Note on the homotopy stability of the space of non-resultant systems determined by a toric variety

山口耕平 (Kohhei Yamaguchi)

電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

For a fan Σ in \mathbb{R}^m and r-tuple $D=(d_1,\cdots,d_r)$ of positive integers, let $\operatorname{Poly}_n^D(\mathbb{F})$ denote the certain affine variety over \mathbb{F} called the space of non-resultant systems of bounded multiplicity of type (Σ,n) , where r is the number of one dimensional cones in Σ and X_{Σ} denotes the toric variety over \mathbb{C} corresponds to the fan Σ . This space was first defined by B. Farb and J. Wolfson [10] when X_{Σ} is the complex projective space, and it was originally studied for investigating the homological densities of algebraic cycles in a manifold [11]. In this note, we shall report about the recent results concerning the homotopy stability of the space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$ for the case $\mathbb{F} = \mathbb{C}$. This result is based on the joint works with A. Kozlowski [19].

1 Basic definitions and notations

Let \mathbb{N} be a set of all positive integers. For connected spaces X and Y, let $\operatorname{Map}(X,Y)$ denote the space consisting of all continuous maps $f: X \to Y$ with the compact open topology. Let $\operatorname{Map}^*(X,Y) \subset \operatorname{Map}(X,Y)$ be the subspace of all base point preserving maps $f: (X,*) \to (Y,*)$. For a based homotopy class $D \in \pi_0(\operatorname{Map}^*(X,Y)) = [X,Y]$, we denote by $\operatorname{Map}_D^*(X,Y) \subset \operatorname{Map}^*(X,Y)$ the path component containing the homotopy class D.

When X and Y are complex manifolds, let $\operatorname{Hol}_D^*(X,Y) \subset \operatorname{Map}_D^*(X,Y)$ denote the subspace consisting of all based holomorphic maps $f \in \operatorname{Map}_D^*(X,Y)$. Then we have the natural inclusion

$$(1.1) i_D: \operatorname{Hol}_D^*(X,Y) \stackrel{\subset}{\longrightarrow} \operatorname{Map}_D^*(X,Y).$$

Now recall several definitions and notations.

Definition 1.1. (i) A convex rational polyhedral cone in \mathbb{R}^m is a subset of \mathbb{R}^m of the form

(1.2)
$$\sigma = \operatorname{Cone}(S) = \operatorname{Cone}(\boldsymbol{m}_1, \cdots, \boldsymbol{m}_s) = \{ \sum_{k=1}^s \lambda_k \boldsymbol{m}_k : \lambda_k \ge 0 \}$$

for a finite set $S = \{ \boldsymbol{m}_1, \cdots, \boldsymbol{m}_s \} \subset \mathbb{Z}^m$. The dimension of σ is the dimension of the smallest subspace of \mathbb{R}^m which contains σ .

- (ii) A convex rational polyhedral cone σ is called *strongly convex* if $\sigma \cap (-\sigma) = \{\mathbf{0}_m\}$, where we set $\mathbf{0}_m = \mathbf{0} = (0, 0, \dots, 0) \in \mathbb{R}^m$. A face τ of a convex rational polyhedral cone σ is a subset $\tau \subset \sigma$ of the form $\tau = \sigma \cap \{\mathbf{x} \in \mathbb{R}^m : L(\mathbf{x}) = 0\}$ for some linear form L on \mathbb{R}^m , such that $\sigma \subset \{\mathbf{x} \in \mathbb{R}^m : L(\mathbf{x}) \geq 0\}$.
- If we set $\{k: 1 \leq k \leq s, L(\boldsymbol{m}_k) = 0\} = \{i_1, \dots, i_t\}$, we easily see that $\tau = \operatorname{Cone}(\boldsymbol{m}_{i_1}, \dots, \boldsymbol{m}_{i_t})$. Hence, if σ is a strongly convex rational polyhedral cone, so is any of its faces.¹
- (iii) Let Σ be a finite collection of strongly convex rational polyhedral cones in \mathbb{R}^m . Then it is called a fan (in \mathbb{R}^m) if the following two conditions (1.2.1) and (1.2.2) are satisfied:
- (1.2.1) Every face τ of $\sigma \in \Sigma$ belongs to Σ .
- (1.2.2) If $\sigma_1, \sigma_2 \in \Sigma$, $\sigma_1 \cap \sigma_2$ is a common face of each σ_k and $\sigma_1 \cap \sigma_2 \in \Sigma$.
 - (iv) An m dimensional irreducible normal variety X (over \mathbb{C}) is called a toric variety if it has a Zariski open subset $\mathbb{T}^m_{\mathbb{C}} = (\mathbb{C}^*)^m$ and the action of $\mathbb{T}^m_{\mathbb{C}}$ on itself extends to an action of $\mathbb{T}^m_{\mathbb{C}}$ on X. The most significant property of a toric variety is that it is characterized up to isomorphism entirely by its associated fan Σ . We denote by X_{Σ} the toric variety associated to a fan Σ .

