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1 Introduction

Study of the automorphism group Aut(M,s) of a manifold M with some structure s is
important to understand the geometry of the manifold (M, s). An extension of this study
in one direction is the study of the automorphism group Aut(&) of a fiber bundle . In
this subject we are working on a systematic geometric group theoretic study of the group
Dift? (M), of bundle diffeomorphisms of a C" (N, I") bundle 7 : M — B.

In this exposition we are mainly concerned with the following two topics in the study
of bundle diffeomorphism groups :

(1) Fragmentation, perfectness and relative simplicity of bundle diffeomorphism groups

(2) Boundedness of bundle diffeomorphism groups over a circle
— Description of the invariant k£ in term of the attaching map

In the second topic, for an (N, I') bundle 7 : M — S! over a circle and r € Z>oU {00},
using the rotation angle in S', we can distinguish an integer k¥ = k(m,r) € Z>¢ and
construct a function v : Diff’ (M)y — Rj. We have shown that, when & > 1, the
bundle diffeomorphism group Dift! (M), is bounded and cld Diff] (M), < k + 3, provided
Diff], .(R x N)o is perfect for the product (N, I") bundle pr : R x N — R. On the other
hand, when k£ = 0, it is shown that 7 is a unbounded quasimorphism, so that Diff” (M),
is unbounded and not uniformly perfect. In this exposition, we focus on a description of
the invariant k£ in term of the attaching map associated to the bundle . We can also
mention a lower bound of cld Diff. (M), in term of k. In the literature, until now there
have been very few examples of bounded diffeomorphism groups with evaluations from
below. Although a bundle diffeomorphism group is a slightly artificial object, it is of
interest in that it gives an example of such an evaluation from below.

Main reference of this exposition is [7], while we also include some results obtained
after this article. In a succeeding paper [8] we discuss boundedness, uniform perfectness
and uniform relative simplicity of bundle diffeomorphism groups over higher dimensional
base spaces This research is a joint work with Kazuhiko Fukui.



2 Preliminaries

This section includes a short survey for basic definitions and notations on bundle diffeo-
morphism groups. We refer to [7, Sections 2, 3] for more details.

2.1 Fiber bundles

Suppose r € Z>oU{oc}, N is a C" manifold and I" < Diff"(/V). Here N is called a fiber and
I' is called a structure group on N. A C" (N, ") bundle is a C" map 7 : M — B between
C" manifolds endowed with a maximal I"-atlas U = {(Uy, px)}rea of local trivializations
of w. This means that each transition function takes values in I, that is, (¢, )q(ox), " € I’
(ApeAqgeUy,nU,). (U is regarded as a set rather than an indexed family.)

Example 2.1. (Principal bundles) Suppose G is a Lie group. Then a principal G' bundle
is exactly a (G, G )-bundle, where
Gr :={¢. | a € G} <Diff*(G) and ¢, is the left translation on G by a.

2.2 Bundle diffeomorphism groups
Suppose 7 : M — B is a C" (N, I") bundle with a maximal I"-atlas U.

Pq fq d), q
Definition 2.1. A C” bundle diffeomorphism f : 7 — 7 is N <— Ng — Ny ;( )
a C" diffeomorphism f : M — M such that \Ti . /
(i) nf = fn fora (unique) f € Diff"(B), g —2 @)

(i) Y foleg) P €L (¢€ B, g€ (Up) €U, flq) € (V.¥) €U). (N =77 (q))
This means that f maps each fiber onto some fiber and f is a fiberwise I'-diffeomorphism

We use the symbols Diff! (M) and Isot] (M) to denote the groups of
C" bundle diffeomorphisms and C" bundle isotopies of 7 respectively.
Here, a C" bundle isotopy of 7 is a C" isotopy F' = (F})es of M such that F; € Diff, (M)
(t € I =[0,1]). The identity components of these groups are defined by
Isot! (M)g := {F € Isot. (M) | Fo =id} and Diff. (M)y := {F, | F € Isot (M)o}.
The group homomorphism P : Diff” (M) — Diff"(B) : P(f) = f induces en epimorphism
P : Diff” (M), — Diff"(B), by the isotopy lifting property of the fiber bundle 7.

The notion of support for bundle diffeomorphisms/isotopies is very important. The
base support of f € Diff (M) is defined by supp, f := clg w(supp f) C B. The support
and base support of F' € Isot] (M) are defined by

supp F' = clys Uy supp Fr € M and  supp, F':= clpm(supp F) C B.
We say that f and F' have compact support with respect to 7 if their base supports are
compact in B. The following notations are used with regard to suppot.

