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Abstract

The generalized confluent hypergeometric theory by Kimura, Haraoka,
and Takano includes systems of differential equations, functions as so-
lutions of them, and the contiguity relations both for the systems and
for the functions. We report our recent study on an extension of that
theory without the proofs. The details will be published in a forth-
coming paper.

1 Introduction

Classical hypergeometric and confluent hypergeometric functions can be ex-
pressed in an integral representation whose integrand is a multiplication of
exponentials and power functions with an exponent of each. These expo-
nents are special ones for their base, so one has to treat each function as a
distinguish stuff. For example, a classical Kummer function has an integral
representation

1
(1.1) yla,c;z) = / ey (1 — u)“ " du,
0

which has two paremeters a and c to give the integrand consisted of the three
factors with the exponents zu, a — 1, and ¢ — a — 1.

Kimura, Haraoka, and Takano[3] gave a solution to this difficulty. They,
based on the idea of Aomoto[l] and Gelfand[2], introduced a family of func-



tions, the generalized confluent hypergeometric functions, which can be con-
sidered to be an extension from classical hypergeometric and confluent hy-
pergeometric functions. If one use a generalized confluent hypergeometric
function, the expression (1.1) is written as

(12)  Bpan(zasq) = / (£22)™ €252 (£25) (£24)™ (Hodts — rdto),
v

where z = (21 22 23 24) is a 2x 4 matrix in the set Z(5 1) defined by some way.
The notation o = (ay as az ay) is a parameter vector of size 4, which has a
restriction of oy + ag + ay = —2. By lifting up y(a,c;z) to ®(o,1,1)(2; ;7),
we can see the parameters from an equal perspective. The parameters a and
cin (1.1) has a different role in the integrand, while a3 and a4 in (1.2) can
be seen as the two which have the same duty. This symmetry is due to how
to construct ®(91.1)(2; ;) from a Lie group Hz11).

Kimura, Haraoka, and Takano[4] gave a system of differential equations
M, \(«v), where the notation A is a partition of a natural number N € Z,,
r € Z>2 and « is a parameter vector of size N. This system has a gener-
alized confluent hypergeometric function @, ,(z;a;v) as its solution, where
the variable z is an r X N matrix.

The form r x N of the matrix variable z in ®, \(2;a;7) comes from the
corresponding integrand of a classical function which has the r — 1 vari-
ables (u1,ug, -+ ,u,—1) € C"'. The integration @, ,(z;«;7) of a function
Xra(tz; ) is a Radon transform of y, »(h;«). The integrand x,(tz;«) is
defined on the projective space P™! with the homogeneous variable t =
(to,tl,tg, s 7tr—1) S Cr, (to,tl,tg, ce 7tr—1) 7£ (O, 0, 0., ce ,0), where 7 cor-
responds to the number of row vectors of the matrix z. The special case
P21,1)(2;a;5y) in (1.2) has a 2 x 4 variable z since a Kummer function (1.1)
is the corresponding one whose integrand has the only one variable u € C.

They also gave contiguity relations for the solution space S, \(a) with
respect to a differential operator

(1.3) Lg :Spa(@) = Sa(a+e® — ),

(k) _ ()
Since @, \(z; ;) is an element of S, y(«), there is a contiguity relation also
for this function which has the same shift of the parameter as the relation
(1.3):

(14) LEE(I@)_S(I) (I)r)\(z; O{, r}/) — Oé(l) (Dr,)\(z; % _|_ E(k) — E(l); r}/)

nl—l



If (1.3) and (1.4) are reduced to the case of Kummer type, both relations
become

(1'5) LES(k)fe(l) : 8(27171) (O‘) — 8(27171)((1 + e® — 5(1))7
(1-6) LEaUc)_EU) @(27171)(2; Qs W) = agl)—1q’(2,171)(2§ o+ e® — 8(l); 7)-

A root subspace g.x .y C gl(IV) is determined with respect to a Lie subal-
gebra by of gl(IV). They took an eigenvector E_x)_ ) from g.w_.u) to give
a linear differential operator Lg ,, , and got the results of (1.3) and (1.4).

