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1. INTRODUCTION AND PRELIMINARIES

Probabilistic metric spaces were introduced in 1942 by Menger [20]. The notion
of distance between two points x and y is replaced by a distribution function Fj ,,.
Sehgal, in his Ph.D. Thesis [33], extended the notion of a contraction mapping to
the setting of the Menger probabilistic metric spaces. The probabilistic version of
the classical Banach Contraction Principle was first studied in 1972 by Sehgal and
Bharucha-Reid [34]. After that many authors have obtained fixed point theorems
for probabilistic p-contractions under the assumption that ¢ is nondecreasing and
such that Y07 ¢"(t) < oo for any t > 0 (see, e.g., [6] and the references in [5]).
Cirié¢ [5] consider the more weak conditions and Jachymski [18] correctly defined
the conditions and give tha following Theorem.

Theorem 1. (See Jachymski [18].) Let (X, F,A) be a complete Menger probabilis-
tic metric space with a continuous t-norm A of H-type, and let ¢ : Ry — R, be a
function satisfying conditions:

0<p(t) <tand le p(t) =0 for allt > 0.

If T : X — X is a probabilistic p-contraction, then T has a unique fived point
z* € X, and {T"(x0)} converges to x* for each xg € X.

Let R denote the real number and Ry = {z € R | x > 0}. A mapping F : R —
R is called a distribution if it is non-decreasing left-continuous with sup,¢ » F'(t) =
1 and infyep F(t) = 0. The set of all distribution functions is denoted by D, and
Dy ={F|F € D,F(0) = 0}. A special element H of D is defined by

0,if¢t<0
HO =3, 0o
1, if ¢t > 0.

A mapping A : [0,1] x [0,1] — [0,1] is called a triangular norm (for short, a
t-norm) if the following conditions are satisfied:
(i) Aa,1) = a;
(i) Ala,b) = A(b,a);
(iii) a > b, ¢ > d implies A(a,c) < A(b,d);
(iv) A(a,A(b,c)) = A(A(a,b),c).
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Definition 2. (Menger [20]., Schweizer and Sklar [35]). A triplet (X, F, A) is called
a Menger probabilistic metric space (for short, a Menger space) if X is a non-empty
set, A is a t-norm and F' is a mapping from X x X into D satisfying the following
conditions (for z,y € X, we denote F(z,y) by Fy,):

(1) F,,(t) = H(t) for all t € R if and only if x = y;

(2) Fyy(t)=F,,(t) forallt e R ;

(3) Fyuy(t+38) > A(F, (1), Fsy(s)) for all z,y,2 € X and s,t > 0.

Schweizer et al. [31, 32] point out that if the t-norm A of a Menger PM-space
(X, F, A) satisfies the condition
sup A(t,t) =1,
0<t<1
then (X, F,A) is a Hausdorfl topological space in the (e, \)-topology T, i.e., the
family of sets

{Ug(g,N) :e>0,A € (0,1]}(z € X)

is a basis of neighborhoods of point = for T, where U,(e,\) = {y € X : F, ,(¢) >
1 — A}. By virtue of this topology T', a sequence {x,} in (X, F, A) is said to be 7-
convergent (simply convergent) to x € X (we write x,, — x) if lim,,_, oo F,, »(t) =1
for all ¢ > 0; {zy} is called a 7-Cauchy (simply Cauchy) sequence in (X, F, A) if for
any given ¢ > 0 and A € (0,1], there exists a positive integer N = N(g, A) such
that F,_ . (¢) > 1 — X, whenever n,m > N; (X, F,A) is said to be 7-complete
(simply comp), if each 7-Cauchy sequence in X is 7-convergent to some point in
X. In what follows, we will always assume that (X, F, A) is a Menger space with
the (e, A)-topology

Lemma 3. (Sehgal and Bharucha-Reid [34]). Let (X, d) be a metric space. Define
a mapping F : X x X — D by

(1.1) F,,(t)=H(t—d(z,y)) forany z,y € X and t > 0.

Then (X, F,min) is a Menger space. and it is called the induced Menger space by
(X,d), and it is complete if (X,d) is complete.