Definition 1.2. Let K be a simplicial complex on the index set $[r] = \{1, 2, \dots, r\}$, and let (X, A) be a pairs of based spaces.

(i) Let I(K) denote the collection of subsets $\sigma \subset [r]$ defined by

(1.3)
$$I(K) = \{ \sigma \subset [r] : \sigma \notin K \}.$$

(ii) Define the polyhedral product $\mathcal{Z}_K(X,A)$ with respect to K by

(1.4)
$$\mathcal{Z}_K(X,A) = \bigcup_{\sigma \in K} (X,A)^{\sigma}, \quad \text{where}$$

$$(X,A)^{\sigma} = \{(x_1, \cdots, x_r) \in X^r : x_k \in A \text{ if } k \notin \sigma\}.$$

(iii) For each subset $\sigma = \{i_1, \dots, i_s\} \subset [r]$, let $L_{\sigma}(\mathbb{C}^n)$ denote the subspace of \mathbb{C}^{nr} defined by

$$(1.5) L_{\sigma}(\mathbb{C}^n) = \{(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_r) \in \mathbb{C}^{nr} : \boldsymbol{x}_i \in \mathbb{C}^n, \ \boldsymbol{x}_{i_1} = \cdots = \boldsymbol{x}_{i_s} = \boldsymbol{0}_n\}$$

¹When S is the emptyset \emptyset , we set $Cone(\emptyset) = \{\mathbf{0}_m\}$ and we may also regard it as one of strongly convex rational polyhedral cones in \mathbb{R}^m .

²Let K be some set of subsets of [r]. Then the set K is called an abstract simplicial complex on the index set [r] if the following condition holds: if $\tau \subset \sigma$ and $\sigma \in K$, then $\tau \in K$. In this paper by a simplicial complex K we always mean an abstract simplicial complex, and we always assume that a simplicial complex K contains the empty set \emptyset .

and let $L_n(\Sigma)$ denote the subspace of \mathbb{C}^{nr} defined by

(1.6)
$$L_n(\Sigma) = \bigcup_{\sigma \in I(K)} L_{\sigma}(\mathbb{C}^n) = \bigcup_{\sigma \subset [r], \sigma \notin K} L_{\sigma}(\mathbb{C}^n).$$

Then it is easy to see that

$$\mathcal{Z}_K(\mathbb{C}^n, (\mathbb{C}^n)^*) = \mathbb{C}^{nr} \setminus L_n(\Sigma), \text{ where } (\mathbb{C}^n)^* = \mathbb{C}^n \setminus \{\mathbf{0}_n\}. \qquad \Box$$

Remark 1.3. It is well known that there are no holomorphic maps $\mathbb{C}P^1 = S^2 \to \mathbb{T}_{\mathbb{C}}^m$ except the constant maps, and that the fan Σ of $\mathbb{T}^m_{\mathbb{C}}$ is $\Sigma = \{\mathbf{0}_m\}$. Hence, without loss of generality we always assume that $X_{\Sigma} \neq \mathbb{T}^m_{\mathbb{C}}$ and that any fan Σ in \mathbb{R}^m satisfies the condition $\{\mathbf{0}_m\} \subseteq \Sigma$.

Definition 1.4. Let Σ be a fan in \mathbb{R}^m such that $\{\mathbf{0}_m\} \subsetneq \Sigma$, and let

$$\Sigma(1) = \{\rho_1, \cdots, \rho_r\}$$

denote the set of all one dimensional cones in Σ .