In this article, we are going to see how the relations (1.5) and (1.6) are
extended. While Kumira, Haraoka, and Takano[4] used only an eigenvector
E_ty_.a to make an operator, we will use all the linearly independent vectors
in the generalized eigenspace g.x)_. corresponding to g.x)_.w. By this
method, a square matrix of size 2, ﬁ[;] .
of Lg 4 - We will give an extended system M([il,l)(a,ﬁ), its solution
space 3([?7171) (a, B), and a function (i>£221,1,1)(z5“75;7)7 which correspond to
Meoa1y(), Sei1)(a), and $o11)(2; a;7), respectively. Here we take two
parameter vectors a and [ in the extension.

will be given as an extension

2 Generalized confluent hypergeometric the-
ory

2.1 Root space decomposition

Let us consider the linear map adx defined by
ady : gl(4) 2 Y — [X,Y] € gl(4),

where, as an element in the linear subspace of gl(4), X is a square matrix of
size 4 whose entries are complex numbers:

X1 Xo
X €bhein = {( as e )}
X4

Since the vector space hs,1,1) is an abelian Lie subalgebra of gl(4), the fam-
ily of the linear maps {adX}Xef;(g,l,l) is commutative. Hence, a subspace
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of gl(4) is decomposed into its simultaneous eigenspaces with respect to
{a‘dX}Xeh@,l,l):

(2.1) go + Z 9.0 C gl(4),
1<k£1<3

where the space go = b(2,1,1) corresponds to the eigenvalue 0, and the space
9.t _. the eigenvalue (g(k) — 5(l))(X), X €beuy), 1 <k#1<3 The
notation €®), 1 < k < 3 expresses the linear map which sends the value as
the common elements X, j = 1, 3,4 in the k-th diagonal block of b2 1 1) into
the space of the complex numbers C:

8(1)(X) = X17€(2)<X) = X37€(3)<X) = X47
"y @A)
X X
. ( = ) ) —
X4

The linear map €® — e expressing the nonzero eigenvalue is called a root,
so the space g.x) _.0) is said to be a root subspace of gl(4). Thus, we have
obtained the root subspace decomposition (2.1).

On one hand, the space g is spanned by the four vectors

(=) () =) ()

so let us use these vectors as its base. On the other hand, we are interested
in what form the subspace g.x_.w has. This space has only one nonzero
entry at the position of the first row and the last column in the (k,1) block.
For example, the space g.a)_.e) is

)

The eigenvector E_x)_.0) in g.x_.oy can be taken as the square matrix of
size 4 with the only one nonzero entry 1 at the same position of the nonzero

entry of the space:
1
0
E.o_co = ( >

X




Therefore, the space in the left hand side in (2.1) can be expressed as

X1 Xo * *
X1
go + E Gelb) o) = {( X5 | = )}
1<k#1<3 x | x| Xa

2.2 Confluent hypergeometric system of Kummer type

2.2.1 The system My ()

In Section 2.1, we got the space gy and the spaces g.x)_.w). From the former,
the differential operator Ly — a(X) in the confluent hypergeometric system
of Kummer type M21,1)(c) is made, and from the latter the differential op-
erators Lp ), giving a contiguity relation for the solution space Sz 1,1y()
of the system.

The notation «, which is a row vector of size 4, o = (v, g, a3, ) =
(a(()l),agl),a((f),aé?’)) € C*, means the parameter of the system M1 1)(c).
However, by the same notation, let us define the linear map

[0 [’)(271,1) > X
= X tae Xot+as Xz+ay Xy = a(()l)Xél)+a§1)X£1)+a(()2)X(§2)+a63)X(§3) e C,

1 1
X1 X XY Xfl)
X = X1 — xy”
X3 X(()2>
X4

If we consider « as this map, we use this notation as an element of the dual
space: a € By gy

By the matrices X € h1,1) and Y € gl(2), let us define the differential
operators which operate on a function F' whose variable is a 2 X 4 matrix
z € Mat(2,4):

X

d d
LxF(z) = EF(zesx) . MxF(z) = EF(esyz)
s=0 s=0

Moreover, we define the differential operator

o 0 o 0

0z0p 0214 0204021

D,q (1 SpaQS4)-



By these operators and a linear map o € b>(k27171)’ and by the notation Tr(-)
such that

a b
Tr(Y)—a+d, Y_<C d)7
the confluent hypergeometric system of Kummer type M 1,1)(c) is defined
by the next definition in Kimura, Haraoka, and Takano[3].