Definition 4. (Hadzic [11], Hadzic and Pap [14]). A ¢-norm A is said to be of
H-type (Hadzi¢ type) if the family of functions {A™(¢)}5°_, is equicontinuous at
t =1, where Al(t) = A(t,1),

A™(t) = A(t,A™1(t)),m = 1,2,....t € [0, 1].

The t-norm Aj; = min is a trivial example of t-norm of H-type, but there are
t-norms A of H-type with A # Ay (see, e.g., [13]).

Definition 5. Let (X, F, A) be a menger metric space. A mapping 7" : X — X is
called asymptotic regular if for every € > 0 and every A > 0, there exists an integer
M,  such that

FT”:E,Tn+1I(E) > 1 - )\
whenever n > M. . In this case we write limy, o0 Fi, 2., () = 1.

Next we define the ¢-K contractions and ¢,-K contractions in Menger sapces.
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Definition 6. Let (X, F,A) be a complete Menger space with continuous t-norm
A and a mapping ¢ : Ry — R, satisfying for any ¢ > 0 there exists ¢1,f2 > 0,
0 < K < oo andr > tsuch that 0 < p(r) + K(t; +t2) <t. Then7T: X — X is a
probabilistic ¢-K contraction if T satisfy the following inequality:

(12) FTw,Ty (SO(T) + K(tl + t2)) > A (Fw,y(t)v F:E,Tw (Ktl)v Fy,Ty(Kt2))
for any K > 0.

Definition 7. Let (X, F,A) be a complete Menger space with continuous t-norm
A and mappings ¢, : R — R, satisfying for any ¢ > 0 there exists ¢1,f2 > 0,
0 <K <ocoandr > tsuchthat 0 <> > @, (r)+K(t1+t2) <t. ThenT : X — X
is a probabilistic ¢,-K contraction if T satisfy the following inequality:

(1.3)
FT”z,T”y(SOn(T) —|— K(fl —|— TQ)) 2 A (Fz,y(l‘), FTn—lm,Tnm(Ktl), FTn—ly)Tny(KtQ))

for any K > 0.

2. MAIN RESULT

We give the following Theorem.

Theorem 8. Let (X, F, A) be a complete Menger space such that A is a continuous
triangular norm of HadZié type. Let ¢ : Ry — R be a mapping such that for any
t >0, there exist 0 < K < 00, t1, to > 0 and r >t such that p(r) + Kt1 + Kty <t
and a mapping T : X — X be asymptotic reqular. If T is a probabilistic p-K
contraction, then T has a unique fived point x*, and for any xo € X limy, oo Tz =
.
Proof. Let xg € X and x,, := Tx,_1 for any n € N. Since T is asymptotic regular,
we have
(2.1) lim Fy 7., (t) =1
n—oo

for any t > 0.

Now let n € N and t > 0, then there exist 0 < K < oo, t1, t2 > 0 and 7 > ¢t such
that ¢(r) + Kt + Kty < t. We show by induction that, for any k € N,

(2.2) lim F,,.

n—oo

(t) > A*(lim Fy, o, (t—@(1)).

Tntk n—00

Since the mapping T is asymptotic regular, we have

lim F;

n—360 Yn Yn+1

(Kt) =1, lim F
n—oo

Yntk Yntht1 (Ktz) = 1.
Putting ¥(t) = o(r(t)) + K(t1 + t2), note that

FTm,Ty(w(t)) 2 A(Fz,y(t)v Fz,Tm(Ktl)v Fy,Ty(KtQ))a
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then we have

Fotnini ()

= Frp i (0= 0(t) +10(1))

= A(Fp 01 (E = ¥(@), Forit o (V1))

> A (Fppanin (6= 0(1), A (Fap oz () Fap oz (K1), Fay s (K2))) -

In this case note that we have

A (nll_?;o Fo i (1), nh_{go Fopy i (K1), nh_gio B g (Kt2))

—A ( lim Fy ., (), 1, 1)

n—00

— AF ( lim Fy, .., (t— w(t))) :

n—r oo

Since A is continuos, we have

nh_{go Fwn,$n+k+1 (f)

—A ( lim Fy, o, (E—0(t), A ( lim Fy, o, (t— 1/)(15))))

n—00 n—oo

— AR+ ( lim Fy, .. (t— w(ﬂ)) :

n—r oo

We show that sequence {x, } is Cauchy, that is,
lim F, .. (t)=1"foranyt>0.

m,n— 00
Let ¢ > 0 and € > 0. By hypothesis, {A™ | n € N} is equicontinuous at 1 and
A™(1) =1, so there is § > 0 such that
(2.3) if se (1—4,1], then A"(s) >1—¢ for all n € N.

