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Abstract. In [LY24a], Lee and the author proved that any K-semistable polarized smooth toric
variety (X, L) with the vanishing Futaki-Ono invariant (which is an obstruction for (X, L) to
be asymptotically Chow semistable) is asymptotically Chow polytable. Hence, this gives a
complete solution for proving [Yotl8, Theorem 2.1] under an assumption that (X, L) is K-
semistable which is a weaker concept than uniform K-stability. In contrast, this note aims to
clarify the relation between uniform K-stability and asymptotic Chow polystability for polar-
ized toric surfaces following the author’s original view point (the Euler-Maclaurin formula)
which was discussed in [ Yot18].

1. INTRODUCTION

In this note, we shall give a proof of the following theorem using the Euler-Maclaurin
formura.

Theorem 1.1. Let (X, L) be a uniformly K-stable polarized toric surface with the vanishing
Futaki-Ono invariants. Then, (X, L) is asymptotically Chow polystable.

See Section 2 for more detailed description and terminology. As in Remark 3.2, the proof
in this note (Section 3) has not been completed yet, so something more ingenious is required.
However, the idea of a proof itself was developed in the nicest form through Zhou and the
author’s work in [YZ19], and hence I decide to write up the entire picture of the proof in this
note, which should be retained for record.

We remark that the statement of Theorem 1.1 is correct and moreover, it can be generalized
as follows.

Theorem 1.2 ([LY24a], Corollary 1.5). Let (X, L) be a K-semistable polarized toric manifold
with the vanishing Futaki-Ono invariants. Then, (X, L) is asymptotically Chow polystable.

In fact, uniform K-stability implies K-semistability by definitions. Hence, Lee and the
author’s result in Theorem 1.2 genralizes Theorem 1.1 into higher dimensional cases ~ with
a weaker assumption. A complete proof of Thereom 1.2 is given in [LY?24a, Section 4], where
we used a special type of triangulations (called a type F traiangulation) of the associated
moment polytope A. In a sequel to [LY24a], we show the blow-up formula of the Chow
weights of a polarized toric manifold exploiting the symplectic cuts of A [LY24b].

The key to prove Theorem 1.2 is that we find a way of estimating the integral of a convex
function u : A — R by the discrete summands of the weights. More specifically, let p be a
vertex of a lattice polytope A, and let

Clp)={p+tlx—p |xecAtcRy}
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be its vertex cone. Then we have the natural decomposition

R
(1.1) A= Cp)

j=1
where V(A) = {pi,...,pr } denotes the set of vertices of A. Fo a positive integer i, the
decomposition (1.1) naturally yields that

R
iA = () Clip;)
j=1
with C(p;) = C(ip;)—(i—1)p; :={x — (i — 1)p; | « € C(ip;) }. Thus, each cone shares the
same triangulation of A. Recall that a simplex triangulation of A is an integral triangulation
of A such that every simplex is isomorphic to the standard simplex. We denote a simplex
triangulation of C'(ip,) by T'(C (ip;)).

Definition 1.3. A type F triangulation of C(p;) is a simplex triangulation 7'(C'(p,)) satistying
the following two conditions.
(i) T(C(p;)) = T(C(ip,)) for any positive integer 7; and
(ii) there exist finitely many simplices Si, . . ., Sy such that for any simplex S € T'(C(p;)),
we have a vector ¢ € Z" satisfying

S—C:Sk
forsome 1l < k < M.

Here and hereafter, we suppose that an n-dimensional lattice polytope A has a type F'
triangulation 7'(C(p;)) of C(p;) for each vertex p; € V(A).

Let C's, and c> be the constants determined in [LY24a, Corollary 2.13 (2.5)]. Then we
define the constants C' and c,, given by
Sk

(1.2) C = max Cg, and ¢p = max c,
1<k<M 1<k<M

Fixing a vertex p; € V(A) and a positive integer ¢ € Z-, we denote a type F triangulation of
the vertex cone C'(ip;) by T'(C(ip;)). Then we define the function n;; by

w w

g—#{S € T(C(ip;)) | S is a simplex touching ¢ } .