Definition 2.1. Let a € h{,, ;) be a linear map and let F'(z), 2 € Mat(2,4)
be a function. The confluent hypergeometric system M1 1)() is defined by

{LX — Oé(X)} F =0 (X S [](271,1)),
{My +Te(Y)} F = 0 (Y € gl(2)),
O F =0 (1<pqg<4).

p,q

Let us denote by Si21,1)(cr) the set of the solutions in a neighborhood of a
fixed point 2°.

They also gave the system M, )(«) for an arbitrary natural number r €
Z>5 and for an arbitrary partition A of a natural number N € Z,.

Definition 2.2. Let r and N be natural numbers satisfying 2 < r < N,
and A = (nq,ng, -+ ,ny) a partition of N, ie., ny > ny > -+ > n, and
ny+ng+---+np,=N. We denote an r x N matrix z by

20,1 20,2 20,N
21,1 21,2 21,N
(2.2) z=
Zr—1,1 Zr—1,2 '° Zr—1,N
= (21 2 - zn) = (2P 2 ... 29) € Mat(r, N),

k k k

20 21 o

S T .

2 = ’ ’ T € Mat(r,ng), 1<k<{,

BN T (5 SR (O

r—1,0 r—1,1

a Lie subalgebra b, of gl(/V) by

j(n1)
N
j(ne)

r—1,n,—1




and a parameter vector a by
(2.4) a= (o ay ---ay) = (a¥ a® .. o) e Mat(1, N).
Besides, we define the differential operators D;’fq by

0o 0 o 0

25) O% = -
(2:5) 0zsp 02ty 0254021

D.q

OSS,tST—l, 1§p7QSN

The confluent hypergeometric system M, ,(a) for unknown F(z) is defined
by

{Lx —a(X)} F =0 (X €hy),
(My +Tx(Y)} F = 0 (Y €gl(r) ),
s F =0 (0<st<r-11<pg<N)

Let us denote by S, »(«) the set of the solutions in a neighborhood of a fixed
point z°.

2.2.2 The contiguity relations

In Section 2.2.1, the operator Lx —a(X) in the system My 1 1)() was defined
by an element X € bo,1,1y. In this section, we define the operator LEa<k>_5(l>
by a simultaneous eigenvector E_x)__u) in the space g.x) _.1». This operator
gives a contiguity relation for the solution space S,11)(a).

By a square matrix of size 4, E.x)_.0) € g.(6)_.), We get LEM)_S(!) defined
by

d
F(z) = —F(ze® 00

L
E. ds

(k) _o(1)
s=0

which operates on a function F' with a 2 x 4 matrix variable z € Mat(2,4).
Let us consider the product Lg ,,  {Lx —a(X)}. This can be transformed
into

(2'6) LES(k)_E(l){LX - O‘(X)} = {LX - (a + 5(k) - 5(1))<X)}L55(k)_6<z)



by a calculation of a bracket product of matrices. This equality is a key
for a contiguity relation for the solution space Siz1,1)(r): Take a function
F € 8p,1,1)(«v) and operate the both hand sides of the equality (2.6) on this
function, and we get the value 0 as

(2.7)
Lp gy o llx —a(X)HF = {Lx = (a+ e® — 5(Z))(X)}LE€<k>_E<z>F = 0.

From the equalities (2.7), we know that the function G = Lg ,, , F is one
such that

[Lx — (a+=% — 0)(X)}G = 0.
Moreover, we can confirm that

{My+Te(Y)} G = 0 (Yegl2)),
Dp,q G =0 (1§pa9§4)-

Hence, the function G is an element of the solution space G' € S(2,1,1)(a +
e® — ). We summarize this story as a theorem in the case of (r, N) = (2,4)
with the partition A = (2,1, 1).