Isot] (M) := {F € Isot (M)o | supp, F' : compact }

Isot, (M ;supp, € A)o := {F € Isot, (M), | supp, F' C IntgA} (A C B)
Diff], (M) := {F1 | F' € Isot] .(M)o}

Dift7 (M;supp, € A)o := {F} | I € Isot, (M;supp, € A)o}.



Example 2.2. (Equivariant diffeomorphism groups)
Suppose o : G ~ M is a free C*° action of a compact Lie group G on a C* manifold M.
Then, the quotient map 7 : M — M/G is a principal G-bundle and

Dift’ (M) = Dift} (M), the group of p-equivariant diffeomorphisms of M.

2.3 Conjugation-invariant norms on the group Diff! (M),

We list three kind of conjugation-invariant norms, which are used to deduce boundedness,
(uniform) perfectness and (uniform) relative simplicity of the group Diff (M), in Sections
3 and 4. On the other hand, unboundedness results are deduced from the existence of
unbounded quasimorphisms. Suppose G is any (discrete) group.

[1] The commutator length clg : G — Z>o U {o0} is a basic conjugation-invariant norm
on G. It is based on the subset G¢ := {[a,b] | a,b € G} and is defined by

/ min{k € Z>o | g=0g1--- gk (1, -, 9. €G)} (g €[G,G]),
c =
9 00 (g € G—1G,G]).

2] The conjugation-generated norm (, : G — Zxso U {oo} (g € G — {e}) is based on
the subset C, := [the set of conjugates of g*'| and is defined by

Copy o [P T =0 (o g €GO (T € Vo))
’ co  (feG—N(g).
Here, N(g) is the normal subgroup of G generated by g.

[3] Suppose 7 : M — BisaC” (N, I") bundle and B is a C" n-manifold without boundary.
Let B"(B) denote the collection of C" n-balls in B. For D € B"(B) any commutator
lg,h] (g,h € Diff. (M;supp, € D)o) is called a commutator supported in the ball D.
The commutator length supported in balls in B, ¢lb, : Diff] (M )y — Z>o U {0}
is based on the subset S, :=J {Diff.(M;supp, € D)§ | D € B"(B)} of Diffl.(M),
and is defined by

b f min{k € Z>o | f=g1--gc (g1,--- 95 €Sp)}  (f € N(S)),
clb, [ =
e (f € G=N(&))
Here, N(S,) is the normal subgroup of G' generated by Sp.
For any conjugation-invariant norm ¢ : G — R U {o0}
the g-diameter of G is defined by ¢d G :=sup{q(g) | g € G}.

Since the group Diff] (M), contains Ker P as a normal subgroup, we need the notion
of relative simplicity.

Definition 2.2.
(1) G is bounded. <= Any conjugation-invariant norm g : G — R is bounded.
(2) G is perfect. <—= G =[G,G] < cdgf<oo (feq)

G is uniformly perfect. <= clg is bounded. <= cldG < o0
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(3) Gissimple. <= G =N(g) (9 G—{e}) <= ((f) <00 (ge G—A{e},f€q)
G is simple relative to a subset S C G
> G=N(g) (9€G-5) < ((f) <o (9eG=5,feq)
(4) G is uniformly simple. <= 3k € Z>¢ such that (, <k (g € G — {e})

G is uniformly simple relative to a subset S C G.
<= Jk€Zs suchthat (; <k (g€ G—-S9)

Fact 2.1.
(1) If ¢, is bounded for some g € G — {e}, then G is bounded.

olf ge G—{e} and (, <k for some k € Z>¢, then
q < kq(g) for any conjugation-invariant norm ¢ on G.

(2) Suppose N is a normal subgroup of G.
G is simple relative to N. <= [L<G ~ LC N or L =G]
G/N is simple. <= [NCL<JG ~ L=N or(G]

3 Perfectness and relative simplicity of bundle diffeomorphism
groups

In this section we discuss basic properties of bundle diffeomorphism groups, such as frag-
mentation, perfectness and relative simplicity. Let r € Zso U {c0}.

Suppose B is a connected C" n-manifold without boundary and 7 : M — B is a C"
(N, I')-bundle over B.

3.1 Fragmentation of bundle diffeomorphisms

Definition 3.1. For f € Diff] (M), a fragmentation of f of length ¢ means a factorization
f=fi---fe suchthat f; € Diftl (M;supp, € D;)o and D; € B"(B) for each i € [(].

Theorem 3.1. Any f € Diff] (M), has a fragmentation.

Definition 3.2. The fragmentation norm on Diff] (M) is defined by
v:Dift] (M)y — Z>o : v(f) := the minimal length of fragmentation of f.