We set n;(¢) = maxi<j<gn;;(¢). The following lemma was given in [LY24a, Lemma 2.18]
for estimating the integration [, u(x) dv by > ;x~zn u(p)-

Lemma 1.4. For a fixed positive integer 1, let u : iA — R be a non-negative convex function.
Then we have the inequality

/D u(x) dv < Z ni(p)ulp) + C’ch max u(pg),

(n+1)! i 1<k<R

pEIANZ™
where C' and c,, are constants defined in (1.2).
Meanwhile in this note, we consider a completely different approach for comparing the

integral of a convex (piecewise linear) function and the discrete summands of the weights.
Namely, for a two dimensional lattice polytope A, we use the Euler-Maclaurin formula

> 2u(a):iQ/Au(m)dv+%/(9Au(w)dU+ao,

a€AN(Z/i)
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and estimate the constant ay in terms of [, u(x)dv and [, u(x)do. Here OA denotes the
boundary of A and do is the associated Lebesgue measure of 0A. See Lemma 3.1 and Section
4, for more precise statement and its proof.

This paper is organized as follows. Section 2 introduces notation and convention used in
this paper. We give an (incomplete) proof of Theorem 1.1 in Section 3. In the appendix
(Section 4), we shall prove Lemma 3.1 which gives explicit bounds on coefficients of the
Ehrhart polynomial of a two dimensional lattice polytope.
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him an opportunity to publish this note. I am particularly grateful to Professor B. Zhou for
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22K03316.

2. PRELIMINARY

2.1. Set up and Notation. Let M be a free abelian group of rank n such that M = Z". Let
A be an n-dimensional convex lattice polytope in My := M ® R = R". We denote the
associated polarized toric variety by (X, La). See [CLS11] for a reference of toric varieties.
We usually consider the discrete summands of weights given by

1
> oa-ly
acAN(Z/i)™ aciANZ™
Let Ea(t) be the Ehrhart polynomial of A which is written in the form of

Ea(t) = vol(A)t" + %t”l + O™ ), and

Ex(y=#| > a|=dimH (X LY)
acAN(Z /i)
for any positive integer i. Let Aut’(X ) denote the identity component of the automorphism
group of X a. Then there is a maximal torus 7' = (C*)" < Aut’(X) by Demazure’s structure

theorem. Denoting the normalizer of 7" in Aut®(Xa) by N(T'), we define the Weyl group
W(Xa) :=N(T)/T.

2.2. The Futaki-Ono invariant of (XA, LY'). Let (Xa, L) be a polarized toric variety with
the moment polytope A C Mg. We fix any i € Z. Let (27, %) — P' be any T-equivariant
test configuration of (Xa, L%") (see, [Don02]).

Theorem 2.1 (Theorem 1.1 [Onol3], Corollary 2.7, [LLSWI19)). In the above, the Chow
weight for the degeneration (2, £) — P! is given by

@.1) Qalg;i) = Eali) /A gdo—vold) Y gla)

acAN(Z/i)™

where g is the corresponding rational piecewise linear concave function over A. In particular,
(Xa, LX) is Chow polystable iff Qa(g;i) > 0 holds for any Weyl group invariant concave
piecewise linear function

g € PL(A; )W) = L5 € PL(A;i) | g(w-x) = g(x) Ywe W},
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and equality holds when and only when g is an affine linear.
Applying (2.1) to linear functions, one can see the following.

Corollary 2.2 (Corollary 4.7 [Ono13]). If (Xa, LX) is Chow semistable for i € 7, then

(2.2) FOA(x;7) := Ea(3) /A zdv—vol(A) > a

aE€AN(Z)i)"

vanishes identically. In short, the equality

Eai
2.3) > a= VO?((A)) /A z dv

a€AN(Z/i)n

holds.

We call FOA(x; i) in (2.2) the the Futaki-Ono invariant of (X, LY'). By the equality
(2.3), one can see that QA (g;7) is invariant when adding an affine linear function to g, and is
homogeneous with respect to g.

Proof of Theorem 2.1. Since Qa(g;4) is invariant under adding a constant, we may assume
g > 0. Let (2°,.%) — P! be a T-equivariant toric test configuration of (XA, LY') and g be
the corresponding piecewise linear function. Hence 2" is an (n + 1)-dimensional toric variety
with the moment polytope

Qg ={(x,\) eR" xR | 0< A< g(x)}

We observe that

2.4) vol(Q,) = /A g@)dv,  Eo,()—Eat)= Y gla)

acAN(Z /i)

In the proof of Proposition 4.2.1 in [Don02], the weight of C*-action on A\“2™) HO( 2, £&m | 2,)
is given by

Wy = dim HO(%Qg,g&m) — dim HO(XA, L(Z)m)
= Eq,(m) — Ea(m)
= ap1 ()M + @, ()m” + ...
where
CLk(Z) = CLknin -+ ak,n_lz’”_l —+ ...