- (i) For each $1 \leq k \leq r$, we denote by $\mathbf{n}_k \in \mathbb{Z}^m$ the primitive generator of ρ_k , such that $\rho_k \cap \mathbb{Z}^m = \mathbb{Z}_{\geq 0} \cdot \boldsymbol{n}_k$. Note that $\rho_k = \operatorname{Cone}(\boldsymbol{n}_k)$.
 - (ii) Let \mathcal{K}_{Σ} denote the underlying simplicial complex of Σ defined by

(1.9)
$$\mathcal{K}_{\Sigma} = \Big\{ \{i_1, \cdots, i_s\} \subset [r] : \boldsymbol{n}_{i_1}, \boldsymbol{n}_{i_2}, \cdots, \boldsymbol{n}_{i_s} \text{ span a cone in } \Sigma \Big\}.$$

It is easy to see that \mathcal{K}_{Σ} is a simplicial complex on the index set [r].

(iii) Define the subgroup $G_{\Sigma} \subset \mathbb{T}^r_{\mathbb{C}} = (\mathbb{C}^*)^r$ by

$$(1.10) G_{\Sigma} = \{(\mu_1, \cdots, \mu_r) \in \mathbb{T}_{\mathbb{C}}^r : \prod_{k=1}^r (\mu_k)^{\langle n_k, m \rangle} = 1 \text{ for all } \boldsymbol{m} \in \mathbb{Z}^m\},$$

where $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{k=1}^{m} u_k v_k$ for $\boldsymbol{u} = (u_1, \dots, u_m)$ and $\boldsymbol{v} = (v_1, \dots, v_m) \in \mathbb{R}^m$. (iv) Now consider the natural G_{Σ} -action on $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}^n, (\mathbb{C}^n)^*)$ given by coordinate-wise multiplication, i.e.

$$(1.11) \qquad (\mu_1, \cdots, \mu_r) \cdot (\boldsymbol{x}_1, \cdots, \boldsymbol{x}_r) = (\mu_1 \boldsymbol{x}_1, \cdots, \mu_r \boldsymbol{x}_r)$$

for $((\mu_1, \dots, \mu_r), (\boldsymbol{x}_1, \dots, \boldsymbol{x}_r)) \in G_{\Sigma} \times \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}^n, (\mathbb{C}^n)^*)$, where we set

(1.12)
$$\mu \boldsymbol{x} = (\mu x_1, \dots, \mu x_n) \quad \text{if } (\mu, \boldsymbol{x}) = (\mu, (x_1, \dots, x_n)) \in \mathbb{C} \times \mathbb{C}^n.$$

Then define the space $X_{\Sigma}(n)$ by the corresponding orbit space

(1.13)
$$X_{\Sigma}(n) = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}^n, (\mathbb{C}^n)^*)/G_{\Sigma}.$$

Remark 1.5. (i) Let Σ be a fan in \mathbb{R}^m as in Definition 1.4. Then the fan Σ is completely determined by the pair $(\mathcal{K}_{\Sigma}, \{n_k\}_{k=1}^r)$ (see [16, Remark 2.3] in detail).

(ii) Note that the group G_{Σ} acts on $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}^n, (\mathbb{C}^n)^*)$ freely (cf. [25, Proposition 6.7]). Moreover, one can show that $X_{\Sigma}(n)$ is a toric variety.

The following theorem plays a crucial role in the proof of the main result of this paper.

Theorem 1.6 ([7], Theorem 2.1; [8], Theorem 3.1). Let Σ be a fan in \mathbb{R}^m as in Definition 1.4 and suppose that the set $\{\boldsymbol{n}_k\}_{k=1}^r$ of all primitive generators spans \mathbb{R}^m (i.e. $\sum_{k=1}^r \mathbb{R} \cdot \boldsymbol{n}_k = \{\sum_{k=1}^r \lambda_k \boldsymbol{n}_k : \lambda_k \in \mathbb{R}\} = \mathbb{R}^m$).