Theorem 2.3 (Kimura, Haraoka, and Takano[4]; Kimural5], p.177). The
differential operator Lg oy gives the contiguity relation for the solution
space

LEa(k)—a(l) : 8(27171) (O{) - 8(27171) (OZ + 5(k) - 5(1))_
Moreover, if the parameters satisfy that
k l
(28) (1 + B )1 # 0,

this linear map has its inverse

1
k l
(Oéglk)—l + 617”k)a£ll)—1

E_y_.v - Sean(a) = S (a+ e® _ g(k)),

and so 1s isomorphic. Here if we use the correspondence of the entries in the
parameter «

Q= (ala Qg, O3, Oé4) = (a(()l)v agl)v Oé(()Q), a(()S))7



the condition (2.8) means that, for the pair

(k)= (2

%)
(2, 1

), (1,3),
), (31), (3,2),

the inequalities

Qg 7£ 0, Qo Ouy 7é 0, (O&g + 1)0[4 7é 0,
(043 + 1)0[2 7é 0, (Ol4 + 1)0[2 75 0, (Oé4 + 1)0&3 75 0

hold, respectively.

2.3 The generalized confluent hypergeometric function
of Kummer type

In Section 2.2.2, we saw the contiguity relation for the solution space Si1,1y()
of the system M1 1)(c). We can construct a function satisfying the system,
which is called the generalized confluent hypergeometric function of Kummer

type.
Consider the set

hi  ho
Hiq1) = {( i T ) thy, hs, hy # 0}7
hy

which is one of the Cartan subgroups of GL(4). We write the universal cover
of this group as Hz1,1). Then, as the character of the group Hz 1), we get
the function

h
Xean(hia) = BS1e™m hgehgt,

h = (h1,ha,hg,hy) € C* x C x C* x C*
! = (a,az,a3,04) € C xCxC xC,
where we assign the condition oy +a3+ay = —2 to the parameter a:: the map

X1, (b a) _FI(QJJ) — C* is a group homomorphism. From x(a,11)(h; av),
the function on the projective line

(€3 2 «@ «
X(2,1,1) (tZ, (X) = (tZl)ale 2tz (tZg) 3(t24) 4



is obtained, where t = (o, #;) € P! is a homogeneous variable of this function,
and the coeflicients of ty and ¢; consist of the entries in the 2 x 4 matrix

z € Z(2,1,1) = {(Zl 29 23 Z4) : det(zi,zj) 7§ O7 (153)-7’)(1:,4()1’7(23)774) }7

20,1 20,2 20,3 20,4
(21 29 23 24) = ( )

21,1 *1,2 21,3 21,4

By integrating x(2,1,1)(tz; ) along an adequate path - which has zero points
of the function x(1,1)(tz; ), [to : t1] = [~211 : 201), [=213 * 203, [~214 ¢
20.4), as its two end points, we get the generalized confluent hypergeometric
function of Kummer type

P11 (z5057) = /X(2,1,1) (tz; a)(todty — tydlo).
v
This function was defined by [3] in a general form.

Remark 2.4. The conditions det(z;, 2;) # 0, (,7) = (1,2),(1,3),(1,4), (3,4)
for the set Z(3;,1) are assumed in order not to degenerate the function

X(2,1,1)(tz; ). For example, if det(z1,22) = 0, then there exists a constant
so € C such that tz9 = sgtz; and we have

X(2,1,1)(t2; @) = (t21) €% (t23) ™ (tzg) ™.

For this integrand, ®(211)(2;0;7) can be considered as a generalization
from a classical Beta function. On the other hand, if det(zy,23) = 0, then
X(2,1,1)(tz; @), for some constant so € C, degenerates into

tz
Xz (b5 00) = s (t21) ™ T2 1 (124),
so ®(21,1y(2; ;) for this integrand can be seen as a generalized form of a

classical Gamma function.

The function ®(91,1)(2; ;) also satisfies a contiguity relation. The next
theorem, given by Kimura, Haraoka, and Takano[4], is a special case that
(r,N)=(2,4) and A = (2,1, 1).

Theorem 2.5. The differential operator Lg oy gwes the contiguity rela-
tion for the function ® 1 1)(2; ;) as

Li g o ®ein(ziosy) = O‘lel)_lq’(zm)(z; a+e® —el;qy)
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3 The extended system

The system M51,1)(cv) defined in Section 2.2.1 was made by the scalar oper-
ators Lx — a(X), My + Tr(Y'), and O, ,. In this section, we take operators
for vector valued functions and define a system which can be considered as
a generalization of M1 1)(a).

