)). In addition, Panel (b) in Fig. 9 shows that
the sign of the optimal trade execution speed differs depending on the mean-reversion level of
Markovian environment.

4.3.3 In the case of zero mean-reversion

The interesting case is when a” is zero but b% and o are different from zero. In this case,

Markovian environment is expressed by a Langevin equation. In particular, we are interested
in whether there are manipulations in the following cases: (i) when environmental uncertainty
is high (i.e., when the value of o7 is large); (ii) when the mean-reversion speed of Markovian
environment is fast (i.e., when the value of b” is large).

Figure 10 illustrates 100 sample paths for different values of o with Q = 0, ¥ = 0 and
bY = 0.5 fixed. As shown, the increase in environmental uncertainty raises the possibility that
a round trip trade starting from zero initial inventory may increase the large trader’s expected
utility (and thus the expected wealth).
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Figure 11 shows 100 sample paths for different values of o with Q = 0, ¥ = 0 and 0% = 0.5
fixed. We find that as the mean-reversion speed increases, the extent to which the large trader
executes orders decreases. This result seems plausible from the following consideration: In the
setting that aZ = 0, we observe that the mean-reversion level is zero. Therefore, the fast mean-
reversion of Markovian environment indicates that Markovian environment takes values near
zero and thus possibly has little effect on the asset price over the trading window. Thus, there
is little opportunity for the large trader to make use of Markovian environment to increase her
expected utility from zero initial inventory when the mean-reversion speed is fast.

5 Conclusion

We have examined an optimal execution model for a single large trader in a finite continuous-
time framework. The large trader maximizes the expected CARA utility arising from her wealth
at the end of the trading epoch in a market. By formulating a generalized market impact model,
the backward induction method of dynamic programming based on the dynamic programming
principle permitted us to derive the optimal execution strategy. This kind of work concerned
with an execution problem through the backward induction procedure of dynamic programming
will be explored from a more in-depth and extensive perspective, which we can expect will also
give us a more illuminating insight into all the other problems left in this field of research as
follows.
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Appendix

A

Proof of Theorem 3.1

From the discrete time analogue of Fukasawa et al. [23], we guess the objective (or value) function
as follows:

Vv [t7 Wi, Py, Qy, Rmzt] = —exp {—’Y[Wt — PQ, + G(Q)* + HiQ, + L;Q, Ry + Jy(Ry)* + Ly Ry

+ M@, + MRy + Xu(T)? + YT + Ki] }, (A63)
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with the terminal condition:

V [T, Wr, Pr,Qr, By, Tr] = —exp{ = 7[Wr = (Pr + x2Qr)Qr] }. (A.64)

The partial differentiation of V' [t, Wy, Py, @t, Ry, It] with respect to time and each state variable

is calculated as follows:

OV = —~ {Gt(@t)Q + HiQ, + I;Q,Rt + J;R? + LiR; + M;Q,T; + N: R Ty + XiI? + YiT; + Kt} v,

owV = —V;
opV = ’Y@tv

%V = —7 (_Pt + QGth + Hy + I Ry + MtIt) V’
aRV = —’y (It@t + 2Jth + Lt + NtIt) V7
07V = —v(MQ, + NiRy +2X:T; + Y})V;

—2
oppV =~?Q,V

OprV = —7*Q; (MQ; + NeRy + 2X, Ty + Yy) V;
017V = =29X:V + v3(M;Q, + NiR; + 2X:I; + Y3)?V.

Therefore, by substituting these into Eq. (3.31), we have

sup 7[%@? +

QteER

[{(c + Bt + 2Gy — oy Ly }Q; + (I — 204 M) R

+ (My — g\ Ny) Ty + (Hy — at/\tLt)]Qt} v

+7

+7

_|_
2

+
2

+7
+7

+7

+ o+
-2 =2

f—’Hf—’Hf—’Hf—’Hf—Hf—Hf—H f—’Hf—/Hr—’H

o +
2

— G+ %7(0152)2 —p” Ut Ot £ M, + 2’7(% ) M2}Qt
— Hi+ i — af My —yp”*of o7 Yi +4(07) Mth}Qt
— It — p+ ply — yp? ol ol Ny + ~(of) MtNt}QthV
—Jit 2pd+ PPN IRV
— Ly + pL;y — aF Ny + (o) NtY}}Rt
— My + 1+ b M; — 292026 X, + 24(0F) MtXt}QtItV
~ Ny + pNy + bIN, + QW(af)QNtXt}RtItV
— Xy + 26T X, + 29(07)2 X2 }IEV
— Y, — 2aE X, + Y, + 24(0F) Xth}ItV
~ Ky~ afY — (o)X + (o YR}V
(A.65)