(i) Then there is a natural isomorphism

$$(1.14) X_{\Sigma} \cong \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma} = X_{\Sigma}(1).$$

(ii) If $f: \mathbb{C}\mathrm{P}^s \to X_{\Sigma}$ is a holomorphic map, then there exists an r-tuple $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 0})^r$ of non-negative integers satisfying the condition $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$, and homogenous polynomials $f_i \in \mathbb{C}[z_0, \dots, z_s]$ of degree d_i $(i = 1, 2, \dots, r)$ such that the polynomials $\{f_i\}_{i \in \sigma}$ have no common root except $\mathbf{0}_{s+1} \in \mathbb{C}^{s+1}$ for each $\sigma \in I(\mathcal{K}_{\Sigma})$ and that the diagram

$$\begin{array}{ccc}
\mathbb{C}^{s+1} \setminus \{\mathbf{0}_{s+1}\} & \xrightarrow{(f_1, \cdots, f_r)} & \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \\
\gamma_s \downarrow & q_{\Sigma} \downarrow \\
\mathbb{C}\mathrm{P}^s & \xrightarrow{f} & \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma} = X_{\Sigma}
\end{array}$$

is commutative, where we identify $X_{\Sigma} = X_{\Sigma}(1)$ as in (1.14) and the two map $\gamma_s : \mathbb{C}^{s+1} \setminus \{\mathbf{0}_{s+1}\} \to \mathbb{C}\mathrm{P}^s$ and $q_{\Sigma} : \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \to X_{\Sigma} = X_{\Sigma}(1)$ denote the canonical Hopf fibering and the canonical projection induced from the identification (1.14), respectively. In this case, we call this holomorphic map f a holomorphic map of degree $D = (d_1, \dots, d_r)$ and we represent it as

$$(1.16) f = [f_1, \cdots, f_r].$$

(iii) If $g_i \in \mathbb{C}[z_0, \dots, z_s]$ is a homogenous polynomial of degree d_i $(1 \leq i \leq r)$ such that $f = [f_1, \dots, f_r] = [g_1, \dots, g_r]$, there exists some element $(\mu_1, \dots, \mu_r) \in G_{\Sigma}$ such that $f_i = \mu_i \cdot g_i$ for each $1 \leq i \leq r$. Thus, the r-tuple (f_1, \dots, f_r) of homogenous polynomials representing a holomorphic map f is determined uniquely up to G_{Σ} -action.

From now on, let Σ be a fan in \mathbb{R}^m as in Definition 1.4, and assume that X_{Σ} is simply connected and non-singular. Moreover, we shall assume the following condition holds.

(1.16.1) There is an r-tuple
$$D_* = (d_1^*, \dots, d_r^*) \in \mathbb{N}^r$$
 such that $\sum_{k=1}^r d_k^* \boldsymbol{n}_k = \boldsymbol{0}_m$.

Remark 1.7. It follows from [9, Theorem 12.1.10] that X_{Σ} is simply connected if and only if the fan Σ satisfies the following condition (*):

(*) The set $\{\boldsymbol{n}_k\}_{k=1}^r$ of all primitive generators spans \mathbb{Z}^m over \mathbb{Z} , i.e. $\sum_{k=1}^r \mathbb{Z} \cdot \boldsymbol{n}_k = \mathbb{Z}^m$.

Thus, one can easily see that the set $\{n_k\}_{k=1}^r$ of all primitive generators spans \mathbb{R}^m if X_{Σ} is simply connected. In particular, we can see that X_{Σ} is simply connected if X_{Σ} is a compact smooth toric variety.

2 The space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$

Let X_{Σ} be a simply connected non-singular toric variety satisfying the condition (1.16.1), and from now on we identify $X_{\Sigma} = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma} = X_{\Sigma}(1)$.

Now consider a base point preserving holomorphic map $f = [f_1, \dots, f_r] : \mathbb{C}\mathrm{P}^s \to X_{\Sigma}$ for the case s = 1. In this case, we make the identification $\mathbb{C}\mathrm{P}^1 = S^2 = \mathbb{C} \cup \infty$ and choose the points ∞ and $[1, 1, \dots, 1]$ as the base points of $\mathbb{C}\mathrm{P}^1$ and X_{Σ} , respectively.

