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Abstract

For a fan ¥ in R™ and r-tuple D = (dy, - - - ,d,) of positive integers, let PolyZ? (F)
denote the certain affine variety over I called the space of non-resultant systems of
bounded multiplicity of type (3, n), where r is the number of one dimensional cones in
> and Xy denotes the toric variety over C corresponds to the fan . This space was
first defined by B. Farb and J. Wolfson [10] when X7, is the complex projective space,
and it was originally studied for investigating the homological densities of algebraic
cycles in a manifold [11]. In this note, we shall report about the recent results
concerning the homotopy stability of the space Poly,? *(F) for the case F = C. This
result is based on the joint works with A. Kozlowski [19].

1 Basic definitions and notations

Let N be a set of all positive integers. For connected spaces X and Y, let Map(X,Y)
denote the space consisting of all continuous maps f : X — Y with the compact open
topology. Let Map™(X,Y) C Map(X,Y') be the subspace of all base point preserving maps
[ (X,%) — (Y, %). For a based homotopy class D € my(Map*(X,Y)) = [X, Y], we denote
by Map},(X,Y) C Map*(X,Y) the path component containing the homotopy class D.

When X and Y are complex manifolds, let Hol},(X,Y) C Map},(X,Y) denote the
subspace consisting of all based holomorphic maps f € Map},(X,Y). Then we have the
natural inclusion

(1.1) ip : Hol}(X,Y) == Maph(X,Y).
Now recall several definitions and notations.

Definition 1.1. (i) A convex rational polyhedral cone in R™ is a subset of R™ of the form

(1.2) o = Cone(S) = Cone(my, -, my) = {Z ey @ A > 0}
k=1
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for a finite set S = {my,---,ms} C Z™. The dimension of ¢ is the dimension of the
smallest subspace of R™ which contains o.

(ii) A convex rational polyhedral cone o is called strongly convezr if o N (—o) = {0,,},
where we set 0,, =0 = (0,0,---,0) € R™. A face 7 of a convex rational polyhedral cone
o is a subset 7 C o of the form 7 = o N {x € R™: L(z) = 0} for some linear form L on
R™, such that 0 C {x € R™: L(x) > 0}.

If weset {k : 1 < k < s,L(mg) = 0} = {ir,---,4t}, we easily see that 7 =
Cone(m,,--- ,my,). Hence, if o is a strongly convex rational polyhedral cone, so is any of
its faces.!

(iii) Let X be a finite collection of strongly convex rational polyhedral cones in R™.
Then it is called a fan (in R™) if the following two conditions (1.2.1) and (1.2.2) are
satisfied:

(1.2.1) Every face 7 of 0 € ¥ belongs to X.
(1.2.2) If 01,09 € X, 01 N0y is a common face of each o} and o7 N oy € 3.

(iv) An m dimensional irreducible normal variety X (over C) is called a toric variety if
it has a Zariski open subset T = (C*)™ and the action of T on itself extends to an action
of T# on X. The most significant property of a toric variety is that it is characterized
up to isomorphism entirely by its associated fan ¥. We denote by Xy the toric variety
associated to a fan X. O

Definition 1.2. Let K be a simplicial complex on the index set [r] = {1,2,--- ,r},*> and
let (X, A) be a pairs of based spaces.

(i) Let I(K) denote the collection of subsets o C [r] defined by
(1.3) I(K)={ocC]|r]:0¢ K}.
(ii) Define the polyhedral product Zx (X, A) with respect to K by

(1.4) Zr(X,A)= | J(X,4),  where

(X,A) ={(z1, ,2,) € X" :ape Aif k & o).

(iii) For each subset o = {iy, -+ ,is} C [r], let L,(C") denote the subspace of C""
defined by

(1.5) L,(C") ={(xy, - ,z,) €eC" : 2, €C", &;, =---=x;, = 0,,}

"'When S is the emptyset (), we set Cone(()) = {0,,} and we may also regard it as one of strongly convex
rational polyhedral cones in R™.

2Let K be some set of subsets of [r]. Then the set K is called an abstract simplicial complez on the
index set [r] if the following condition holds: if 7 C o and o € K, then 7 € K. In this paper by a simplicial
complex K we always mean an abstract simplicial complex, and we always assume that a simplicial complex
K contains the empty set ().



and let L, (X) denote the subspace of C"" defined by

(1.6) L(2) = |J L.(C")= Lo(C").

cel(K) oClr],c¢ K
Then it is easy to see that
(1.7) Zr(C" (C")*) =C"\ L,(X), where (C*")* =C"\ {0,}. |

Remark 1.3. It is well known that there are no holomorphic maps CP' = S? — T
except the constant maps, and that the fan ¥ of T is ¥ = {0,,}. Hence, without loss
of generality we always assume that Xy, # T{ and that any fan ¥ in R™ satisfies the
condition {0,,} & %. O

Definition 1.4. Let ¥ be a fan in R™ such that {0,,} & ¥, and let

(L8) S(1) = {pr-+ oo}

denote the set of all one dimensional cones in X.