Note that there are asymptotic expansions

Eq,(m) = vol(Qg)m" ! + O(m™), ) Ea(m) = vol(A)m™ + O(m™™ 1)



by the Ehrhart theorem. As in [RT07], the Chow weight for the degeneration (2, %) — P!
is given by the normalized leading coefficient of a,,,1(7), we compute
w;

Wy — mEA(m)m

 (Eg, m) — Ea(m) = mEa(m) 22— 220

By (i) = (), nss o

= vol(Q,)m" ™" — vol(A)

Ea(i)
1(A
= m"! /gdv—vg(,) Z g(a) | +O(m")
A a(?) a€AN(Z /i)
Here we used (2.4) in the last equality. The assertion is verified. U

2.3. Uniform K-stability. It is crucial to see the coercivity of the K-energy map when we
consider the existence problem of constant scalar curvature Kéhler metrics on a certain polar-
ized manifold (X, L). It has been conjectured that the coercivity property of the K-energy map
is corresponding to uniform K-stability of (X, ). In [His20], this conjecture was justified in
the case where (X, L) is a polarized toric manifold. The toric reduction of uniform K-stability
is the following.

Definition 2.3 (Hisamoto, [His20]). Let (X, La) be a polarized toric variety with the mo-
ment polytope A C Mpg. For a rational piecewise linear convex function u over A, we define

o vol(0A)
La(u) = /aAuda— Vol(A) /Audv.

Then (Xa, La) is said to be uniformly K-stable in the toric sense if there exists a constant
Oa > 0 such that

(2.5) La(u) = oalull,

where ||u|| ; is the J-norm defined as

lull, = igf{ﬁ/&w)dv—m@{uw}},

and ¢ runs over all the affine functions.

3. A CONVEX ANALYTICAL APPROACH FOR PROVING THEOREM 1.1 USING THE
EULER-MACLAURIN FORMULA

3.1. Approach. One can see that Qa(g;7) = 0 for affine linear functions by our assumption
in Theorem 1.1 and [LY24a, Proposition 4.3]. Hence it suffices to show that for ¢« > 0,
Qa(g;i) > 0 when g € PL(A;1)WX2) is NOT affine linear, in order to prove Theorem 1.1.

3.2. Proof of Theorem 1.1. We prove Theorem 1.1 in this section. Since Qa(g; ¢) is invari-
ant when adding an affine linear function to g, we may assume that © = —g is a rational
piecewise linear convex function normalized at 0 in the sense that inf,ea u(x) = u(0) = 0,
and [, udo = 1.

The key lemma below is an improvement of Lemma 3.3 of [ZZ08], not only it has estimates
on the coefficients but also it holds for general rational piecewise linear functions. The proof

is presented in Appendix (Section 4).
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Lemma 3.1 (Euler-Maclaurin Formula). Assume A is a two dimensional convex lattice poly-
tope and u is a nonnegative continuous function on A. Then, we have

(3.1) Z 2u(a):i2/Au(m)dv+%/aAu(m)da+ao

ac€AN(Z/i)

where

(32) o > —Ca ( /8 Lul@)do+ /A (@) dv)

for some constant Cx > 0 depending only on A.

Proof of Theorem 1.1. Let
EA(i) = Z exi.
k=0

By Jensen’s inequality, we remark that

/u(m) dv}u(/mdv) > infu = 0.
A A A

Let A* be the union of the interior of A and the interior of its co-dimension one faces. Denote

Cliz {TL

Observe that there is a constant C' > 0 which is independent of u satisfying

u is convex on A* and/ u<oo}.
Joan

3.3) /udvéC wdo, uweC
Ja Jon

where

(i,:: {7L(E Cl

inf u(@) = u(0) = 0} .