Then, by setting $z = \frac{z_0}{z_1}$, for each $1 \le k \le r$, we can view f_k as a monic polynomial $f_k(z) \in \mathbb{C}[z]$ of degree d_k in the complex variable z. Now by using Theorem 1.6 we can define the space of holomorphic maps as follows.

Definition 2.1. (i) For a filed \mathbb{F} , let $P_{\mathbb{F}}^d$ denote the space of all \mathbb{F} -coefficient monic polynomials $g(z) = z^d + a_1 z^{d-1} + \cdots + a_{d-1} z + a_d \in \mathbb{F}[z]$ of degree d, and we set

(2.1)
$$P_{\mathbb{F}}^{D} = P_{\mathbb{F}}^{d_{1}} \times \cdots \times P_{\mathbb{F}}^{d_{r}} \quad \text{if } D = (d_{1}, \cdots, d_{r}) \in \mathbb{N}^{r}.$$

Note that there is a natural homeomorphism $\phi: \mathrm{P}^d_{\mathbb{F}} \cong \mathbb{F}^d$ given by $\phi(z^d + \sum_{k=1}^d a_k z^{d-k}) = (a_1, \dots, a_d) \in \mathbb{F}^d$. When $\mathbb{F} = \mathbb{C}$, we write $\mathrm{P}^D = \mathrm{P}^D_{\mathbb{C}}$, and $\mathrm{P}^d = \mathrm{P}^d_{\mathbb{C}}$.

- (ii) For any r-tuple $D=(d_1,\dots,d_r)\in\mathbb{N}^r$ satisfying the condition (1.16.1), we denote by $\operatorname{Hol}_D^*(S^2,X_{\Sigma})$ the space consisting of all r-tuples $f=(f_1(z),\dots,f_r(z))\in\mathbb{P}^D$ satisfying the following condition (\dagger_{Σ}) :
- (\dagger_{Σ}) For any $\sigma = \{i_1, \dots, i_s\} \in I(\mathcal{K}_{\Sigma})$, the polynomials $f_{i_1}(z), \dots, f_{i_s}(z)$ have no common root, i.e. $(f_{i_1}(\alpha), \dots, f_{i_s}(\alpha)) \neq \mathbf{0}_s = (0, \dots, 0)$ for any $\alpha \in \mathbb{C}$.

By identifying $X_{\Sigma} = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$ and $\mathbb{C}\mathrm{P}^1 = S^2 = \mathbb{C} \cup \infty$, one can define the natural inclusion map $i_D : \mathrm{Hol}_D^*(S^2, X_{\Sigma}) \to \mathrm{Map}^*(S^2, X_{\Sigma}) = \Omega^2 X_{\Sigma}$ by

(2.2)
$$i_D(f)(\alpha) = \begin{cases} [f_1(\alpha), f_2(\alpha), \cdots, f_r(\alpha)] & \text{if } \alpha \in \mathbb{C} \\ [1, 1, \cdots, 1] & \text{if } \alpha = \infty \end{cases}$$

for $f = (f_1(z), \dots, f_r(z)) \in \operatorname{Hol}_D^*(S^2, X_{\Sigma})$, where we choose the points ∞ and $[1, 1, \dots, 1]$ as the base points of S^2 and X_{Σ} .

Since the representation of polynomials in $P^D = P^D_{\mathbb{C}}$ representing a base point preserving holomorphic map of degree D is uniquely determined, the space $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$ can be identified with the space of base point preserving holomorphic maps of degree D. Moreover, since $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$ is path-connected, the image of i_D is contained in a certain path-component of $\Omega^2 X_{\Sigma}$, which is denoted by $\Omega^2_D X_{\Sigma}$. Thus we have a natural inclusion

$$(2.3) i_D : \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \to \operatorname{Map}_D^*(S^2, X_{\Sigma}) = \Omega_D^2 X_{\Sigma}. \Box$$

Now consider the space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$ for $\mathbb{F}=\mathbb{C}$. For this purpose, we need the following notation.