(i) For each 1 < k < r, we denote by n, € Z™ the primitive generator of py, such that
pr N Z™ = Z>q - ni. Note that pr = Cone(ny).

(i) Let Kyx denote the underlying simplicial complex of 3 defined by

(1.9) Ky = {{il,--- is} C [r] s mi, My, -+, My, span a cone in Z}.

It is easy to see that Ky is a simplicial complex on the index set [r].
(ili) Define the subgroup Gy C T{ = (C*)" by

(1.10) Gy = {(p1, ) € T« [ [ ()™ ™ =1 for all m € Z"},
k=1
where (u, v) = > " upvg for w = (ug, -+, upy) and v = (v, -+ ,v,) € R™.

(iv) Now consider the natural Gy-action on Zi.(C", (C")*) given by coordinate-wise
multiplication, i.e.

(1.11) (o) - (@0, ) = (a5 @)

for ((u1,--+ ), (®1,--+ @) € Gy X Zie. (C*, (C™)*), where we set

(1.12) pr = (pxy, -, py) i (p,x) = (u, (x1,--+ ,2,)) € C x C™.
Then define the space Xx(n) by the corresponding orbit space

(1.13) Xxn(n) = 2, (C", (C")") /G, O



Remark 1.5. (i) Let ¥ be a fan in R™ as in Definition 1.4. Then the fan ¥ is completely
determined by the pair (Kyx, {ng}_;) (see [16, Remark 2.3] in detail).

(ii) Note that the group Gy acts on Zi. (C", (C")*) freely (cf. [25, Proposition 6.7]).
Moreover, one can show that Xx(n) is a toric variety. L

The following theorem plays a crucial role in the proof of the main result of this paper.

Theorem 1.6 ([7], Theorem 2.1; [8], Theorem 3.1). Let ¥ be a fan in R™ as in Definition
1.4 and suppose that the set {n;},_, of all primitive generators spans R™ (i.e. Y ,_ R
n, = {22:1 ATy, 2 A\ € R} = Rm)

(i) Then there is a natural isomorphism
(1.14) Xy & 2. (C,C") /Gy = Xx(1).

(i) If f : CP®* — Xy is a holomorphic map, then there exists anr-tuple D = (dy,--- ,d,) €
(Z>o)" of non-negative integers satisfying the conditiony , _, dyny = 0,,,, and homogenous
polynomials f; € Clzg, -+ , z5] of degree d; (i = 1,2,--- 1) such that the polynomials { f; }ico
have no common root except 04,1 € C¥T1 for each o € I(Ks) and that the diagram

CHN {0} S 2, (CC)
(1.15) 7{ qgl
CP L 2 (C,C")/Gs = X

is commutative, where we identify Xy, = Xx(1) as in (1.14) and the two map ~y, : CST1\
{0541} — CP® and qx : 2, (C,C*) — Xy = Xx(1) denote the canonical Hopf fibering
and the canonical projection induced from the identification (1.14), respectively. In this

case, we call this holomorphic map f a holomorphic map of degree D = (dy,--- ,d,) and
we represent it as
(1.16) f=1 h]

(iii) If g € Clzo,- -+, 2] is a homogenous polynomial of degree d; (1 < i < r) such

that f = [f1,- -, fr] = lg1, -+ , 9|, there exists some element (1, -+ , 1) € Gx, such that
fi = wi- g for each 1 < i <r. Thus, the r-tuple (fi, -+, f.) of homogenous polynomials
representing a holomorphic map f is determined uniquely up to Gx-action. Ol

From now on, let ¥ be a fan in R™ as in Definition 1.4, and assume that Xy is simply
connected and non-singular. Moreover, we shall assume the following condition holds.

(1.16.1) There is an r-tuple D, = (d},--- ,d}) € N" such that Y, _, diny, = 0,,.
Remark 1.7. It follows from [9, Theorem 12.1.10] that Xy is simply connected if and only
if the fan ¥ satisfies the following condition (x):
(%) The set {n}}_, of all primitive generators spans Z™ over Z, i.e.
S Z-n =27

Thus, one can easily see that the set {my},_; of all primitive generators spans R™ if Xy, is
simply connected. In particular, we can see that Xy is simply connected if Xy, is a compact
smooth toric variety. O



2 The space Poly”>(F)

Let Xy be a simply connected non-singular toric variety satisfying the condition (1.16.1),
and from now on we identify Xy = Zi.(C,C*)/Gyx = Xx(1).

