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Abstract

Motivation and techniques of stochastic process modeling are
discussed as an alternative to the prevailing deterministic SIR-
type models of epidemiology in order to account for large sta-
tistical variance of infection characteristics observed in the
recent COVID-19 pandemic. Analogy to the stochastic per-
formance modeling of computer communication networks can
be leveraged.
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1 Motivation and objectives of the research

So-called SIR models have been used as major mathematical tools for
quantitative analysis and prediction of the recent world-wide spread of
COVID-19 without much success. The SIR-type models are based on
a set of simultaneous nonlinear ordinary differential equations in several
variables. As such, it would be very difficult, in principle, for theoret-
ically deterministic approaches to account for the large statistical vari-
ance in the number of infected people observed in different cities and
countries with similar conditions around the world. The deterministic
models would, at most, only yield average values for the time-varying
characteristics of the disease.

The propagation of an infectious disease is a probabilistic process be-
cause contact with infectious persons does not necessarily cause the infec-
tion. It cannot be either certain that the vaccination suppresses infection
completely. Therefore, deterministic methods do not seem to be appropri-
ate to use for quantitative scaling of the pandemic of infectious diseases.
We need to resort to some stochastic process approach for proper dimen-
sioning of the pandemic of infectious diseases.

The late Dr. Hisashi Kobayashi (previously IBM researcher, professor
emeritus of Princeton University who passed away in March, 2023) left
behind a series of unpublished working papers in which he proposed the
birth-and-death-with-immigration (BDI) process model for epidemics and
provided new insights that were not available with deterministic models.
After his untimely death, the authors of this article were asked by his
wife to sort out and bring his work to a wider audience in traditional
engineering domains where the stochastic approach has been successfully
utilized.

We believe that exploration of novel techniques for epidemic modeling
will contribute to society in general as well as to academia with signifi-
cant impact. In this article, we clarify how the SIR model and the BDI
process model are different with respect to the theoretical solution and
provide numerical examples as our first exposition of the latter promising
approach.



2 SIR model of Kermack-McKendrick

In classical epidemiology of infectious diseases, all individuals in a pop-
ulation with a finite size NV are partitioned into three distinct groups. We
consider the number of individuals in each group as follows:

S(t) £ Number of individuals who are susceptible to infection at time ¢,
I(t) £ Number of individuals who are infected (and infectious) at time ¢,
R(t) £ Number of individuals who have recovered, have died, or have

been removed (for example, to a hospital) by time ¢.

It is assumed that those individuals who join the third group acquire com-
plete immunity so that they never move back to the other groups again.
Such a model was first introduced by Kermack and McKendrick in 1927.
It is now called the SIR model, which has been a major mathematical
model for studying recent pandemic of COVID-19.

We have the conservation law which holds at all times:

S(t)+1(t)+ R(t) =N t>0.
Two constant parameters are provided as follows:

B £ Mean number of individuals who get infected from S(¢) - I(t)

persons per unit time (contact rate),

A . .. .
v = Mean number of individuals who have recovered, died, or been removed

per unit time (removal rate).

The infection process is characterized by the number of individuals
infected per unit time on average,

Rté&(t)a t>0) ; Ro= )
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which are called the reproduction number at time t and the basic repro-
duction number (at time 0), respectively. If Ry > 1, I(¢) increases, and
if Ry <1, I(t) decreases at time t.



3 A set of simultaneous nonlinear ordinary
differential equations

The SIR model is given as the following simultaneous set of first-order
(with respect to time t) nonlinear ordinary differential equations:

= = —PInS(),
d;_(tt) = BI(t)S(t) —~I(1),
%}Et) = VI(t)v

with the initial conditions: S(0) = N —1,1(0) = 1, R(0) = 0, assuming
that there is a single infected individual in the population at time ¢ = 0.

4 Numerical examples of the SIR model

The solution to the above set of equations can be obtained by numerical
computation. We show two cases. The first case is shown in Figure 1.
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1: Behavior of {S(t),1(t), R(t)} for the case N = 1,000,000, N§ =
0.9<1,~v=05 Ry=18.

In Figure 1, we observe the following:
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(i) R(t) increases monotonically to the limiting value N — S(o0).
(ii) S(t) decreases monotonically to the limiting value S(oc0).