By Lemma 3.1 and (3.3), we have

ar =2 —Ch </8A u(x) do + /Au(m) dv)

(3.4)
= — ékﬂﬁu/f ’U(JO(jU.
dA
Setting u = —g and o, = — 3 in Lemma 3.1, we have
Qatig) = Eali) [ g@)dv-vold) 3 gla)
A a€AN(Z /i)™
n—2
= | vol(A)i" + VOI(&A)i”_l + Z epi” / g(x) dv
2 k=0 A
in—l n—2
—vol(A) z”/ g(x) dv + / g(x) do + Zﬁkik
A 2 Jon o
n—2
= VOléA)ﬁA(u)i”_l + (ozkvol(A) - ek/ u(x) dv> i*.
k=0 A
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Since we assumed uniform K-polystability in the toric sense, (2.5) and (3.4) imply that

vol(A)
2

QA(ia g) =

Oalull ;"

i;(vol nkA/aAU(w)daJrek/Au(m)dv) i*

Since we have the inequality
/( (x) + l(x /mln{ +0(x) } dv
’ = vol(A) - min {u(z) + £(z) },
this yields
/(u+€)dv — vol(A) - mAin{u—l—ﬁ}
: > Vol(A)-mAin{u—l—ﬁ}—Vol(A)-mAin{u—i-ﬁ}:0.
Then the following Lemma 3.3 shows that

/(u—i—ﬁ)dv—vol(A)-mAin{u—l—ﬁ} > 0.

This yields ||u||, > 0 for any u € C,. Remark that

. ) AVOI(A)
Qalt,g)  ~ — [[ull ;
for a sufficiently large ¢ > 0. Therefore, there exists igp € Z-q, such that QA (i, g) > 0 when
1 > 19. The theorem has been proved. U

Remark 3.2. However, the above integer 7, in the proof depends on the choice of a concave
function ¢ = —u. Therefore, our proof is incomplete and something more ingenious is re-
quired. In fact, Chow polystability of (X, L") is determined by taking various concave
functions g for a fixed ¢. In particular, the Euler-Maclaurin formula for an n-dimensional
lattice polytope A,

‘n—1 n—2
Z u(a) = z”/ u(x) dv + : / u(x)do + Zakz’k,
A 2 Joa
k=0

a€AN(Z/i)"

ak>—C’k(/ u(zc)da+/u(zc)dv>, k=0,....,n—2
oA A

does not have good invariance under scaling of domain (cf. [Yot18, Remark 3.{]). Thus, we
need to estimate each coefficient o (0 < k£ < n — 2) in the form of oy > —Cy, where Cj,
doesn’t depend on [, , u(x)do.

where

Lemma 3.3. We assume that FOa(x;i) = 0 for i > 0. Then

/i(u—l—ﬂ)dv—vol(A)-mAin{u—I—E};éO.
A
7



Proof. We shall show the contraposition of the statement. Then our assumption is
(3.5) /(u—l—ﬁ)dv—vol(A)-mAin{u—i-ﬁ}:0.
A

In order to use the contradiction, we suppose FOa (x;7) = 0. Using (3.5) and putting u + ¢ to
be the coordinate function x, we have

(3.6) / xdv= / (u+0) dv = vol(A) - mAin {u+¢} = Cvol(A)
A A
for some constant C'. Then FOa (;4) = 0 and (3.6) yields

FOA(x;i) = Ea(i)-Cvol(A) —vol(A) > a
acAN(Z/i)"

= vol(A){ Ea(i) - C — Z ay =0.

a€AN(Z/i)n

However this means that R-valued degree n polynomial Ex (i) equals to R"-valued degree n

polynomial Z a up to constants, a contradiction. 0
acAN(Z/i)"

4. APPENDIX: BOUNDS ON COEFFICIENTS OF EHRHART POLYNOMIAL AND THEIR
APPLICATIONS

In this appendix, we discuss some application of the bounds on coefficients of Ehrhart
polynomial. Some key idea was already written in [Yot18, Section 3], and this section aims to
give a complete proof of the Main Lemma (Lemma 4.3) concerning a two dimensional convex
lattice polygon A.

First, we recall some useful results on Ehrhart polynomial

(4.1 Ea(i) =) exi.
k=0
Recall that one has
1(OA
e, = vol(A), e, 1 = vo (26 ),eo =1.

No geometric meaning is known for the rest coefficients. However, the upper and lower
bounds for them have been established by [BM85, HT09], respectively. We conclude them
as follows

Theorem 4.1. Let A be an n-dimensional lattice polytope and e, are given by (4.1). Then
(1)
(=) ts(n, k+1)
(n—1)! ’
where s, i, denotes the Stirling numbers of the first kind which can be defined via the
identity

er < (=1)"Fs(n, k)vol(A) +

n—1 n

[1Gz=#) =D s(n k)"

k=0 k=1
8



(2) If n = 3, then fork =1,. — 1, we have
er = % [(—1)”"“5(71 + 1,k + 1) + (nlvol(A) — 1) My,] -
Here My, ,, is given by
Mk,n:min{C’,?,j :1<j<n—2},
where Cy. ; is the k-th coefficient of the polynomial
(z+)(z+j—1)--(z4+j—(n—-1))
with variable 2.
The following fact will be frequently used later.