3.1 The extended system M([§1,1)(O‘>ﬁ)

As the extended operators from Ly —a(X), My +Tr(Y), and O, ,, we define
the followings.

Definition 3.1. Let us define the three differential operators by
7 2] _ [ Lx—a(X) —B(X)
LX(aaﬁ)—< Lx—a(X))’
N — ( My + T(Y)

22 _ [ Uy,
o= o)

where 3 € B2,1,1), with the condition of 1 + B3 + B4+ = 0, is a linear map
defined by

My + Tr(Y) ) ’

B(X) = i X1+ Bo2Xo + B3 X5 + BuXy
= 6VX50 + XY + 8P X + P XY, BeC1<<4

for a square matrix of size 4,

1 1
X1 X X(() ) X%;
_ X1 _ X0
X = X3 = X@ € b1
0]
Xy

)
XO

The superscript [2] of the operators in Definition 3.1 means that the
size is 2 as a square matrix. By these operators, an extended system from
M2,1,1)(v) is defined.

11



Definition 3.2. Let o, 3 € by, ; ;) be linear maps and let FPRI(2), 2 € Mat(2,4)
be a vector-valued function in the form of a column vector of size 2. We define
the system of differential equations M ([31171) (o, B) by

13, p) i 0 (X €baiy),
MZOFE = 0 (vegl2)),
OF,  FR = 0 (1<pqg<4).

Let us denote by S [2 1.1) (a, B) the set of the solutions in a neighborhood of a
fixed point z°

In Definition 3.2, we have defined a new system. For this extended one,

we are going to define the two operators L ]( b and L%]’:’;;gen(l) to give

contiguity relations. While the operator Lg ,, , defined in Section 2.2.2
was made only from a simultaneous eigenvector E_x)_.), in this section, a

. . . 2
generalized simultaneous eigenvector E _()_- 1s also used to make il ](k) o
€ —E&

2],eige .
Zelgen 5o made only from an eigenvector. The su-

E ) _e
perscripts [2] means that these operators have the form of a square matrix
of size 2.

The generalized simultaneous eigenvectors are the square matrices of size
4 which span a generalized simultaneous eigenspace of gl(4) with respect to
{adX}Xeh(Q L1y go Or g._.w, where the space gy corresponds to the space
9o, and g.x)_.) corresponds to g.w_.w. The direct sum of those spaces is
equal to the whole of gl(4) as a vector space:

However, another one L

Got Y Gew_o = gl(4).
1<kAl<3

The generalized eigenvectors E_x)_.) € §.)_.» have the form

0 0

~ 1 ~ 1

E.q_.o= , Booy oo = ,

E.o_c0) = < T >, E.@_co) = ( )
10
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By the preparation above, the extended operators are

~ L L -
2 = B _cr "E . _.0 _
Lo = Lo ) (kD =(1,2),(1,9), (21,61,
T [2],eigen - LEE(k),E(l)
LESUe)_E(z) - Lo o ) 1<k#1<3.

By these operators, the contiguity relations for the solution space 3([317171) (o, B)
are given as the next theorem.

Theorem 3.3. The differential operators L and [E%]’(il)gen(l)

we the
Ey_.0 g

contiguity relations for the solution space

L i SE@B) = 8B+ e® =0 g+ eM) (k1) = (1,2),(1,9),

3

L o St (@:8) = Sgh (ot e® =05 —e) (k1) = (2,1),3,1),
2|,eigen 2 )
LEE]E<k;g_E<l) 8[2]1 1)(a p) = S£2]1 1)(0‘ +e®) -0, g), 1<k#1<3.