Since T is asymtotic regular, we have

lim F, ... (t—v(r)) =1

n—00

Then there exists ng € N such that, for any n > ny,
an7£n+1(t - 1/1(7")) € (1 - 57 1]

Hence, by (3.3) and (3.7), we get [, 4., (t) > 1 —¢ for any k € N U {0}. This
proves the Cauchy condition for {z,}. By completeness, {z,} converges to some
p € S, that is, lim,, o0 Fy, p(t) = 1. for any ¢ > 0. We show that p is a fixed point
of T'. By monotonicity and continuity of A, we get

Fprp(t) > A(Fp,xn+1 (t — (1), Frp e, (1))
> A(Fp,wnﬂ (t - 1/’@))7 Fp,wn (t))
Then we have limy, oo A(Fp, ., (t — (1)), Fpe,(t)) = A(1,1) = 1. This yields
Fprp(t) =1 for any t > 0, and hence p = T'p.

Finally, we show the uniqueness of a fixed point. Let p and ¢ be fixed point of
mapping T" with p # ¢. Then F, 4(t) < 1 for any ¢t > 0. Since T is asymptotic
regular, sequence {x,} in X satisies lim, oo Fry, 72,,,(t) = 1 for any t > 0. In
this case it can be prove that {Tz,} is Cauchy and converges in X. Then for the
p.q, any t > 0 we have lim,, o Frz, p(t) = 1 and lim,, o0 Fre,, 4(t) = 1. Then

1> FP»q(t) > A(F;D,Tmn (t/3)v FTmmTfﬂn+1 (t/3)> FTanrl,q(t/?’)) - A(L 1, 1) =1
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for any t > 0. This is contaradiction. Therefore p = q. O

Same analogy we can give the following Theorem.

Theorem 9. Let (X, F,A) be a complete probabilistic metric space such that A is
a continuous triangular norm of Hadzié type. Let p; : Ry — Ry (j=1,2,...) be a
mapping such that for anyt >0, n € N, there existr > t, 0 < K < 00, t1,ts >0
such that 0 < Z _19i(r)+ Kt1+ Kty <t and a mapping T be asymptotic regular.
If T : X — X is a probabilistic ¢,-K contraction, then T has a unique fixed point
x*, and, for any xg € X, limy,_,oo T™xo = z*.

Remark 10. In [5] and [18], in the proof of the main theorem, in order to have the
existence of fixed point, they prove the asymptotic regular of T" using the condition
lim,, 00 ¢™(t) = 0 and and also the uniquness of fixed point, they use the condition

lim,, 00 ©™(t) = 0.

3. FIXED POINT THEOREMS FOR GENERALIZED 1/} CONTRACTION IN FUZZY
METRIC SPACES

In this section, we shall apply the results in Section 3 to obtain the corresponding
fixed point theorems for generalized 1-contraction in K M-fuzzy metric spaces.

Definition 11. (cf. Kramosil and Michdlek [13].) A fuzzy metric space in the sense
of Kramosil and Michélek (briefly, a KM-fuzzy metric space) is a triple (X, M, A)
where X is a nonempty set, A is a t-norm and M is a fuzzy set on X? x [0, 00)
satisfying the following conditions for all x,y, z € X and s, > O:

(FM1) M(z,5,0) = 0;
(FM-2) M(z,y,t) =1, for all t > 0 if and only if x = y;
(FML3) M(z,y.1) = M(y. x.1):

(FM-4) M(z,z,t+s) > A(M(z,y,t), M(y, 2, 8));
(FM-5) M(z,y,-): Ry — [0,1] is left continuous.

