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1 Introduction

Software reliability is an essential measure for evaluating the quality and robustness
of software systems. By quantifying the likelihood that software will perform without
failure during a designated operational period, software reliability models (SRMs)
offer critical insights that support effective quality assurance. Over the years, a myriad
of statistical and stochastic approaches have been developed to model fault occurrence
during the testing, each aiming to better capture the uncertainties inherent in software
systems [1, 2, 3, 4].

SRMs based on the Non-homogeneous Poisson Process (NHPP) [5, 6] have been par-
ticularly influential, as they allow failure rates to evolve over time. This adaptability
makes NHPP-based SRMs to describe stochastic processes whose intensity functions
are not constant—a characteristic often observed during the software testing lifecycle.

In an effort to capture additional complexities, the Hawkes process (HKP) has
been employed to model self-exciting phenomena [7, 8, 9]. In its conventional form,
the Hawkes process assumes a constant baseline intensity and incorporates excitation
function called kernel function, to encapsulate how historical events stimulate future
occurrences. This self-reinforcing behavior aligns well with scenarios in software relia-
bility, where the occurrence of a software fault can trigger subsequent faults or expose

latent faults. Recently, we tried to use a mathematical method to obtain the mean



value function of the HKP-based SRMs.

In this article, we introduce a new class of HKP-based SRMs constructed using four
distinct kernel functions. Initially, experiments with eight different fault-detection
time datasets using the simple HKP-based SRMs showed that their predictive perfor-
mances were inferior to those of NHPP-based SRMs. Motivated by these findings, we
improve the model by allowing the baseline intensity to contain both time-dependent
part and a specific probability density function. This modeling framework leads to
a marked enhancement in prediction accuracy, showcasing the potential benefits of

incorporating more complex intensity dynamics in software reliability modeling.

2 NHPP-based Software Reliability Modeling

The Non-Homogeneous Poisson Process (NHPP) is a versatile stochastic process
widely used to model discrete events over time, particularly when the event rate
varies. In software reliability, NHPP provides a natural framework for describing
fault detection during the testing, where the detection rate typically decreases as

faults are uncovered and fixed.

2.1 Statistical Properties

Let N(t) represent the cumulative number of software faults detected by time t.

The probability mass function (PMF) of N (¢) is given by
A(t;0)]" :
P(N(t) = n) = %e—wﬁ), n=0,1,2,..., (1)

where A(t;0) = f(f A(s;0) ds is the mean value function, representing the expected

cumulative number of software faults detected by time ¢.

2.2 NHPP-based SRMs

The NHPP-based software reliability models (SRMs) assume that software faults
are detected randomly over time, following a cumulative distribution function (CDF)
F(t;m), where 7 denotes the distribution parameters, where the fault-detection are

independent and identically distributed.



The mean value function for the NHPP-based SRMs is expressed as:
A(t;0) = wF(t; ),

where w is the expected initial number of software faults, and F(¢;7) describes the
fault detection time distribution function. As t — oo, A(t;0) — w, reflecting the
finite number of detectable faults as F(t;7) — 1.

In this article, we assume four common NHPP-based SRMs, each defined by a
specific CDF F(t; ) in Table 1.

Table 1: Representative mean value functions of NHPP-based SRMs.

Models CDF (F(t;m)) Mean Value Function (A(¢;0))
Exponential (exp) Fit)=1—¢" A(t) = wF(t)
Gamma (gamma) | F(t) = ﬁcbs;% A(t) = wF(t)
Pareto (pareto) F(t)=1- (H_Lb)t A(t) = wF(t)
Weibull (weibull) | F(t) =e=¢ """ Alt) = w(l — F(t))

3 Hawkes Processes

3.1 Mathematical Definition of Hawkes Processes

The key characteristic of a Hawkes process is its conditional intensity function A(t),
which represents the instantaneous rate of event occurrence at time ¢, given the history

of events up to that point. It is mathematically expressed as

At) = g+ / ot — 5)AN(s), )
where

e 1 is the baseline constant intensity, representing the rate of events that occur
independently of past history,

e ¢(t— s) is the excitation function (or kernel function), describing how an event
at time s contributes to the intensity at time ¢,

e dN(s) denotes increments of the counting process N (t), which tracks the cu-

mulative number of events.



Equivalently, the intensity function can be expressed in summation form, highlight-

ing the discrete contributions of past events as

At)=p+ > o(t—T), (3)

Ti <t
where T; denotes the occurrence times of past events before ¢. This formulation em-

phasizes the self-exciting nature of the process, where each event adds to the intensity

through the kernel function.