Definition 2.2. For a monic polynomial $f(z) \in \mathbb{P}^d$ of degree d, let $F_n(f)(z)$ denote the n-tuple of monic polynomials of the same degree d given by

$$(2.4) F_n(f)(z) = (f(z), f(z) + f'(z), f(z) + f''(z), \cdots, f(z) + f^{(n-1)}(z)).$$

Note that a monic polynomial $f(z) \in \mathbb{P}^d$ has a root $\alpha \in \mathbb{C}$ of multiplicity $\geq n$ iff $F_n(f)(\alpha) = \mathbf{0}_n \in \mathbb{C}^n$.

Definition 2.3. Let \mathbb{F} be a filed with its algebraic closure $\overline{\mathbb{F}}$.

- (i) For each $D=(d_1,\cdots,d_r)\in\mathbb{N}^r,\ n\in\mathbb{N}$ and a fan Σ in \mathbb{R}^m , let $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$ denote the space of r-tuples $(f_1(z),\cdots,f_r(z))\in \mathcal{P}_{\mathbb{F}}^D$ of \mathbb{F} -coefficients monic polynomials satisfying the following condition $(\dagger_{\Sigma,n})$:
- $(\dagger_{\Sigma,n})$ For any $\sigma = \{i_1, \dots, i_s\} \in I(\mathcal{K}_{\Sigma})$, polynomials $f_{i_1}(z), \dots, f_{i_s}(z)$ have no common root $\alpha \in \overline{\mathbb{F}}$ of multiplicity $\geq n$ (but they may have common roots of multiplicity < n).

Note that the condition (\dagger_{Σ}) coincides with the condition $(\dagger_{\Sigma,n})$ if $(\mathbb{F},n)=(\mathbb{C},1)$.

From now on, we only consider the case $\mathbb{F} = \mathbb{C}$.

(ii) When $\mathbb{F} = \mathbb{C}$ and $\sum_{k=1}^r d_k \boldsymbol{n}_k = \boldsymbol{0}_n$, define the map $i_D : \operatorname{Poly}_n^{D,\Sigma}(\mathbb{C}) \to \Omega^2 X_{\Sigma}(n)$ by

(2.5)
$$i_D(f)(\alpha) = \begin{cases} [F_n(f_1)(\alpha), F_n(f_2)(\alpha), \cdots, F_n(f_r)(\alpha)] & \text{if } \alpha \in \mathbb{C} \\ [\mathbf{e}, \mathbf{e}, \cdots, \mathbf{e}] & \text{if } \alpha = \infty \end{cases}$$

for $f = (f_1(z), \dots, f_r(z)) \in \operatorname{Poly}_n^{D,\Sigma}(\mathbb{C})$ and $\alpha \in \mathbb{C} \cup \infty = S^2$, where the space $X_{\Sigma}(n)$ is the space defined as in (1.13) and we set $e = (1, 1, \dots, 1) \in \mathbb{C}^n$.

Since $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{C})$ is connected, the image of i_D is contained some path-component of $\Omega^2 X_{\Sigma}(n)$, which is denoted by $\Omega^2_D X_{\Sigma}(n)$. Thus we have the map

(2.6)
$$i_D: \operatorname{Poly}_n^{D,\Sigma}(\mathbb{C}) \to \Omega_D^2 X_{\Sigma}(n).$$

- **Remark 2.4.** (i) By using the classical theory of resultants, one can show that $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$ is an affine variety over \mathbb{F} which is the complement of the set of solutions of a system of polynomial equations (called a generalised resultant) with integer coefficients. This is why we call it the space of non-resultant systems of bounded multiplicity of type (Σ, n) .
- (ii) When X_{Σ} is a simply connected non-singular toric variety (over \mathbb{C}) satisfying the condition (1.16.1), one can show that $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{C}) = \operatorname{Hol}_D^*(S^2, X_{\Sigma})$ if n = 1 (see Definition 2.1 for the details).

3 The space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{C})$

Before stating the results for the space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{C})$, we need to define the positive integers $r_{\min}(\Sigma)$ and $d(D;\Sigma,n)$.