Lemma 4.2. If A is an n-dimensional lattice polytope, then
1

(4.2) vol(A) > —.
n!

Now we prove the lemma used in Section 3. Since a general nonnegative continuous func-
tion can be approximated by nonnegative rational piecewise linear function, then Lemma 3.1
follows by an approximation argument and the following lemma.

Lemma 4.3. Assume A is a two dimensional convex lattice polytope and u is a nonnegative
rational piecewise linear function. Then we have the equality

)
4.3) u(a :iQ/udv—l——/ udo + o,
Z (@) A 2 Jon ’

acAN(Z/i)?

where

4.4) ag = —Ca (/ uda—i—/udv),
oA A

for some Cp > 0 depending on A.

Proof. Assume A = | J'_, A, such that  is linear on A,. We also assume that each A, is
lattice polytope. Otherwise, it suffices to consider a dilation of A.

Let { £, }7_, be all the one dimensional walls (line segments) which are obtained by the
intersection A; N Ay for s # s’. We also define inductively the set of all the lattice points
{v; }ﬁzl which are obtained by the intersection of distinct walls F,. N F» N F,.». Observe that

l

4.5) Ea(i) =Y Ea(i) =Y Er(i)+ Y Ey (i)

Jj=1

by the inclusion-exclusion principle. Let us denote

D = {(z,t) eR"™ | 2 € A0<t<ulx)},

D, = {(z,t)eR"™ | zeA,0<t<u(x)}, s=1,....p
Foo={l@t)eR™M | zeF,0<t<u(x)}, r=1,...,q,
G = {(z,t) eR"™ [0 <t <ufvy)}, j=1,...,¢

Furthermore, we assume all D, are lattice polytopes. Otherwise, we consider an 7yu for some

19 € Z since (4.3) is homogeneous with respect to u. Hence w is a rational linear function on
9



each A,. We further assume that v is an integral linear function on any A, by taking ¢(u for
sufficiently large i, € Z. The straightforward computation with (4.5) shows that

Y. ule) = ) wulafi)

aeAN(Z/) TZMZQ
— ;(Ep(z) — EA(7))
oy (Z Fn, (i) - Z Er (i) + Z s, <z'>>
u (Z Ea (i) - Z B (i) + Z 5, <z>>
! (DED (i) — Ea (1)) — TZi;(EE (i) — Br, (i)
(4.6) + Zi;(Egj (i) — By, (z))) )

Applying the Ehrhart theorem to each polytope D;, A,, F,., F,, G; and v;, we have

-2
Ep, (i) = 1‘5/ wdv + = (/ uda+2vol(AS)> + ot + 1,
Ag 2 0As
Ea(i) = i*vol(A,) + %wﬂ(aAS) +1,

Er (i) = i2/ uwdo + i + 1,

Er (i) = vol(F,.)i+ 1,
Eg (i) = wu(vj)i+1, and E, (i) = 1.
Substituting these into (4.6), we have

p

' 1
Z u(a) = Z {22/ u dv + 1/ udo + (o — —vol(aAS))}
‘ 2 Jon 2
acAN(Z/i)? s=1 s s
q ¢
_Z{z/ uda+o~zr—vol(FT)} —i—Zu(vj)
r=1 I j=1

p i p q

= udv+ = / udo —2 /uda +

= iQ/udv%—Z/ u do + ay,
A 2 Jan

p q

ap = Z(as — %VOI(@AS)) — Z(d’” —vol(F})) + Zu(v])

s=1 r=1 ]:1
10
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Now we estimate «vy. Firstly we remark that
1 1 1
4.7 udv > 3 udo > o vol(Ay) > o0 vol(F,) > 1.

by Lemma 4.2. Then the inequality (2) in Theorem 4.1 and (4.7) yield

&521 5(4,2)+ 3'/ wdv —1 M13 .
3! A, ’

One can readily see that s(4,2) = 11 by definition of s(n, k) in Theorem 4.1. Similarly the
inequality (1) in Theorem 4.1 and (4.7) imply