3.2 Excitation Functions

The excitation function ¢(t) quantifies the influence of past events on the current
intensity. It typically adopts a parametric form scaled by a factor a(> 0), which
controls the magnitude of the influence. In this article, we examine four distinct
kernel functions that correspond to the four different NHPP-based SRMs. These
kernel functions, which play a crucial role in determining the self-exciting dynamics

of the Hawkes processes, are presented in Table 2.

Table 2: Representative kernels of HKP-based SRMs.

Kernels o(t;m), = (b,c)
Exponential (exp) ae bt
Gamma (gamma) a%

Pareto (pareto) a%
Weibull (weibull) | aZb¢d-le= (/o)

3.3 Mean Value Functions

The mean value function E[N(t)] plays a crucial role in capturing the temporal
dynamics of the Hawkes process. Deriving its closed-form expression is challenging due
to the recursive structure of the process. To tackle this, we adopt the method proposed
by Cui et al. [10], which leverages a renewal equation framework to derive the mean
value function for specific kernel types. Depending on the kernel’s properties, the

method yields either explicit expressions or integral-differential equations.
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3.3.1 Derivation Procedure
The approach defines a general form f(t) = E[g(N(t), A(t),t)], where an arbitrary
function g(-) involves the counting process N (t) and intensity A(¢). By considering

small increments At, the method derives differential equations by

1. Approximating event probabilities in [t,¢ + At] using the process history F,
2. Expanding ¢(-) via a Taylor series and taking the limit At — 0,

3. Solving the resulting equations analytically or numerically.

3.3.2 Results
Using the above procedure, we can derive the mean value functions E[N(t)] for
exponential and gamma kernel functions. For the exponential kernel ¢(t) = ae™",

the mean value function takes the form:

Erxp[N ()] = Ojf“b + (Qoi“b)Q el 1], (4)

where p represents the constant baseline intensity and «, b(> 0) are kernel parameters.

For the gamma kernel (with ¢ = 2), we have

ut n v ab [1_6_ 2
l—a 2(14/«a)?

14y, Vab _1-va,
]_2(1M—¢l)a)2[1_e il
(5)

However, the HKP-based SRMs with Pareto and Weibull kernels, are more complex

EGamma [N(t)] =

to derive explicit expressions of E[N(t)]. Hence, it is common to solve differential
equations numerically. For the Pareto kernel and the Weibull kernel, the differential-

integral equations are given by

t Cb
Pareto: %E[N(t)] = ,u+/0 a(c-l—thE[N(s)] ds, (6)
Weibull: %E[N(t)] =+ /O ac—bb(t—s)b_le_((t_s)/c)bE[N(s)] ds, (7)

respectively.



4  Experiments
4.1 Parameter Estimation

To estimate the model parameters in both NHPP-based SRMs and HKP-based
SRMs, we employ the maximum likelihood estimation method. This approach is
fundamental for ensuring that the model parameters align with the observed software
fault count data. For the NHPP and HKP -based SRMs, the parameter vectors are
defined as Onppp = (w, b, ¢) and Ouxp = (i, @, b, ¢), respectively.

Assuming to = 0, the detection time for each software fault is recorded, resulting
in n distinct time points. The general form of the log-likelihood function for these
processes, given event observations over the time interval [0, 7], is expressed as

n T
InL(0) = ) log A(t;; 0) — /0 A(s;0) ds, (8)
i=1
where A(t; 0) represents the intensity function that depends on the parameter vector

0, and the cumulative intensity function is defined as

A(T;0) = /OT A(s;0) ds. 9)

4.2 Data Sets

Table 3 summarizes the software fault-detection time datasets used in our experi-
ments. These datasets vary in the number of faults and maximum testing duration,

providing diverse scenarios for evaluating the models.

4.3 Predictive Performance

4.3.1 Akaike Information Criterion (AIC)
The AIC is a widely used measure for model selection, balancing goodness-of-fit

and model complexity. The AIC is defined as:

A

AIC = —2In L(0) 4 2 x (number of parameters), (10)

A

where In L(0) is the log-likelihood function maximized on the parameter space. A

smaller AIC value is preferable, indicating a model with a better goodness-of-fit per-
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Table 3: Software fault-detection time data sets.

Data | No. faults | Maximum testing time | Source
TDS1 54 108708 SYS2[2]
TDS2 24 1095.88 SYS4[2]
TDS3 41 4312598 SYS27[2
TDS4 129 89040 CSR2[1]
TDS5 197 50236822 SYS4[2]
TDS6 136 88682 SYS1[2]
TDS7 104 15369.5 SRC3[1]
TDSS8 397 108890 SRC1[1]

formance.