Now consider a base point preserving holomorphic map f = [f1,---, f.] : CP* — Xy
for the case s = 1. In this case, we make the identification CP! = S? = C U 0o and choose
the points oo and [1,1,--- ,1] as the base points of CP! and Xy, respectively.

Then, by setting z = i—‘;, for each 1 < k < r, we can view f; as a monic polynomial
fx(2) € C[z] of degree dj, in the complex variable z. Now by using Theorem 1.6 we can
define the space of holomorphic maps as follows.

Definition 2.1. (i) For a filed T, let P¢ denote the space of all F-coefficient monic poly-
nomials g(z) = 2% + a2t + - + ag_12 + aq € F[z] of degree d, and we set

(2.1) PP =Pl x-..xP¥ if D= (dy,---,d,) €N".

Note that there is a natural homeomorphism ¢ : P4 22 F? given by ¢(2% + S0, apz4*) =
(ay,--- ,aq) € F¢. When F = C, we write PP = PZ, and P? = PZ.

(i) For any r-tuple D = (dy,--- ,d,) € N" satisfying the condition (1.16.1), we denote
by Hol},(S?, Xy,) the space consisting of all r-tuples f = (fi(2), -+, f,(2)) € PP satisfying
the following condition (ts:):

(ts) Forany o = {iy,--- ,is} € I(Kyg), the polynomials f;, (z),- -+, fi.(z) have no common
root, i.e. (fi,(a), -+, fi.(@)) #0s = (0,---,0) for any a € C.

By identifying Xy = Zx.(C,C*)/Gx and CP' = 5% = C U oo, one can define the natural
inclusion map ip : Hol}, (5%, Xx) — Map*(S?, Xx) = Q?Xyx, by

: [fil@), fala), -, frla)]  ifaeC
2.2 =
(22) in(f)e) {[1,1,...,1] if @ = o0
for f = (f1(2),---, f-(2)) € Hol},(S?, Xx), where we choose the points oo and [1,1,--- 1]
as the base points of S? and Xs,.

Since the representation of polynomials in P? = P£ representing a base point preserving
holomorphic map of degree D is uniquely determined, the space Hol},(S?, X5) can be
identified with the space of base point preserving holomorphic maps of degree D. Moreover,
since Hol}, (5%, Xx) is path-connected, the image of ip is contained in a certain path-
component of Q%X which is denoted by Q% Xs. Thus we have a natural inclusion

(2.3) ip : Hol})(S?, Xx) — Map}(S?, X5) = 05 Xy, O

Now consider the space Poly”>(F) for F = C. For this purpose, we need the following
notation.



Definition 2.2. For a monic polynomial f(z) € P¢ of degree d, let F,(f)(z) denote the
n-tuple of monic polynomials of the same degree d given by

(2.4) Fu(f)(2) = (f(2), f(2) + ['(2), f(2) + f'(2), -, f(2) + F70(2)).

Note that a monic polynomial f(z) € P? has aroot a € C of multiplicity > n iff F},(f)(a) =
0, € C. (I

Definition 2.3. Let F be a filed with its algebraic closure F.

(i) For each D = (dy,--- ,d,) € N", n € N and a fan ¥ in R™, let Poly”*(F) denote
the space of r-tuples (f1(2), -+, f(2)) € PR of F-coefficients monic polynomials satisfying
the following condition (fs,):

(fen) For any o = {iy,--- i} € I(Ky), polynomials f; (z),---, fi,() have no common
root a € F of multiplicity > n (but they may have common roots of multiplicity
<n).

Note that the condition (fy) coincides with the condition (fx ) if (F,n) = (C,1).

From now on, we only consider the case F = C.
(ii) When F = C and _;_, dyny = 0,, define the map ip : Poly”>(C) — Q*>Xx(n) by

[F.(f1)(a), Bu(f2) (), - Eu(fi)()] ifaeC

(2.5) in(f)(e) = { .
le,e,--- €] if o =0
for f = (fi(2), -, f-(2)) € Poly?*(C) and a € C U oo = S?, where the space Xg(n) is
the space defined as in (1.13) and we set e = (1,1,---,1) € C".
Since Poly”*(C) is connected, the image of ip is contained some path-component of
2 Xyx:(n), which is denoted by 9% Xx.(n). Thus we have the map

(2.6) ip : Poly?*(C) — O3, Xx(n). O

Remark 2.4. (i) By using the classical theory of resultants, one can show that Poly”->(IF)
is an affine variety over IF which is the complement of the set of solutions of a system of
polynomial equations (called a generalised resultant) with integer coefficients. This is why
we call it the space of non-resultant systems of bounded multiplicity of type (3, n).