Definition 3.1. We say that a set $S = \{n_{i_1}, \dots, n_{i_s}\}$ is a primitive if $\operatorname{Cone}(S) \notin \Sigma$ and $\operatorname{Cone}(T) \in \Sigma$ for any proper subset $T \subsetneq S$. Then we define $d(D, \Sigma, n)$ to be the positive integer given by

(3.1)
$$d(D; \Sigma, n) = (2nr_{\min}(\Sigma) - 3) \lfloor d_{\min}/n \rfloor - 2,$$

where $r_{\min}(\Sigma)$ and $d_{\min} = d_{\min}(D)$ are the positive integers given by

$$(3.2) r_{\min}(\Sigma) = \min\{s \in \mathbb{N} : \{\boldsymbol{n}_{i_1}, \cdots, \boldsymbol{n}_{i_s}\} \text{ is primitive}\},$$

$$(3.3) d_{\min} = d_{\min}(D) = \min\{d_1, d_2, \cdots, d_r\}.$$

Definition 3.2. Let $f: X \to Y$ be a based continuous map, and let $N_0 \in \mathbb{N}$ be a fixed positive integer.

(i) The map f is called a homology (resp. homotopy) equivalence through dimension N_0 if the induced homomorphism

$$(3.4) f_*: H_k(X; \mathbb{Z}) \to H_k(Y; \mathbb{Z}) (resp. f_*: \pi_k(X) \to \pi_k(Y))$$

is an isomorphism for any $k \leq N_0$.

(ii) Similarly, the map f is called a homology (resp. homotopy) equivalence up to dimension N_0 if the induced homomorphism f_* (given by (3.4)) is an isomorphism for any $k < N_0$ and an epimorphism for $k = N_0$.

For connected space X, let $\Omega_0^2 X$ denote the path-component of $\Omega^2 X$ which contains null-homotopic maps and recall the following result.

Theorem 3.3 ([16]). Let X_{Σ} be an m dimensional simply connected non-singular toric variety such that the condition (1.16.1) holds. Then if $D = (d_1, \dots, d_r) \in \mathbb{N}^r$ and $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$, the inclusion map

$$i_D: \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \to \Omega_D^2 X_{\Sigma} \simeq \Omega_0^2 X_{\Sigma} \simeq \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma}}(D^2, S^1)$$

is a homotopy equivalence through dimension $d(D; \Sigma, 1) = (2r_{\min}(\Sigma) - 3)d_{\min} - 2$ if $r_{\min}(\Sigma) \ge 3$ and a homology equivalence through dimension $d(D; \Sigma, 1) = d_{\min} - 2$ if $r_{\min}(\Sigma) = 2$. \square

The main result of this paper is a generalization of the above theorem (Theorem 3.3) to spaces of non-resultant systems of bounded multiplicity.

Theorem 3.4 ([19]). Let $D = (d_1, \dots, d_r) \in \mathbb{N}^r$, $n \geq 2$ and let X_{Σ} be an m dimensional simply connected non-singular toric variety such that the condition (1.16.1) holds.

(i) If $\sum_{k=1}^{r} d_k \mathbf{n}_k = \mathbf{0}_m$, then the natural map

$$i_D: \operatorname{Poly}_n^{D,\Sigma}(\mathbb{C}) \to \Omega_D^2 X_{\Sigma}(n) \simeq \Omega_0^2 X_{\Sigma}(n) \simeq \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma}}(D^{2n}, S^{2n-1})$$

is a homotopy equivalence through dimension $d(D; \Sigma, n)$.

(ii) If $\sum_{k=1}^{r} d_k \mathbf{n}_k \neq \mathbf{0}_m$, there is a map

$$j_D: \operatorname{Poly}_n^{D,\Sigma}(\mathbb{C}) \to \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma}}(D^{2n}, S^{2n-1})$$

which is a homotopy equivalence through dimension $d(D; \Sigma, n)$.

Corollary 3.5 ([19]). Let $n \geq 2$, $D = (d_1, \dots, d_r) \in \mathbb{N}^r$, and let X_{Σ} be an m dimensional compact non-singular toric variety over \mathbb{C} such that the condition (1.16.1) holds. Let $\Sigma(1)$ denote the set of all one dimensional cones in Σ , and let Σ_1 be any fan in \mathbb{R}^m such that $\Sigma(1) \subset \Sigma_1 \subsetneq \Sigma$.