4.3.2 Predictive Mean Squared Error (PMSE)
The PMSE evaluates the model’s predictive accuracy over future fault counts. It is
defined as

T'ri E|N ti —Nn; 2
m-—p
where
e p~ (=0,1,...,m—1): the number of observation points,

e m: the total number of fault count data points in the future,
e E[N(t;)]: the expected cumulative number of faults at time t;.

e 1;: the observed fault counts at ¢;.

Also, a smaller PMSE indicates better predictive performance for SRMs. Note
that the model selection is based on the AIC, as the minimum PMSE cannot be
known at each observation point in advance. The model with the lowest AIC at
each observation point is chosen for prediction, and its PMSE is evaluated during the
remaining prediction period.

To evaluate the models’ predictive capabilities, each dataset is partitioned into
segments representing different stages of software testing. Specifically, the datasets
are split into three distinct proportions; 20%, 50%, and 80%. These segments are

used as training data, with the remaining portion reserved for prediction testing.



Table 4: Predictive performances based on SRMs with minimum AIC.

Hawkes SRMs NHPP SRMs
Dataset | Length
Exp Gamma Pareto ‘Weibull Exp Gamma Pareto ‘Weibull
20% 131.811 (88.781) | 143.683 (15.254) | 145.750 (100.301) | 145.683 (100.327) | 141.609 (0.885) | 143.607 (1.371) 143.597 (0.984) | 143.609 (1.047)
TDS1 50% 397.380 (46.655) | 410.396 (10.146) | 412.396 (48.111) | 412.396 (48.135) | 403.368 (1.960) | 405.321 (1.763) | 405.241 (0.422) | 405.307 (1.657)
80% 703.454 (10.410) | 718.037 (3.050) | 720.037 (10.003) 713.458 (8.686) 693.172 (1.562) | 693.175 (1.248) | 692.119 (0.792) | 692.911 (1.147)
20% 32.155 (3.428) 37.702 (0.614) 45.379 (6.727) | 40.827 (41792.242) |  41.394 (0.779) 36.459 (2.491) 43.394 (0.781) 37.079 (2.393)
TDS2 50% 108.921 (3.704) 110.400 (0.625) 127.456 (4.076) 121.137 (5.904) 123.477 (1.200) | 125.241 (5.432) 125.476 (1.197) | 125.242 (1.077)
80% 148.356 (1.483) 134.219 (2.254) 184.396 (2.904) 148.747 (3.317) 180.401 (1.487) | 178.957 (3.694) 182.401 (1.491) | 178.958 (3.680)
20% 168.505 (23.178) | 189.583 (4.930) 191.583 (28.013) | 191.583 (28.067) | 185.583 (4.902) | 189.587 (5.451) 189.583 (4.931) | 189.584 (4.844)

TDS3 50% 428.761 (63.906) | 448.960 (14.623) | 450.960 (66.998) | 450.960 (67.017) | 446.961 (14.602) | 447.187 (29.795) | 448.960 (14.620) | 447.126 (34.698)
80% 765.838 (5.450) 788.317 (1.911) 790.317 (5.259) 790.317 (5.245) 769.836 (1.516) | 771.833 (1.508) | 770.823 (1.247) | 771.754 (1.462)
20% | 296.611 (160.580) | 302.042 (25.874) | 308.678 (168.496) | 308.678 (168.891) | 304.679 (16.509) | 292.293 (5.418) | 306.678 (16.548) | 293.297 (5.642)
TDS4 50% | 759.235 (213.845) | 766.993 (41.926) | 777.708 (212.041) | 746.933 (98.901) | 773.710 (26.408) | 766.999 (2.339) | 775.708 (26.479) | 767.914 (3.012)

80% | 1415779 (57.985) | 1410.700 (22.886) | 1430.865 (65.843) | 1338.791 (15.437) | 1392.340 (1.196) | 1394.180 (1.395) | 1389.400 (0.713) | 1394.250 (1.036

20% 1024.168 (6.354) | 1048.920 (0.412) | 1050.923 (6.861) | 1045.508 (10.841) | 1046.920 (0.414) | 1048.910 (0.423) | 1048.920 (0.412) | 1048.920 (0.396
TDS5 50% | 2580.375 (16.665) | 2604.900 (1.773) | 2606.905 (16.540) | 2592.648 (5.317) | 2602.910 (1.764) | 2603.980 (2.859) | 2604.900 (1.771) | 2603.990 (2.808

