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Abstract

In this article, we introduce the results of the sheaf theoretical study of bicomplex hyper-
functions in [6].

§1. Introduction

The hyperfunctions was introduced by M. Sato in [10] as a generalization of func-
tions. It is well-known that they are more natural and useful than distributions in
studying linear partial differential equations with real analytic coefficients. The theory
of hyperfunctions has vastly developed as algebraic analysis [11].

Bicomplex algebra was introduced by Segre inspired by the work of Hamilton and
Clifford on quaternions. It is defined by

(1.1) BCZ{ZZZl + 205 | Zl,ZQE(C},

where j is another imaginary unit commuting with the imaginary unit ¢ of C. Since BC
is commutative and has zero divisors, it is more difficult to study bicomplex functions
than complex functions. Nevertheless, we can define the notion of holomorphicity of
bicomplex functions similarly to that of complex functions. The study of bicomplex
holomorphic functions is called bicomplex analysis ([3], [7]). See [4] and [5] for the
author’s recent works.

Colombo et al. introduced the notion of bicomplex hyperfunctions in [1] as a natural
generalization of classical hyperfunctions to bicomplex analysis. They proved a van-
ishing theorem of a relative cohomology group of the sheaf of bicomplex holomorphic
functions and the flabbiness of the sheaf of bicomplex hyperfunctions. See also [9] and
[12] for further developments.
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In this article, we introduce the result of [6] on the idempotent representation of
bicomplex hyperfunctions, which is based on the idempotent representation of bicomplex
holomorphic functions and the functorial techniques of sheaf theory. By our methods,
we can reconstruct the theory of bicomplex hyperfunctions and develop it into the theory
of bicomplex microfunctions.

This work was supported by the Research Institute for Mathematical Sciences, an
International Joint Usage/Research Center located in Kyoto University.

§ 2. Preliminaries

§ 2.1. Bicomplex numbers

In this subsection, we review the definitions and fundamental properties of bicomplex
numbers. See [3] and [7] for more details.

Let C be the field of complex numbers with the imaginary unit . We define the set
of bicomplex numbers by

(2.1) BC ={Z =21 + 295 | 21,22 € C},
where j is another imaginary unit independent of and commuting with i:
(2.2) i# g, ij=ji, i°=j>=-L

By defining the addition and multiplication naturally, BC has a structure of a commu-
tative ring. The set of zero divisors of BC with 0 is described as

(2.3) Go={Z =21+ 2j €BC| 2} + 25 =0}.

Note that a zero divisor is a non-unit element of BC. Setting

1+ij 4 1-ij
= ) e - 9
2 2

(2.4) e

e and el are the non-complex idempotent elements satisfying with ee’ = 0.
For Z = z1 4+ 295 € BC, we define the surjective ring homomorphisms ®.: BC — C,
(I)eT :BC — C by

(25) (I)e(Z) =21 — Zgi, (I)ef (Z) =2z1 + Zgi
respectively. Then any bicomplex number Z has the idempotent representation

(2.6) 7 =®(Z)e+ Bt (Z)el.
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By the idempotent representation, the set of zero divisors with 0 is represented by
(2.7) Gy ={Z =Dc(Z)e + Dot (Z)e" € BC | ®(Z)Pei(Z) =0} = Ce U Ce'.

In the case of several bicomplex variables, for Z = (Z1,...,Z,) € BC", we also
define the maps ®: BC" — C” and &+ : BC" — C” by

(2.8) De(Z) = (Pe(Z71), .-, Pe(Zn)), Pei(Z) = (Pet (Z71),.. ., Pet(Zn))
respectively. Then we have the idempotent representation of Z € BC" as
(2.9) 7 = 0o(Z)e + 0ot (Z)el.

In order to emphasize components, we may identify an image of a point by ®e (resp.
d.+) with a point of the e-axis C"e (resp. the e-axis C"e') in BC". Namely, we may
use the notation of ®(BC") = C"e, @4 (BC") = C"e' and so on.

We can also define the notion of mutlicomplex numbers, similarly. We omit the
details.