3.2 Perfectness of bundle diffeomorphism groups

Fragmentation theorem reduces the perfectness of the whole group Dift] (M), to the
following local assertion.
Condition (x)

The group Diff]  (R™x N)y is perfect for the product (N, I')-bundle pr : R"x N — R".

pr,c
Lemma 3.1. If the tuple (NN, I, r,n) satisfies Condition (x), then
cldD = clb,dD < 2 for any of the following isomorphic groups :
D = Diff} (R"x N)o, Diff, (7~ '(Int D))o and Diff’.(M;supp, € D)y (D € B'(B)).

p,rlIC



Theorem 3.2. If the tuple (N, I',r,n) satisfies Condition (x), then
(i) Diff] .(M)o is perfect and (ii) cl f < clb, f < 2v(f) < oo forany f € Diff] (M)o.

At this moment, we have the following list of (N, I") bundles which satisfies Condition (x).
Example 3.1. The group Diff], .(M)y is perfect in the following cases ([7, Section 3.4]).

(1) (Principal bundle) 7 : M — B is a C* principal G bundle, G is a compact Lie
group, n>1 and r #n+ 1.

(2) (Locally trivial bundle) N is a C*° closed manifold, I" = Diff*(N) and r = cc.

The case (1) is proved by K. Abe and K. Fukui [1] in the context of equivariant
diffeomorphism groups under free action of compact Lie groups.

The case (2) is reduced to the perfectness of leaf preserving diffeomorphism groups on
foliated manifolds.

Theorem. ([11], [12]) Suppose X is a C*° manifold with a C* foliation F. Let Diff>°(F)
denote the group of C'*° diffeomorphisms of M with compact support which send each
leaf L of F to L itself. Let Diff2°(F)y denote the subgroup of Diff;°(F) consisting
of f € Diff’(F) which is isotopic to idys by a compactly supported isotopy F with
F, € Diff}°(F) (t € I). Then, Dift°(F), is perfect.

In the case (2) the total space M is foliated by its fibers and the group Dift] (M),
includes the perfect subgroup (Ker P,)q of fiber preserving diffeomorphisms, where
P, : Dift,; .(M)y — Diff.(B)o, P.(f) = f, is a surjective group homomorphism and

(Ker P.)o := {F | F € Isot] (M), F =idpxs} < Ker P..
Then, the condition (x) in the case (2) follows from the following general observations.

Lemma 3.2. Suppose 7 : M — Bisa C" (N, I") bundle.
(1) If both Diff{(B)o and Ker P, are perfect, then Diff] (M), is perfect.
(2) Ker P. = (Ker P.), in the case of the product (NV,I') bundle pr: B x N — B.
Our task is to add more examples of tuples (N, I',r,n) to the above list that satisfy
Condition ().

3.3 Relative simplicity of bundle diffeomorphism groups

Lemma 3.3. (,(f) <4clb, f for any g € Diff (M), — Ker P and f € Diff? .(M)o.
Theorem 3.3. If the tuple (N, I',r,n) satisfies Condition (x), then

(i) the group Diff] (M), is simple relative to Ker P and

(i) Co(f) <4clbr f <8v(f) < oo forany g € Diff] (M)o—Ker P and f € Diff] (M)o.
Remark 3.1. Diff] (M), is uniformly simple relative to Ker P if clb,d Diff] (M), < oo.

4 Bwundle diffeomorphism groups over a circle

In Sections 4, 5 we discuss the case that the base space B is a circle.
Suppose 7 : M — S'is a C™ (N, ') bundle, r € Z>o U {o0}.
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4.1 Rotation angle in S!

We fix a universal cover 71 : R — R/Z = S and a distinguished point p € S'. This im-
plies that [the total angle (length) of S'] = 1. Let P(S') denote the set of C° paths in S

Definition 4.1.

(1) The rotation angle A(c) € R of a path ¢ € P(S!) is defined by
) :=7¢(1) —¢(0), where ¢ € P(R) is any lift of ¢ to R.

(2) The rotation angle y,(G) of an isotopy G € Isot”(S?) is defined by
1p(G) == A(G(p, *)), the rotation angle of the path G(p, ) in S*.

4.2 Invariant k£ and quasimorphism v

Note that each F € Isot2(M)y induces F € Isot’(B), such that F, = F; (t € I) and that
the surjective group homomorphism R : Isot] (M), — Diff. (M), : R(F) = F; has the
kernel  Isot] (M )iqia := {F € Isot. (M) | F1 = idy}.

Fact 4.1.

(1) The map v : Isot? (M)y — R : v(F) = p,(E) = MF(p, %))
is a surjective quasimorphism of defect 1.