Remark 12. A slight difference between Definition 11 and the original definition
n [13] is that in [13], A is continuous. From (FM —4) and (FM — 2), it is easy
to show that M (z,y,t) is nondecreasing for all x,y € X (see [8]). So, by Definition
2.2 and Definition 2.3, it is easy to obtain the following lemma.

Lemma 13. If (X, M, A) is a KM-fuzzy metric space satisfying the condition
(FM-6) lim¢_yoo M(z,y,t) =1 for all z,y € X,
then (X, F,A) is a Menger space, where F is defined by

(3.1) Fa(t) = {é‘f’;%’ Phi=0,

On the other hand, if (X, F,A) is a Menger space, then (X, M, A) is a KM -fuzzy
space with (FM — 6), where M is defined by M(x,y,t) = Fy ,(t) fort > 0.

Definition 14. (See George and Veeramani [9], Mihet [21].) Let (X, M,A) be a
K M-fuzzy metric space. A sequence {z,} in X is said to be convergent to x € X
if

lim M(z,,x,t) =0 for all t > 0.

n—00
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A sequence {z,} in X is said to be M-Cauchy sequence, if for each £ € (0,1) and
t > 0 there exists ng € N such that M (z,,,xm,t) > 1—¢ for all m,n > ng. A fuzzy
metric space is called complete if every M-Cauchy sequence is convergent in X.

From the theorem in [7], we have the following Theorem.

Theorem 15. Let (X, M,A) be a KM -fuzzy metric spacen, where the t-norm A
is continuous at (1, 1). Suppose that there exist xo,x1 € X such that

tliglo M(l’o, T, t) =1
Define
Yo = {y S X|tli>m M(ﬂ?o,y,t) = 1}
Then (Yo, F,A) is a Menger space, where F is defined by (3.1). If (X, M,A) is
complete, then (Yo, F,A) is also a complete Menger space.
Proof. The proof is same as that of .Lemma 4.1 in [7], O

We assume that M (x,,y,,t) is asymptotic regular if for any ¢ > 0,
lim M(z,, xnt1,t) =1

n—r oo

holds. In this case we have the following Theorem,

Theorem 16. Let (X, M, A) be a complete KM -fuzzy metric space with a t-norm
A of H-type. Let ¢ : Ry — R, be a mapping such that, for anyt > 0, n € N,
there exists r > t, 0 < K < o0, t1, to > 0 such that 0 < p(r) + Kt; + Kty <t. Let
T: X — X be a asymptotic reqular mapping such that for K >0,

(3.2)

M(Tz, Ty, o(r) + K(t; + Kt2)) > A (M(z,y,t), M(z, Tz, Kt1), M(y, Ty, Kt2)),
and assume that Kt1 or Kto — oo, if t — oco. Suppose that there exists some
xo € X such that

lim M (zg,Tzo,t) = 1.
t—o0
If T is orbitally continuous, then T has a unique fized point x* € Yy where
Yo={yeX| tlim M (xzg,y,t) =1},
—00

and {T™(yo)} converges to x* for each yo € Yo. In particular, {T™(x¢)} converges
to x*

Proof. We define a mapping F' : Yo x Yy — Dy by (2.2). Since (X, M, A) is complete
K M-fuzzy metric space and there exists some ¢ € X such that

tliglo M (zo, Txg,t) = 1.
By Theorem 15 we know that (Yy, F, A) is a complete Menger space. Let g € X

and define sequence {z,} with x, := T"xg for n € N. Then {x,} is Cauchy
sequence in M. As in the proof of Theorem 8, we can prove that

(33) dim Py o (02 A (lim By (- o(0),
(3.4) lim M (2, Tpyp,t) > AF(lim M (2, 2py1,t — @(t))).

n—00 n—00
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Firstly we have

(3.5)
M (2, Trnigt1,t)
= M(zn, Tniir1,t — (0(r) + K(t1 + 12)) + ¢(r) + K(t1 +12))
> AM (2, Tng1,t — (p(r) + K(t1 + t2)), M(Zpt1, Tnprr, (1) + K(t1 +t2))

and by (3.2) we have

M (Zpi1, Tpirs1, (1) + Kt +12))
2 A(]\/f(ﬂjn, Tn+ks t)? M(ﬂjn, Tn41, Ktl)7 M(In-‘rk» Tn+k+1, KtQ))