§ 2.2. Bicomplex holomorphic functions

In this subsection, we review the definitions and fundamental results in bicomplex
analysis. See [3], [7] and [8] for more details.
For any bicomplex number Z = z; + 295 € BC, we define the norm || Z]| of Z by

(2.10) 121l = V]z1]? + |22

BC has a structure of a topological space induced by it, which is isomorphic to the
Euclidian space C?. Moreover, the maps ®¢ and ®.+ are continuous and open.

Let Q C BC be an open set, F': § — BC a bicomplex function on 2 and Z; € ().
We say that F' is bicomplex differentiable at Zj if the limit

. F(Z) — F(Z)
(2.11) A 7 — Zo
Z—Z0¢60

exists, which is denoted by F’(Zy). We also say that F' is bicomplex holomorphic on
Q if F' is bicomplex differentiable at any point of 2. We denote the set of bicomplex
holomorphic functions on 2 by Opc(2). Then Opc has a sheaf structure.

The idempotent representation of bicomplex holomorphic functions plays an impor-
tant role in bicomplex analysis.

Theorem 2.1. Let Zy € BC and F a bicomplex function on a sufficiently small
neighborhood ) of Zy. Then F' is bicomplex holomorphic on ) if and only if there exist
complex holomorphic functions Fe and Fgi on ®(2) and Pgi () respectively such that

(2.12) F(Z) = Fs(Zo)e + Fut (Zot )e'
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holds on Q.

By Theorem 2.1, we can immediately generalize fundamental properties of complex
holomorphic functions of one variable such as Taylor’s theorem, theorem of identity and
so on to those of bicomplex holomorphic functions.

We denote the sheaf of complex holomorphic functions of one variable by O¢c. We
can represent Theorem 2.1 in terms of sheaves as follows.

Corollary 2.2. We have an isomorphism of sheaves
(2.13) Opc ~ @, 'Ocee ® @' Ocerel.

In the case of several bicomplex variables, let 2 C BC"™ be an open set, F': 2 — BC
a bicomplex function on 2. We say that F' is bicomplex holomorphic on €} if and only
if F'is partially holomorphic in each variable on 2. We denote the sheaf of bicomplex
homolorphic functions of several variables by Opcn». Then we also have an isomorphism

(2.14) Opcn = @' Ocnee & @_'Ocnerel,

where Ocn is the sheaf of complex holomorphic functions of several variables.
We can also define the notion of mutlicomplex holomorphicity, similarly. We omit
the details.

§ 2.3. Bicomplex hyperfunctions

Let V C R”™ be an open set and 2 C BC™ a bicomplex neighborhood of V. Namely,
V =R"NQ holds. Colombo et al. in [1] proved that the cohomology group Hy, (2; Opcn)
of Opcr supported by V' vanishes if p # 3n and defined the notion of bicomplex hyper-

functions as
(2.15) Brcen (V) = HP™(Q; Open)

by using an abstract Dolbeault complex, which is a resolution of the sheaf Opcn of
bicomlex holomorphic functions. They also proved that Bpc- is a flabby sheaf on R”
and the duality theorem

(2.16) H (BC™; Open) = (Open (K))'

holds for any compact convex subset K of BC".
Similarly, Vajiac-Vajiac in [12] defined the notion of multicomplex hyperfunctions of

one variable.



SHEAF THEORETICAL STUDY OF BICOMPLEX HYPERFUNCTIONS 5

§ 3. Sheaf theoretical study of bicomplex hyperfunctions

In this article, we study bicomplex hyperfunctions by sheaf theoretical way. We
mainly treat objects in the derived categories D?(R") and D?(BC"). Here, for a topo-
logical space X, we denote the derived category of bounded complexes of sheaves of
Cx-modules on X by D?(X). See [2] for more details on the derived category.

In the derived category D?(R™), the sheaf of classical (complex) hyperfunctions,
denoted by Bc- in this article, is isomorphic to the complex RIkn(Ocn )|rn[n], which is
concentrated in degree 0. Note that we omit the orientation sheaf since it is trivial.