(iii) I(t), initially 1, first increases, and then decreases to 0.
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2: Behavior of {S(¢),I(t), R(t)} for the case N = 1,000,000, N3 =
12> 1, v = 0.5, Ry = 2.4.

In Figure 2, we observe the following:

(i) With larger Ry, I(t) grows earlier, and its peak is higher than that
in Figure 1.

(ii) As more people get infected, and then recover, die, or are removed
earlier, there remain fewer susceptible people than in Figure 1.

Given the values of parameters N, 3, and ~, the limiting value S(c0) can
be determined as the solution to the nonlinear equation:
5() [ B
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See Hethcote (2000) for an extensive survey of the SIR and other deter-
ministic models.



5 Birth-and-death-with-immigration (stochas-
tic process) model
In a stochastic process model, we do not limit the population size.
(1) Birth-and-death-with-immigration (BDI) process
Three constant parameters of the model:
A (birth rate) : number of individuals infected from others
per unit time
i (death rate) : number of individuals who become non-infectious
per unit time

v (immigration rate) : number of infected persons who enter from

outside per unit time

(2) A continuous-time Markov process {I(t), R(t);t > 0}
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(3) Joint Probability Mass Function (PMF)

Pun(t) £ P{R(t) =m,I(t) =n}, m,n=0,1,2,...

(4) Chapman-Kolmogorov equations

Pronlt + ) = PRI [0+ 1) + VAL + Py a1 (0 + 1t
+ Poaa(®)[(n— DA+ v]At +0o(At), m,n=0,1,2,...

(5) Forward Kolmogorov differential equations

AP, (t)
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+ [(n—=DAN+v|Ppna(t), mmn=0,1,2,...



(6) Joint Probability Generating Function (PGF)

Gy, zt) 2 E [y"010] = Z ZPr{R(t) =m,I(t) =n}y"z"

m=0 n=0
satisfies a planar Partial Differential Equation (PDE)
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which can be solved by Lagrange’s method (Betz, et al., 1954).

=—v(z—1)G(y, z; 1),

6 Lagrange’s method for the planar PDE

The corresponding set of auxiliary differential equations defining the normal at a
point on the solution surface is given by

dt dz dG(y, z;t)

1 :_)\z(z—l)—u(z—y) - _u(z—l)G(Zy,z;t)' ()

From the quadratic equation

Az(z = 1) = p(z —y) = Mz — 21(y)) (2 — 22(y)) = 0,
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With the determinant D(y) £ (A + u)? — 4\py, we have

, V/D(1) =|\—pu| =la|, where a2 \— pu.
From the leftmost and middle terms of (%), we get

< _Zl(y)e\/D(y) t_ C;.

z = 22(y)

we have

21(1) = 1, 22(1) =

>|=

From the middle and rightmost terms of (), we get

Gy, z; t)H(z; 21 (y), zﬂy))W = (s,

where C; and C9 are integration constants, and

o (o a(@) W

H(z;21(y), 22(v))

(=~ oa(y)) =20
We assume a functional relation Cy = f(Ch1).
From the initial condition R(0) = 0 and I(0) = Iy at ¢ = 0, we get
G(y,Z;O) = zIO = H(Z;Zl(y)7z2 z2(y)—z1(y) f (Z — 22 ;) ,  where r 2 ;



Changing the variable from z to w by

s 2=y 21(y) — 2(yw

e
z = z(y)

w
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we determine
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(1) Product-form solution:
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This product-form solution implies that the process BDI: I, con-
sists of the superposition of two independent processes BD: I, and
BDI:0.

(2) Marginal distribution of I(t)
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Variance s Var[I(0)] = o2 et (e — 1) + L (rett - 1)(e - 1).
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(3) Marginal distribution of R(t)

E [y"0] = G(y, 15t) = GPPM(y, 1;t) - GPPH(y, 1;11),
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(4) Covariance of I(t) and R(t)
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Similar analysis is possible for the BDI process model when (%), u(t),
and v(t) are arbitrary functions of time t.



7 Numerical examples of the stochastic pro-
cess model

We plot the mean E[I(t)] and E[R(t)], the variance Var[I(¢)] and
Var[R((t)], and the covariance Cov[I(t), R(t)] by assuming the following
parameter values:
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