80% 4180.704 (4.937) | 4205.460 (0.771) | 4207.462 (5.046) | 4147.627 (4.672) | 4203.050 (0.700) | 4204.780 (0.752) | 4205.060 (0.699) | 4204.770 (0.762
20% | 309.677 (214.801) | 318.555 (24.650) | 321.319 (225.236) | 321.319 (224.576) | 313.856 (5.214) | 313.746 (3.179) | 314.873 (2.826) | B13.746 (2.366)
TDS6 50% | 866.581 (108.194) | 877.733 (14.250) | 880.385 (112.026) | 871.833 (93.968) | 866.494 (2.610) | 861.997 (2.966) | 866.128 (0.430) | 861.954 (3.600)
80% | 1528.027 (24.887) | 1539.150 (5.139) | 1542.242 (24.564) | 1520.136 (13.839) | 1487.630 (1.229) | 1478.740 (1.347) | 1481.450 (1.125) | 1478.560 (1.150)
20% | 184.206 (144.529) | 188.847 (20.621) | 195.229 (134.113) | 195.220 (134.151) | 191.227 (10.691) | 193.172 (11.623) | 191.227 (10.573) | 193.170 (11.468)
TDST 50% 538.462 (75.412) | 537.187 (16.582) | 543.787 (78.307) | 527.477 (42.827) | 527.080 (3.051) | 528.617 (3.399) | 529.080 (3.049) | 528.395 (3.508)
80% 926.083 (11.670) | 925.070 (0.805) 922.125 (0.560) 924.394 (0.717) 926.110 (1.150) | 923.704 (0.896) | 920.113 (0.600) | 924.334 (1.110)
20% | 758.928 (635.488) | 757.683 (52.369) | 768.582 (642.936) | 764.886 (395.179) | 764.584 (35.906) | 756.954 (7.989) | 766.582 (36.059) | 755.616 (9.443)
TDS8 50% | 1899.158 (820.466) | 1868.690 (94.544) | 1908.763 (824.218) | 1881.202 (554.593) | 1904.770 (58.493) | 1901.640 (13.894) | 1906.760 (58.678) | 1901.820 (14.161)
80% | 3695.260 (230.882) | 3617.410 (62.429) | 3706.932 (230.906) | 3420.119 (5.934) | 3489.310 (4.017) | 3489.140 (4.309) | 3485.260 (2.613) | 3491.100 (4.137)

)
)
)
)

)
)
)
)
)
)
)
)

Table 4 presents the predictive performances when the baseline model was selected
with the minimum AIC at each observation point with time-domain data, AIC values
are shown outside the parentheses, while PMSE values are inside. From the results
in Table 4, in certain instances, the Hawkes process-based SRMs achieved lower AIC
values, suggesting their potential for effectively modeling software fault-detection time
data. Nonetheless, the predictive performance of the Hawkes process-based SRMs was

generally subpar in the majority of cases.

5 Alternative Hawkes process-based SRMs

We find that in the vast majority of cases, the prediction function curve for this
form of simple autoregressive model based on the Hawkes process is usually a linearly
increasing straight line, which leads to poor predictive performance in most data
experiments. After some reflection, this is because the baseline intensity part of the
intensity function is fixed to a constant parameter value p. Therefore, we try to
propose alternative Hawkes process-based SRMs, so that the base strength becomes

a time-dependent function. For the alternative exponential kernel HKP-based SRMs,



the conditional intensity function takes the form as

A(t) = pe P + ) et (12)

T; <t

For the alternative pareto kernel HKP-based SRMs, we obtain

A(t)—vb—Cb—i—Z b (13)
(e t)h! T.<ta(c+t)b+1'

We experiment with the alternative HKP-based SRMs using 8 data sets, where the
experimental results obtained are shown in Table 5. Based on the results of Table 5,
the alternative HKP-based SRMs with exponential and pareto kernels demonstrate
notable improvements in their predictive performances in most scenarios, compared
to the original HKP-based SRMs with simpler forms. Additionally, in half of the
cases, the alternative HKP-based SRMs could exhibit predictive performance that is
comparable to or even surpasses that of the NHPP-based SRMs, further highlighting

their effectiveness in certain situations.

6 Conclusion

In this article, we proposed four software reliability models based on the simple
Hawkes process and evaluated their predictive performances in comparison with tra-
ditional NHPP-based SRMs. The experimental results revealed that the predictive
performance of the simple HKP-based SRMs did not outperform the NHPP-based
SRMs. To address this limitation, we introduced an improvement by modifying
the baseline intensity of the HKP-based SRMs, replacing the constant form with
a time-dependent probability density function. This modification resulted in signifi-
cant improvements in predictive performance, with the alternative HKP-based SRMs
demonstrating comparable or even superior predictive accuracy to the NHPP-based
SRMs in half of the cases.