26



Since we assume the negative exponential utility function above,

sup 7y [)\tQ% + [{(ar + BN\ + 2G — atAtIt}at + (It — 204\ Jy) Ry
Q:ER

+ (My — oy N Ny) I + (Hy — Oét/\tLt>:|Qt} |4

= VQiIlfR"‘/ [)\tQtQ + [{(Ozt + ﬁt)At + 2Gt - O‘t/\tlt}@t + (It - Q(It/\tjt) Rt
t€

+ (My — g\ Ny) Ty + (Hy — at/\tLt)]Qt}

=V lgf Y [atQ% + [bt@t + Cth + dtIt + €t] Qt} y (A66)

where

ag = A¢;

by = (i + Be) M + 2Gy — ayAidy;

¢ = It — 204 M Jy;

dy = My — oy Ay Ny;

er = Hy — ayiLy. (A.67)

Therefore, Eq. (A.66) attains the infimum at the optimal execution speed:

_ biQ, + ciRy + ATy + ey

Q; = 5, =af +b/Q, + ¢ Ry + d T, (A.68)
where
€t bt Ct dt
o 2 pF = o d df = —— A .69
“t 2045 ’ t 2at ’ “ Qat ’ an t 2at ’ ( )

and the value of Eq. (A.66) at the infimum becomes

(b:Qy + 1Ry + ATy + €1)?
4at

Vv iélf’y [atQ% + [0:Qy + ctRe + diZy + €4 Qt} =— V. (A.70)
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Substituting this into Eq. (A.65) yields

sup 7y [%Q? + [{(ar + Be)A\e + 2G¢ — au ML} Qy + (I — 204\ J) Ry
QtER

+ (Mg — oy AeNy) i + (Hy — at)\tLt)]Qt} Vv
. 1 —=2
Gt—f——’Y(UtZ)2—’YP of o Mt“““/(”t) E}Qtv

— Hy + Mt — FM,; — ’YPZIUt o v, + ’Y(Ut ) Mth}@tV

+
+

ft —p+pl — 'yp Ut O Nt “/(0151)2MtNt}@thV

+
2

f—/Hr—’Hf—’Hr—’Hf—’Hf—/Hr—’Hf—’Hf—’Hf—H

1
+9y = J+2pd, + —’Y(UtI)QNE}R?V

+~{ — Li + pL; — al Ny + ~(ol) NtKg}Rt
oyl = M1 6EM — 2997020 X, + 24(0F) MtXt}QtZt
oyl = Ny N, £ VIN, 4 29(0F) NtXt}RtItV
+ 9] = X+ X, + 29(oF 2XE TRV

+ 9 =V = 2aE X, + VY, + 24(0F) Xth}ItV

+

-2 — 2

— Ky~ afY, — (o)X, + —v(o%wf}v

. 1 b2 ) —o
= —Gt+—7(atz)2—“/p Lol ot My + v( )Mt2_4_t}QtV

b
+y 9 —Hy+ pf —af My — TololYy + (o) MyY; — tet}Qt
bic
+y—Iy—p+pl — ’YPZJUtZO-tINtJF'Y(UtZ)QMtNt o t}Qth
1
+ Jt+2th+27(Ut)Nt _4_Clt Rt
+ 79 =Lt + pLe — af Ny + v(0F ) > NyYy — C;jt } RV
A btdt
Mt + 1 + b Mt 2"‘/p O't Ut Xt + 2"}/(O't ) MtXt — 2— QtItV

+
2
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“Ni + pNy + bEN; + 29(0F)2N X — %} RV

+
=2
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— X+ 267 Xy + 2v(0f )’ XE — E}It 1%

:S

d
— 2aT Xy + bFY; + 2v(0F )2 XYy — ;;t } v
t

+
)

+
2

+
2
/—’H/—’h\/—’;\/—’h\/—’H/—/H/—H/—’H/—H

1 e?
— Ky = afYy = (072 Xa + 572V - 4—} '