Moreover, if the parameters satisfy the condition (2.8), these linear maps
have their inverses

CRDTER S (@) =SB (et e® —e®), 5 — D) (kD)= (1,2),(1,3),
CRDTEE S (@) =SB (et e® =@, 5 e) (D)= (2,1),(3,1),
(CRE™)- L[,gl’(ffe:k); S = S (a+e —e® gy, 1<k£1<3

and so are isomorphic, where C(kl), (k, 1) = (1,2),(1,3),(2,1),(3,1) and

C'([i]’l?gen 1 <k #1 <3 are square matrices of size 2 defined by

ol - (a2a3 azfs + (a1 + B2 + 2)013) all ((ag + Doz (az+1)(oq + B2) + ,Bgaz)
(12) = azas oY) T (a3 + 1o ’
CV[Q] _ (a2as  azfa+ (01 + B2+ 2)0t4) CV[Q] ~ (laa+ Va2 (aa+1)(a1 + B2) + /7’4042)
(1,3) — a0y ’ (3,1 — (s + 1)z ’
C[Q] eigen ( aas  asf3 + Paas ) C[Q] elgen ( (g + Doz (az +1)B2 + Bzaz )
(12 = asas ) (2,1) (a3 + az ’
(12)eigen _ agay  aofy + Paay ) (12l eigen _ ( (g + Dz (a4 1)B2 + Bac )
(1,3) - o0y ’ (3,1) (CTRESRE 3
C[Q] jeigen ((Oég +1as (az+1)Bs+ B3a4) C[Q] elgen ( (s +1)az (s +1)B3 + Pacs )
(23) (a3 + 1oy (3,2) (o4 + Das

3.2 The extended function

In Section 3.1, we defined the system ]\4([2]1 3 (cv, B) as an extended one from

M2.1,1)(c). In this section, we give a function satisfying M([2]1 N (cv, B) which
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can be seen as an extension from the generalized confluent hypergeometric
function of Kummer type ®21,1y(2; ;7).

Definition 3.4. Let us define a function by

Doy (za,B;7) = /X(2,1,1)(t2;04) log x(2,1,1)(t2; B) (todty — tydty),
Y

where the parameter 5 = (1, B2, 53, 84) satisfies 51 + B3 + 54 = 0.

Definition 3.5. A vector-valued function of size 2, @ng)(z; a, B;7), is de-
fined by

2 o [ Pein(zia Bi7)
@(271’1)@’0[’6’7)' < D11y (25 05) ‘

The superscript [2] indicates that the size of the column vector is 2.

Theorem 3.6. The operators IA/[;](,C) o and f/%]’(ii)gen(l)

relations for the function @%{171)(2’; a, B;7):

give the contiguity

g 2 A 2 [2
B o®iiEasm= CEED G (ate® —e® 54 eiy), (k1) =(1,2),(1,3),

g A 2 [2
B ot Easm= CEED G (ate® —e® 5 —e(Viy), (k1) =(2,1),(3,1),

7 [2],eigen  212] . L) — A2],eigen, (k1) & (2] . k) _ (1) g
LEs(k)—s(l) (I)(leyl)(zﬁ(hljv’}l)fcp] elgen( )(I)(27171)(Z,O[+€( ) 6()7[j77)7 1 §k¢l§37

where CBAD (k1) = (1,2),(1,3),(2,1), (3,1) and CPeieenbd 1 < | £ 1 <
3 are the matrices given by the parameters as

a2 = < as Ps ) aLa3) ( s Py )7

[0 %] Oy
0[2]7(271) _ ((12 (X1+,32) 0[2]7(371) _ ((12 (11"'52)
[65) ’ (%) ’
C/[2leigen,(1,2) az [ 7 (2] eigen,(2,1)  _ az P 7
a3 (€3]
(2 eigen,(13)  _ g Da . (lleigen31) az P ’
Oy (5]
(2 eigen,(23)  _ s Pa . (lleigen(32) as B3
(a7} as

14



4 Summary

In this article, we gave extended contiguity relations for the solution space
S([g],l,l) (e, B) and for the function <I>£22],1,1)(z; a, ;7). In order to construct the

contiguity operators ﬁ[b%] , we used both of the simultaneous eigenvectors

(k) _o(
and the simultaneous gérier(a)lized eigenvectors in the simultaneous general-
ized eigenspaces g.x) _.w of the vector space gl(4) with respect to the family
of the commutative linear maps {adx }xep,, .-

Thus, all the linearly independent vectors in the non-diagonal blocks of
the vector space gl(4) with respect to the partition of the natural number
4, (2,1,1) were made use of producing the contiguity operators. However,
generalized eigenvectors in the (1, 1) block, vectors in the space gg, were not
used.
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