Since T is asymptotic regular we have

lim M((L‘n_l,TIL‘n_l,Ktl) = 1,

n— oo
lim J\[(Zlim_l,TiL‘m_l,KtQ) = 1,

m—r o0

and continuty of A and A(1,a) = a, we have

lim M(zp,Znik+1,t)

(3.6) > A (AF(lim M(wa,znin,t - 0(1), 1,1))
N h—>m (M (2, Zng1,t — (1)),

where ¥(¢) = p(t) + K(t1 + t2). We show that sequence {z,} is Cauchy, that is,

lim M(zp,zm,t) =1 for any ¢ > 0..

m,n— oo

Let ¢ > 0 and € > 0. By hypothesis, {A™ | n € N} is equicontinuous at 1 and
A™(1) =1, so there is § > 0 such that

(3.7 if s e (1—4,1], then A"(s) >1—¢ for all n € N.
Since T is asymtotic regular , we have

lim M($n7$n+lvt - d’(t)) =1L

n—r oo

By (3.4) and (3.7)
M(xp, Tpyk,t) >1—c.

for any k € N. This proves that the Cauchy condition for {z,}. By completeness,
{z,,} converges to some p € Yy, that is,

lim M(z,,p,t)=1.
n—oo
for any t > 0.
For this p € Yj, since ¢ satisfies that for any ¢ > 0, n € N, there exists r > ¢,

0 < K < oo, t1, ta > 0 such that 0 < o(r) + K(t; +t2) < t. Since
7



Mz, Ty, t)
> A <M (a:;;,Tas;;, %) , M (T:r(’S,T:rm %))
et Lot R t !
> A (]\{ (anTQ?Oy 5) ) A (M <x07‘rn7 E) ’ M <x07TxO7Kt1 (6)) (xn’Txn7Kt2(6)>>) ’

M
M (x5, Tp,t) = lim M(xf, Tz, t), M <x0,p,6) = lim M (%vxn?é) =1, and
n—oo

n—o0
. t
lim M (a:n,Txn,KtQ (-)) -1,
n— 00 6

we have

M (x5, Tp, t)

>A (M JIO,T.’I?O7§ A M T0:Pr g , M 2™, Tx™, Kty 3 ;1

We also by assumption, Kt; — oo as t — oo, we have

(3.9)
tli}IEO M($O7 Tpv t)

t t t

> . * * Y . * - . * * v
> A <tli>rgoM <xO,T$O, 2) , tligloM <;r0,p7 6) , tligloM (:r ,Tx™, Kty <6>> , 1>
~A(1,1,1,1) =1

Then we have lim;_, oo M(z§,Tp,t) = 1. Then Tp € Yy. This shows that T
is a mapping of Yy into itself. Then the assumptions of theorem implies that
¥ : Ry — R, satisfying for any ¢ > 0 there exists t1,t0 >0, 0 < K <ocoand r >t
such that 0 < ¢(r) + K(t1 + t2) < t. Also the mapping T : X — X satisfy the
following inequality:
By (3.2),

(310) FT%Ty(l/)(’I") + K(tl + I(fg)) > A (FLy(t), FLTQC(KH), Fy7Ty(Kf,2))

for K > 0. Thiese show that T' is a probabilistic ¥-contraction in (Yp, F, A). Thus,
by Theorem 3.1, we conclude that 7" has a unique fixed point z* € Yy, and {7 (yo)}
converges to x* for each yy € Yp. In particular, {T"(yo)} converges to z*. This
completes the proof. O

Same analogy we have the following Theorem.