Considering the previous research of bicomplex hyperfunctions, it is natural to study
the complex RIgn(Opcn ) of sections the sheaf Opcn supported by R™. In order to study
it, let us consider the following diagonal embedding

(3.1) R" < R"e + R"e! < C"e 4+ C"e’ = BC"

of the real space R™ into the bicomplex space BC". The idempotent representation
(2.14) of bicomplex holomorphic functions induces the following isomorphism.

Theorem 3.1. We have an isomorphism

(32)  RIgn(Opcn)|gn
~ Pelpn RIRre(Ocne)|rre]—2n] © ot gt RIRnet (Ocnet ) |rnotel [—2n]

in D(R™).

By the fundamental results of classical (complex) hyperfunctions Ben, we can reprove
the vanishing theorem of the complex RIRkn(Opcn)|r» and the flabbiness of the sheaf
Bpcn of bicomplex hyperfunctions as a corollary of Theorem 3.1.

Corollary 3.2. (i) The complex RIgn(Opcn)|rn is concentrated in degree 3n.
(ii) Redefining Bpcn = H3"(RI®n(Opcn)|re) as a sheaf, we obtain an isomorphism

(3.3) Bpcn >~ @e‘ﬂgi[})@nee D Pt |]1£»,]£B(Cnef el.
(iii) The sheaf Bpcn is flabby on R™.

Similarly, we can define the notion of multicomplex hyperfunction of several variables
and obtain its idempotent representation. We omit the details in this article. See [6]
for the details.

§ 4. Bicomplex microfunctions

Let us consider microlocally the study in the previous section.
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In the derived category D?(T;,.C"), the sheaf of classical (complex) microfunctions,
denoted by Cc» in this article, is isomorphic to the complex pgn(Og¢n)[n]|, which is
concentrated in degree 0. Here pgn(Ocn) is the microlocalization of O¢n» along R™,
which is an object of D?(T3.C™). See [2] for more details on the microlocalization
functor pu.

Considering our study of bicomplex hyperfunctions in Section 3, it is natural to
study the microlocalization pgn(Opcn) of Opcn along R™. In order to study it, let us
also consider the diagonal embedding

(4.1) R™ < R"e + R"e! < C"e + C"e' = BC"

of the real space R™ into the bicomplex space BC™ and the following morphisms

t@’
(4.2) T;BC" = R" x Tj.C'e Len T, Cre,
* n th)/eT n * n T Dt * nt
(43) TRnBC << R RXTTRneTC e =z TR"eTC e

induced by the maps T®.: TBC"* — TC"e and T®.i: TBC"* — TC"e’. Then
the idempotent representation (2.14) of bicomplex holomorphic functions induces the

following isomorphism.

Theorem 4.1. We have an isomorphism
(44)  pme(Oscn) = 'L, O ppne(Ocre) [-2ne @ 04 D! pipnet (Ogner)[~2n] €f
in D*(T3,.BC™).

By the vanishing theorem of the complex pgn(Ocn), we can prove the vanishing
theorem of the complex pgn(Opcn) and define the notion of bicomplex microfunctions.

Theorem 4.2. The complezx pugn(Opcn) is concentrated in degree 3n.
Definition 4.3. We define the sheaf of bicomplex microfunctions by
(45) CBC" = Hsn(MRn (OBC"))

By the fundamental results of classical (complex) microfunctions Ccr, we obtain the
fundamental properties of bicomplex microfunctions as a corollary of Theorem 4.1.

Theorem 4.4. (i) We have the idempotent representation of Cpcn
(4.6) Cacn = 'L, Dy Cone e 0 10L;, D Coner €.

(ii) The sheaf Cpcn

T, BCr is conically flabby on T, BC™.
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(iv)
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There 1s a natural exact sequence on R"
(47) 0 _> OBCnhRn — BB(CTL — ﬁ*CB(Cn —> 0,

where T: TﬁnIB%C” — R"™ 4s the natural projection.
There exists the spectrum isomorphism of sheaves on R™

(48) Sp: BB(Cn ; W*CB(Cn,

where m: Ty, BC" — R™ is the natural projection.

Similarly, we define the notion of multicomplex microfunctions of several variables

and obtain its idempotent representation. We omit the details in this article. See [6]
for the details.
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