(A.71)
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Since this equation holds for all states, the following conditions must hold:

| 1 b?
— Gi+ =v(07)? —yp?Tol of My + —v(0of )’ M} — == = 0; (A.72)
2 2 day
. bie
— H; + ,ut —a; I n, — at o Ly, + ’y(at ) MY, — % =0; (A.73)
t
. bic
— Iy — p+ ply = yp?* ol of Ny + y(of )2 M N, — 2ta: =0; (A.74)
i 1 T\2 Ar2 Ct2
2 4CLt
2 Cté
— Lt + th — Qy Nt + ’y(O’t ) NtY% 2a = 0; (A?G)
t
) bid
—M;+1+ thMt - 27p ot lop: Ix, + 2’}/(O't ) M X — % =0; (A.7T7)
t
d
— Ny + pN; + bEN; + 29(0F)2 N, X, — (;tat = 0; (A.78)
t
Y T I\2 v 2 dt2
t
d
— Yi— 207X, + B Yi + 2(07)’ XYy = 50 = 0 (A80)
ag
. 1 2
— Ky — a2, — (052X, + ~(0F)2Y2 — L =, (A.81)
2 4at
with the terminal conditions:
Gr=—-xr; Hr=Ir=Jp=Lp=Mp=Npr=Xp=Yp=Kp=0. (A.82)

By substituting the dynamics of ay, by, ¢t, d¢, ¢ into the condition derived above and rearranging,
we obtain a system of ordinary differential equations consisting of Gy, Hy, Iy, Ji, Ly, My, Ny, Xy, Yy, K.
O

B Proof of Corollary 3.2

The derivation of Eq. (3.39) is similar to that of optimal execution speed (3.32) with the ansatz
of the optimal value function (3.42). We show that Eq. (3.40) holds from Eq. (3.39). If the
unique solution of the system of ODEs exists, ay, l;t, and d; are all continuous functions defined
on [0,7], and thus are bounded on the domain. Also, {Z;}o<:<7 is a generalized OU process,
and thus is also a centered and continuous Gaussian process. Therefore, E[supte[oﬂ 7] is finite
(Nourdin [45]), implying that sup;c(o 7 Z¢ is finite a.s. Since

dQ, = —Q.dt, (B.83)
By stochastic integration by parts, Eq. (3.40) can be rewritten as
Qt =a; + Z)t@t + JtIt < (Qt — Z)t@t) =a¢ + JtIt
ol beds 50O = elobsds(z 4 qT
— —e’ (—Q¢ + bQy) = elo (@ + diZy)

t7 yo— t u g ~
— efo bSdSQt = — / {efo bldl(du + dqu)} du
0

ty t ty t t7 ~
<— @t = e Jobsdsgy +/ <—efu bldl) aydu + / (—efu bldl) dyT,du.
0 0
(B.84)
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C Proof of Proposition 3.1

A similar calculation for solving ODE (3.39) results in

~ t ~ t o
E[Q;|Fs] Ie_fotbldlDJr/ e_fibldl&udqu/ e~ Jubdl g, BT, | F]du
0 0

- - s - s I
e fst bydl (e— fO bldlD + / e fu bldldudu + / ~ fu bldldu]E[Iu|]:s]du>
0 0

¢ B t o
+ / e~ fubidlg, 4 4 / e Lubidlg BT, | F,]du
S

s

- t -
— o [Thdg 4 ( / o Jubidlg= [ bﬁdmjudu> T,

t L - t .- t . ~
+ / e~ Jutidlg qr 4+ / e Jubidl ( / a};e—fmbidkdm> dydu, (C.85)

where we use Fubini theorem in the first equality and the fact that for all 0 < s < u,

u
E[T,|Fs] = e~ J: mdmg 4 / aZe” Vi, (C.86)

For the derivation of conditional covariance, define
t
A(l,t) == oF / BT (1, u)B®(u, t)d,du, (C.87)
l

and assume that 0 < s <t <wv <7T. Then we have

r t v
Cov[@Q,. Qu|F.] = Cov / (L, )dBY, / A(m, v)dBL
LJO 0

7]

rpt t v
= Cov / (1, t)dBE, / 2A(m,v)dBE + / QL(m,v)dB,Zn‘}"s]
LJ s s t

rprt t t v
= Cov /Ql(l,t)dB,I,/ Ql(m,v)ngL‘]:s} + Cov [/ Ql(l,t)dB,I,/ 2A(m,v)dBE,
LJ s s s t

7]

t t t v
=E [/ Ql(l,t)dBlZ/ A(m,v)dBE, ]-“5] + Cov U Ql(l,t)dBlI,/ 2A(m, v)dBE, .7-"5]
s s s t
t
_ / A1, H)A(L, v)dl. (C.88)
The last equality stems from Ito isometry. O
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