Theorem 17. Let (X, M, A) be a complete KM -fuzzy metric space with t-norm of
H-type. Let v, : Ry — Ry be a mappings such that, for eacht >0, n € N, there
exvists T > t, 0 < K < 00, t1, ta > 0 such that 0 < Z?’;lgpj(r) + Kt + Kty < t.
Let T : X — X be a asymptotic reqular mapping such that for K >0, we have
M(T"z, T"y, on(r) + K(t1 + Kt3))

> A (M(z,y,t), M(T" 'z, T "z, Kty), M(T" 'y, T"y, Kt5)) .

and assume that Kt1 or Kto — oo, if t — oco. Suppose that there exists some
xg € X such that

(3.11)

lim M (T" 'xg, T"xo,t) = 1.

t—o0
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Then T has a unique fized point x* € Yy where
Yo={y e X[ lim M(zo,y,t) = 1},

and {T™yo} converges to x* for each yo € Yo. In particular, {T™yo} converges to
x*

From the above proof, it is easy to see that Theorem 3.1 implies Theorem 4.1.
On the other hand, by Lemma 2.2 we know that if (X, F, A) is a complete Menger
space, then (X, M, A) is a complete K M-fuzzy metric space with (FM-6), where
M is defined by M(z,y,t) = F,,(t) for ¢ > 0. So, it is not difficult to prove that
Theorem 4.1 implies Theorem 3.1. This shows that Theorem 4.1 is equivalent to
Theorem 3.1. That is to say, Theorem 4.1 is an equivalent type of Theorem 3.1 in
KM-fuzzy metric spaces. In the same way, from Theorem 3.2, Corollary 3.2 and
Theorem 3.3,we can prove the following theorems, respectively

Example 18. We consider the example of -K contaractive mapping. Suppose
that X = [0, M], where M ~ 1.02517 is a solution of = + cosz = z. And
|15z +cosz —z[ <1 for any x € X. A is minimum, that is A(a,b) = min{a, b}.

Then A is a t-norm of H-type. We define F, , : X x X — D, by

lz—y]|

Foy(t) = et eift<|z—yl
Y 1, ift> |z —yl

for all z,y € X. In this case it is easy to see that (X, F,A) is menger space. It is
also clear that (X, F, A) is complete.

Next let Tz = ;11 (H_im —i—cosx), where z € Ry, o(t) = % (#—t)’ then we have

the following;

le—y| _lz=Tz| _ |Jy—Ty|

(3.12) Frory(p(t) + K(t1 +1t2)) > Ae™ 7 e Fir e K2 },

that is, T" is ¢-K contaractive mapping.

Let 0 < K = 1, {1 = |z — Tx|t, and t; = [y — Ty|t. Then o(t) + Kty + Kty =
i%ﬂd—}l (|lx — Tz| + |z — Tx|) ¢. In ths case since i%ﬂd—}l (lo =Tx|+ |z —Tx|)t <
3L < t, we have 0 < @(t) + Kt + Kto < t. If (t) + Kt1 + Kty < [Tz — Ty|, then

p(t) < |Tx —Ty| — (Kt1 + Kta)

1 1
<@z =y + 7 (o =T +y = Ty[) = 7 (jo = Tz| + |y — Tyl)

= ¢(lz = yl).
Since the function f(x) = i, ¥ > 0, is strictly increasing, we have ¢ < |z —y|. In
_ _ _ _elz—yD)
this case 1+1|1_£y\ < 1 and w(\;(t)yl) = H'_ﬁg:%% < thy‘ so we have e~ #® >

9



lz—yl

e

wh

(1
2]
3]

[4]

(16]
(17]

(18]

. Therefore we have
Fryry(o(t) + K(t1 + t2))

__ |Te—Ty|
— ¢ ¢MOFKt1+Ktg

__ |Te—Ty|
e POFKt+Kiy

Y

_(e(z—yD+|eTa|+]y-Ty|)

> e e(t)+Kt]+Ktg
_ ez—yl) _ |z —Tz| _ ly—Ty|
> e sOFKt+Kta e ¢®+Kt1+Kty o »(H)+Kt1+Ktg
_e(z—y) _|z—Tz| _ |y—Ty|
>e ® e Kt1 ¢ Kig
_lz—yl _lz=Tz| _ |y—Ty|
2 e t e Kt1 ¢ Kty
_lz—y| _|lz—Tz| _ly—Ty|
> A{e T e K g K& }

ere A is minimum, A(a, A(b, ¢)) = min{a.b, c}.
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