(2) The map v restricts to a group homomorphism v : Isot] (M )iqia — Z.
Hence, there exists a unique k = k(m,r) € Z>( such that v(Isot] (M )iqa) = kZ.

(3) The map v induces a surjective map v : Diff. (M) — R/KZ : v(f) = [v(F')], where
F € Isot? (M) with Fy = f.
4.3 Boundedness of Diff] (M),

The boundedness of the group Diff] (M), is distinguished by the invariant k& = k(m, ).
[1] The case that k> 1 :
Consider the following condition on (N, I',r) (see Section 3.2).

(*) Diff,. (R x N)o is perfect for the product (N, I')-bundle pr:R x N — R.
Proposition 4.1. If (N, I, r) satisfies the condition (x), then the following hold.
(1) If F € Isotl (M) and |v(F)| < € € Z>y, then clb,(Fy) <20+ 1.

(2) If f € DiffL(M)o and v(f) = [s] € R/KZ (s € (—%,%]), then
TUsll +2) < el f <clbuf <2[Js]] +3
Theorem 4.1. If (N, I',r) satisfies the condition (x), then
%(k +2) < cldDiff”.(M)o < clbyd Diff".(M)o < k + 3.

Hence, Dift? (M) is uniformly simple rel. Ker P, and so it is bounded and uniformly
perfect.



[2] The case that £k =0 :
Theorem 4.2.
(1) The map v : Diff7 (M), — R is a surjective quasimorphism of defect 1.
o U restricts to a surjective group homomorphism 7 : Ker P — Z.

(2) Diff” (M) is unbounded and not uniformly perfect.

5 Description of the invariant &k in term of the attaching map

5.1 Mapping torus and its attaching map

Suppose N is a C" manifold and I' < Diff"(N). We regard as S* = R/Z. Then, any
¢ € I' determines the mapping torus m, : M, — S, which is a C" (N,I") bundle
obtained from N x [0,1] by attaching N x {1} to N x {0} by ¢. More formally, M,, is
defined by M, = (N xR)/ ~, and m7,([z,s]):=[s] ([z,s] € M,),

where  (z,s) ~, (y,t) <= (y,t) = (¢ "(x),s+n) for some n € Z.
The diffeomorphism ¢ is called the attaching map of this mapping torus.

Any (N, TI") bundle over S! is isomorphic to a mapping torus 7, for some ¢ € I" and
this attaching map ¢ is unique up to isotopy and conjugation in I'. In particular, if
¢ ~idy in I', then 7, is trivial.

When N is non-compact, standard topologies on Diff"(N) do not suit our purpose.
Instead we can use diffeological notion. For the notion of paths in I, this coincides
exactly with the following usual convention for diffeomorphism groups : A C" path « in
I means a C" isotopy a = (a)ier on N with oy € I' (t € I) and a C" path-homotopy
n = (ns)ser rel ends in I" means a C” isotopy of isotopies ns (s € I) in I" such that

n5(0) = no(0) and ns(1) =no(1) (s € I).

5.2 Description of k(m,,r) in term of the attaching map ¢
Our goal of this section is to describe the invariant k = k(m,,7) € Z>o in term of the

attaching map . First we observe the following basic fact.

Proposition 5.1. If ;1 € I" and (i) ¢ ~ 1) (C" isotopic) in I" or (ii) ¢, are conjugate
in I, then m, = 7y and k(m,, ) = k(my, 7). In particular, if ¢ >~ idy, then k(m,, ) = 1.

The following is the main theorem of this section.

Theorem 5.1. Let / € Z.
¢ € kZ <= There exists a C" path-homotopy 1 = (1s)ses rel ends in I’

such that 7,(0) = idy, 75(1) = ¢* (s € I) and @m = noe.

This result leads us to consider the mapping class [¢] of ¢ and its order in the mapping
class group I'/Iy, where I := {y € I' | v ~idy in I'}, the identity component of I'.
Consider the orders ¢ := ord(p, ") and m := ord([p], I'/I,). We also use the following

ko(k>1)

notation : k= Z/KZ| = { (k= 0)
00 =0).



Proposition 5.2. (1) [plf =1 - m]|k (2) t<oo = (€kKZ
Corollary 5.1. (1) m=o00 = k=0 (k=)

(2) {<oo = ml|k, k|l in Zs (3) t=m = k=(=m
Example 5.1. Suppose ¥ is an orientable closed surface and (N, I") := (X, Diff"(3)).

(1) /k\:ord[gp} in I'/I} for any p € I
by Nielsen realization theorem, Proposition 5.1 and Corollary 5.1 (3).