Then $X_{\Sigma_1}^-$ is a non-compact non-singular toric subvariety of X_{Σ} and the following two statements hold:

(i) If $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$, the map

$$i_D: \operatorname{Poly}_n^{D,\Sigma_1}(\mathbb{C}) \to \Omega_D^2 X_{\Sigma_1}(n) \simeq \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma_1}}(D^{2n}, S^{2n-1})$$

is a homotopy equivalence through the dimension $d(D; \Sigma_1, n)$.

(ii) If $\sum_{k=1}^r d_k \mathbf{n}_k \neq \mathbf{0}_m$, there is a map

$$j_D: \operatorname{Poly}_n^{D,\Sigma_1}(\mathbb{C}) \to \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma_1}}(D^{2n}, S^{2n-1})$$

which is a homotopy equivalence through dimension $d(D; \Sigma_1, n)$.

Remark 3.6. We would like to study about the homotopy stability of the space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{F})$ for the case $\mathbb{F} = \mathbb{R}$ in our future paper. However, note that the homotopy type of the space $\operatorname{Poly}_n^{D,\Sigma}(\mathbb{R})$ was already studied when X_{Σ} is a complex projective space in [20] (cf. [21], [26], [27]). We would like to generalize these results for more general toric varieties X_{Σ} .

Acknowledgements. The author was supported by JSPS KAKENHI Grant Number JP22K03283. This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. **62** (2011), 771–790.
- [2] V. I. Arnold, Certain topological invariants of algebraic functions, (Russian), Trudy Moskov. Obshch. **21** (1970), 27-46
- [3] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. **59** (1978), 97–118.
- [4] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Note Series 24, Amer. Math. Soc. Providence, 2002.
- [5] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. **166** (1991), 163–221.

- [6] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The homotopy type of rational functions, Math. Z. **207** (1993), 37–47.
- [7] D. A. Cox, The homogenous coordinate ring of a toric variety, J. Algebraic Geometry 4 (1995), 17-50.
- [8] D. A. Cox, The functor of a smooth toric variety, Tohoku Math. J. 47 (1995), 251-262.
- [9] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Graduate Studies in Math. 124, Amer. Math. Soc., 2011.
- [10] B. Farb and J. Wolfson, Topology and arithmetic of resultants, I, New York J. Math. **22** (2016), 801-821.
- [11] B. Farb, J. Wolfson and M. M. Wood, Coincidences between homological densities, predicted by arithmetic, Advances in Math., **352** (2019), 670-716.
- [12] M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. **174** (1995), 119–145.
- [13] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [14] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity, Topology Appl. **232** (2017), 112-139.
- [15] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of rational curves on a toric variety, Topology Appl. **249** (2018), 19-42.
- [16] A. Kozlowski and K. Yamaguchi, The homotopy type of the space of algebraic loops on a toric variety, Topology Appl. **300** (2021), Article ID: 107705.
- [17] A. Kozlowski and K. Yamaguchi, The homotopy type of real resultants with bounded multiplicity, J. Math. Soc. Japan **74** (2022), 1047-1077.
- [18] A. Kozlowski and K. Yamaguchi, Spaces of non-resultant systems of bounded multiplicity determined by a toric variety, Topology Appl., **337** (2023), Article ID: 108626.
- [19] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of non-resultants of bounded multiplicity with real coefficients, preprint (arXiv:2212.05494).
- [20] A. Kozlowski and K. Yamaguchi, Homotopy stability of spaces of non-resultants of bounded multiplicity with real coefficients, preprint (arXiv:2305.00307).
- [21] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.

- [22] J. Mostovoy, Truncated simplicial resolutions and spaces of rational maps, Quart. J. Math. **63** (2012), 181–187.
- [23] J. Mostovoy and E. Munguia-Villanueva, Spaces of morphisms from a projective space to a toric variety, Rev. Colombiana Mat. 48 (2014), 41-53.
- [24] T. E. Panov, Geometric structures on moment-angle manifolds, Russian Math. Surveys **68** (2013), 503–568.
- [25] G. B. Segal, Configuration spaces and iterated loop spaces, Invent. Math. **21** (1973), 213-221.
- [26] G. B. Segal, The topology of spaces of rational functions, Acta Math. **143** (1979), 39–72.
- [27] V. A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan E-mail: kohhei@im.uec.ac.jp