(ii)) When Xy is a simply connected non-singular toric variety (over C) satisfying the
condition (1.16.1), one can show that Poly”*(C) = Hol},(S?, Xx) if n = 1 (see Definition
2.1 for the details). O

3 The space Poly”*(C)

Before stating the results for the space Poly,’? ’E((C), we need to define the positive integers
rmin(2) and d(D; X, n).



Definition 3.1. We say that a set S = {n;,,--- ,n; } is a primitive if Cone(S) ¢ ¥ and
Cone(T') € X for any proper subset T'S S. Then we define d(D, X, n) to be the positive
integer given by

(3.1) d(D;X,n) = (2nrmm(X) — 3) [ dmn/n] — 2,

where 7y (2) and dipin = dmin (D) are the positive integers given by

(3.2) Tmin(%) = min{s € N: {n;,,--- ,n; } is primitive},

(33) dmin = dmin(D) = min{dl, dg, s ,dr}. D

Definition 3.2. Let f : X — Y be a based continuous map, and let Ny € N be a fixed
positive integer.

(i) The map f is called a homology (resp. homotopy) equivalence through dimension Ny
if the induced homomorphism

(3.4) feo it Ho(X5Z) — He(YZ)  (vesp. fi: mp(X) — m(Y))

is an isomorphism for any k£ < V.

(ii) Similarly, the map f is called a homology (resp. homotopy) equivalence up to
dimension Ny if the induced homomorphism f,. (given by (3.4)) is an isomorphism for any
k < Ny and an epimorphism for k = Nj. O

For connected space X, let Q32X denote the path-component of )?X which contains
null-homotopic maps and recall the following result.

Theorem 3.3 ([16]). Let Xx be an m dimensional simply connected non-singular toric
variety such that the condition (1.16.1) holds. Then if D = (dy,---,d.) € N and
S i1 ey, = 0, the inclusion map

ip : Hol}(S?, Xx) — Q05 Xy ~ W2 Xy ~ Q*Z (D?, SY)

is a homotopy equivalence through dimension d(D; %, 1) = (2rmin(X)—3)dmin—2 #f Tmin (X) >
3 and a homology equivalence through dimension d(D;X%,1) = dpin — 2 if Tmin(X) = 2. O

The main result of this paper is a generalization of the above theorem (Theorem 3.3)
to spaces of non-resultant systems of bounded multiplicity.

Theorem 3.4 ([19]). Let D = (dy,--- ,d,) € N', n > 2 and let Xy, be an m dimensional
simply connected non-singular toric variety such that the condition (1.16.1) holds.
(1) If >, dgmuy, = Oy, then the natural map

ip : Poly?*(C) — Q% X5(n) ~ Q2 Xx(n) ~ Q*Zc (D™, S

is a homotopy equivalence through dimension d(D;>,n).
(i) If > p_, dimy # Oy, there is a map

jp : Poly?>(C) — Q*Z, (D*", §* 1)

which is a homotopy equivalence through dimension d(D;%,n). Ol
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Corollary 3.5 ([19]). Letn > 2, D = (dy,--- ,d,) € N", and let X5, be an m dimensional
compact non-singular toric variety over C such that the condition (1.16.1) holds. Let ¥(1)
denote the set of all one dimensional cones in X2, and let X1 be any fan in R™ such that
Y1) X

Then Xy, is a non-compact non-singular toric subvariety of Xy. and the following two
statements hold:

i) If 2221 dpny = 0,,, the map

ip : Poly?)™(C) — Q} Xy, (n) ~ Q* 2, (D>, 5*"7)

n

is a homotopy equivalence through the dimension d(D;%1,n).
(i) If Y p_, dpmu, # Oy, there is a map

jp : Poly} ¥ (C) = Q*Z, (D>, 5% )

n

which is a homotopy equivalence through dimension d(D;Yq,n). Ol

Remark 3.6. We would like to study about the homotopy stability of the space Polyf Z(IF)
for the case F = R in our future paper. However, note that the homotopy type of the space
Poly”*(R) was already studied when Xy is a complex projective space in [20] (cf. [21],
[26], [27]). We would like to generalize these results for more general toric varieties X..
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