(2) When ¥ =172 =R?/Z? (a torus) :

(i) BEach A € GL(2,Z) defines a linear diffeomorphism ¢4 € I’ = Diff>(7T?),
wa([x]) = [Azx]. This correspondence yields the group isomorphism
GL(2,Z) = T'/Iy: A— [pal.
(ii) For the attaching map ¢4 € I" and k := k(mp,,7)
k=ordAin GL(2,Z) since ord A = ord p4 = ord [p4].

For fiber products of bundles, we have the following conclusion. Suppose 7, : M, — S*
isan (N, ") bundle (¢ € I' < Diff"(N)) and 7, : My — S'is an (L, A) bundle (¢ € A <
Diff"(L)). Since each (a, 5) € I' x A defines the product a x § € Dift"(INV x L), we have
the group monomorphism ¢ : I' x A = ((I' x A) < Diff"(N x L). Then, the attaching map

(a, B) axf
¢ x 1 determines an (N x L, «(I' x A)) bundle iy : Myyy — S*.

Proposition 5.3.

(1) kE(mpxy,r) > 1 <= k(m,,r) > 1 and k(my,r) >1
In this case  k(mpxy, ) = lem(k(my, r), k(my,r)).

(2) E(mpxy,r) =0 <= k(m,,r) =0 or k(my,r)=0

From Corollary 5.1 it is interesting to recognize the order of mapping classes [¢] in the
mappiing class group I'/Ij in various cases, for example, the groups of symplectomor-
phisms or contactomorphisms, etc.

5.3 Principal bundle case

In the case of a principal G bundle, all results in §5.2 are translated into terms of G itself.
In more details, for a Lie group G, a principal G bundle is exactly a (G,Gr) bundle,
where G, = {p, | a € G} < Diff*(G) and ¢, is the left translation by a on G. Since the
canonical isomorphism G = (G, is also a C*° diffeomorphism in the diffeological sense, it
follows that C" isotopies in GG, reduce to C" paths in GG and that for a € G all statements
on ¢, € Gy, my, and k, := k(m,,,r) are translated into terms of a itself in G. They are
summarized as follows. The symbol Gy denotes the component of the unit element e in G.

Proposition 5.4. For a,b € G
ko =k if (i) a,b are conjugate in G or (ii) there exists a path from a to b in G.
In particular, k, = 1 if a € Gy.



Theorem 5.2. For (€ Z
¢ € k,7Z <= There exists a path v in G from e to a’ such that v ~, a 'va in G.

Here, the symbol ~, denotes a path-homotopy rel ends.
Corollary 5.2. Let ¢ =/, := ord (a,G) and m = m, := ord ([a], G/G)).

~

(1) ak» € Gy and m|k, (2) If m = o0, then k, =0 (or k, = 00).
(3) If ¢ < oo, then m | ko, ko|¢ in Zsy (4) If £ = m, then k, = £ = m.
Example 5.2.

(1) ko =1 <= a€ Gy

o If G is connected, then k, = 1.
(ex. GL(n,C), SL(n,C), SL(n,R), U(n), SU(n), SO(n), R™*, T", etc)

(2) ko, =2 for G=GL(n,R),O(n)and a € G~ :={ce G|detc <0}
Note that there exists ¢ € G~ with ¢? = e and that G~ =cGy, G = Gy U cG.
(3) ks = ma in the following cases :

(i) G is commutative (ii) Gy is simply connected

4) If G is discrete (Gy = {e}), then /k\:a =/l, =m,
(4)
(i) If G is a finite group, then k, = ¢,
(i) f G=7Zand a € Z — {0}, then k, =0 (k, = ).

Example 5.3.
Suppose G, H are Lie groups, a € G, k, := k(m,,,r) and b € H, {, := k(7y,,7)

(1) Consider the product G x H. For (a,b) € G x H it is seen that
Plap) = Pa X @b € (G x H)p, where ¢, € G, and ¢, € Hy.

(i) k(a,b) = k((p(ayb),T) > 1 «~— k‘a > 1 and gb >1
In this case, k) = lem(k,, 0p).

(ii) k’(%b) =0 «— k‘a =0 or ﬁb =0.
(2) Suppose f: G — H is a Lie group homomorphism and b = f(a). Then,

(1) k, € 6,7,

(i) ko = ¥4y if f is surjective, Ker f is path-connected and the inclusion ¢ : Ker f C G
induces the zero homomorphism ¢, = 0 : m(Ker f,e) — m1 (G, e).

At the moment the following conjecture is still open.

Question. Is it true that k, > 1 for any compact Lie group G and any a € G 7
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