These findings highlight the potential value of optimizing the baseline intensity in
HKP-based SRMs for further research. However, this modification also increased the
complexity of the models, making it more challenging to derive closed-form solutions
of the mean value function. In future work, we plan to explore alternative approaches

to obtain the mean value function, such as Monte Carlo simulation, to further enhance
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Table 5: Predictive performance results by alternative HKP-based SRMs.

Dataset | Length | Model&Kernel | HKP AIC | HKP PMSE | NHPP AIC | NHPP PMSE | Alt. HKP AIC | Alt. HKP PMSE
20% Exp 131.811 88.781 141.609 0.885 143.609 0.885
Pareto 145.750 100.301 143.597 0.984 145.607 2.064
TDS1 50% Exp 397.380 46.655 403.368 1.960 405.368 1.960
Pareto 412.396 48.111 405.241 0.422 407.259 4.916
0% Exp 703.454 10.410 693.172 1.562 694.932 1.500
Pareto 720.037 10.003 692.119 0.792 693.511 2.378
20% Exp 32.155 3.428 41.394 0.779 43.394 3.489
Pareto 45.379 6.727 43.394 0.781 45.480 3.130
TDS2 50% Exp 108.921 3.704 123.477 1.200 126.409 0.605
Pareto 127.456 4.076 125.476 1.197 127.491 4.194
S0% Exp 148.356 1.483 180.401 1.487 176.000 1.098
Pareto 184.396 2.904 182.401 1.491 184.556 2.816
20% Exp 168.505 23.178 185.583 4.902 189.583 4.926
Pareto 191.583 28.013 189.583 4.931 191.767 4.162
TDS3 50% Exp 428.761 63.906 446.961 14.602 448.960 14.630
Pareto 450.960 66.998 448.960 14.620 452.725 21.042
0% Exp 765.838 5.450 769.836 1.516 771.836 1.516
Pareto 790.317 5.259 770.823 1.247 771.475 2.826
20% Exp 296.611 160.580 304.679 16.509 302.246 3.744
Pareto 308.678 168.496 306.678 16.548 305.156 56.494
TDS4 50% Exp 759.235 213.845 773.710 26.408 771.714 5.926
Pareto 777.708 212.041 775.708 26.479 760.653 34.194
S0% Exp 1415.779 57.985 1392.340 1.196 1362.000 26.801
Pareto 1430.865 65.843 1389.400 0.713 1356.172 13.006
20% Exp 1024.168 6.354 1046.920 0.414 1048.920 0.412
Pareto 1050.923 6.861 1048.920 0.412 1050.928 7.134
TDS5 50% Exp 2580.375 16.665 2602.910 1.764 2604.900 1.773
Pareto 2606.905 16.540 2604.900 1.771 2593.773 55.710
0% Exp 4180.704 4.937 4203.050 0.700 4205.050 0.700
Pareto 4207.462 5.046 4205.060 0.699 4155.750 23.136
20% Exp 309.677 214.801 313.856 5.214 321.319 224.576
Pareto 321.319 225.236 314.873 2.826 315.856 5.215
TDS6 50% Exp 866.581 108.194 866.494 2.610 871.833 93.968
Pareto 880.385 112.026 866.128 0.430 868.494 2.610
S0% Exp 1528.027 24.887 1487.630 2.229 1520.136 13.839
Pareto 1542.242 24.564 1481.450 1.125 1489.960 1.813
20% Exp 184.206 144.529 191.227 10.691 193.227 10.769
Pareto 195.229 134.113 191.227 10.573 195.294 7.926
TDS? 50% Exp 538.462 75.412 527.080 3.051 529.080 3.051
Pareto 543.787 78.307 529.080 3.049 532.717 3.336
0% Exp 946.271 11.670 926.083 1.406 927.372 1.181
Pareto 957.726 11.136 922.125 0.560 924.226 5.799
20% Exp 758.928 635.488 764.584 35.906 764.886 395.179
Pareto 768.582 642.936 766.582 36.059 763.447 11.811
TDSS 50% Exp 1899.158 820.466 1904.770 58.493 1881.202 554.593
Pareto 1908.763 824.218 1906.760 58.678 1902.510 19.943
S0% Exp 3695.260 230.882 3489.310 4.017 3420.119 5.934
Pareto 3706.932 230.906 3485.260 2.613 3445.030 4.876

the applicability and performance of the HKP-based SRMs.
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