%m(mg < (1) (2, 1)vol(A,) + 5(2,2)
= (=1)*vol(A,) + 1,
1
{/Ms wdo + 2vol(As)} < (-1)s(3,2) /A wdv + 5;5(3,3)

4.8) = 3/ uahH—l <3/ wdv + vol(Ay),
As

DN —

2! .
&, < (—1)5(2,1)v01(ﬁ)+(52(2_’3!
= (-1)

1)*vol(F,) + 1
— / udg+1</ u do + vol(F,.).
J Fy

J Fy

In particular,

&, — vol(F,) < / udo

T

holds from the last inequality. Hence it follows

> (o - %vol(@As))

(]

3!

-2 [./;“d“—vol(Agﬁ—Tf‘%]

s=1

= /udv—vol(A) +p
A

[ v T s )

where we used M; 3 = —1 in the last equality. On the other hand, we see that the inequality

(4.8) gives
/ udo < 6/ u dv.
CY As

11



This yields

Z(d,«—vol(F,«)) < Z/ udo

r=1
p

oM Iy
= — udo — udo
2 ; A, oA

1 (nln+1) 1 1

< 5;(—2 /Asudv%—a—vol(As))—é/aAuda
1 p

< =<6 /udv)—/ udo
2 ;( As oA

— 3/udv—1/ u do.
A 2 Jon

Since a function w« is normalized at 0, we conclude that
p q

(0 — 5vol(@A.)) — 3@, — vol(E))

s=1 r=1

> /udv—vol(A)-l—p—(?)/udv—l/ uda)
A A 2 Jan
= p—vol(A)—Q/udv—l—l/ udo
A 2 Jon

> —Co</ ud0+/udv>,
A A

where Cjy > 0 is some constant only depending on A. The assertion is verified. U

WV

(&%)

Remark 4.4. It is natural to ask whether Theorem 1.1 can be generalized to higher dimen-
sional case n > 3 after solving the problem in Remark 3.2. However, there is anothr technical
difficulty to compute (4.5) in Lemma 4.3 by the inclusion-exclusion principle for general set-
ting.

REFERENCES

[BM85] Ulrich Betke and Peter McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985),
253-265.
[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties., Graduate Studies in Mathe-
matics., vol. 124, American Mathematical Society, Providence, RI, 2011.
[Don02] Simon. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62
(2002), no. 2, 289-349.
[HT09] Martin Henk and Makoto Tagami, Lower bounds on the coefficients of Ehrhart polynomials., Eur. J.
Comb. 30 (2009), 70-83.
[His20] Tomoyuki Hisamoto, Stability and coercivity for toric polarizations, arXiv:1610.07998v3 (2020).
[LLSW19] King Leung Lee, Zhiyuan Li, Jacob Sturm, and Xiaowei Wang, Asymptotic Chow stability of toric
Del Pezzo surfaces., Math. Res. Lett. 26 (2019), no. 6, 1759-1787.
[LY24a] King Leung Lee and Naoto Yotsutani, Chow stability of A-stable toric varieties, arXiv:2405.06883
(2024).
[LY24b] , On the blow-up formula of the Chow weights for polarized toric manifolds,
arXiv:2407.10082 (2024).
[Ono13] Hajime Ono, Algebro-geometric semistability of polarized toric manifolds., Asian. J. Math. 17
(2013), no. 4, 609-616.

12



[RTO7] Julius Ross and Richard Thomas, A study of the Hilbert-Mumford criterion for the stability of pro-
Jjective varieties., J. Algebraic Geom. 16 (2007), 201-255.

[Yot18] Naoto Yotsutani, On the relation between uniform K-stability and Chow stability of toric varieties.,
RIMS Kokytroku. 2098 (2018), 60-67.

[YZ19] Naoto Yotsutani and Bin Zhou, Relative Algebro-Geometric stabilities of toric manifolds., Tohoku
Math. J. 72 (2019), no. 4, 495-524.

[2Z08] Bin Zhou and Xiaohua Zhu, Relative K -stability and modified K -energy on toric manifolds., Adv.
Math. 219 (2008), 1327-1362.

KAGAWA UNIVERSITY, FACULTY OF EDUCATION, MATHEMATICS, 1-1 SAIWAI-CHO, TAKAMATSU 760-

8521, JAPAN
Email address: yotsutani.naotolRkagawa—-u.ac. Jjp

13



