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Abstract

This paper discusses a class of pairs of quadratic optimization problem (primal)
and its dual. The primal has a fixed initial state. We analyze both the problems
through gap function method. A complete solution is given through characteristic
equation. The model is based upon a complementary identity, which generates
simultaneously a triplet of primal function, dual function and an equality condition.

1 Introduction

Recently, in [12-29] , S.Iwamoto, Y.Kimura, T.Fujita and A.Kira show that a duality for
paired optimization problems through several methods such as (i) extended Lagrangean ,
(ii) plus-minus, (iii) inequality, (iv) identity, (v) complementary and others. As a historical
background, see Bellman and others [1-7,30], [9, 11,32, 33] for dynamic optimization.

In this paper, we propose a method through gap function to show a duality between
a primal problem and its dual problem. Section 2 considers a basic pair of n-variable
minimization (primal) problem (P,) and maximization (dual) problem (D,,). Then we
define a gap function and discuss duality. In section 3, we give the optimal solution
(point and value) of (P,) and (D,,). Section 4 presents a pair of minimization problem
and maximization problem for 4-variable.

2 Basic-model

In this section we assume that n is a natural number and ¢, (€ R') is a constant. ¢
denotes an initial state at time 0 of a dynamic system.
As a basic pair of primal ' and dual, we take n-variable optimization problems
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'Two nouns primal and dual mean primal problem and dual problem, respectively.



n—1
Maximize 2cpuy — Z [/L% + (g — /«Lk+1)2} - Mi - Mi
k=1
D,
subject to (i) wpe€ R".

Let f, g : R® — R! be the respective objective functions of P,,, D,,:

n

fla) = [(@ra —a)’ + 7]

k=1
n—1
g(p) = 2 =Y [k + (e — pesr)?] = 22
k=1

Note that f(x) is convex and g(u) is concave. Then it hods that

f@) = g(p)  (z,p) € R"XR". (1)
The sign of equality holds iff a linear system of 2n-equation on 2n-variable

C—T1 = [ Ty = M1 — H2
(EC1) @por —xp = e T = — 1 2<k<n-1
Tpn—1 — Tn = Hn Tn = HUn

holds. (EC,) is called an equality condition between P, and D,,. Thus both problems are
called dual of each other.

Lemma 1 The equality condition (ECy) yields a pair of linear systems of n-equation on
n-variable:
3!231 — L9 =
(EQ,) —Tp—1 + 3% — T = 0 2<k<n-1
—Tp—1 + 2z, = 0,

2t —pg = c
(EQM) —p—1 + 3pk — pgy1 = 0 2<k<n-1
—Hn—1 + 3/’L7’L == 0

2.1 Gap function for basic-model

First we present an identity, which takes a fundamental role in analyzing respective pairs

of primal and dual. Let x = {xx}§, u = {pu}} be any two sequences of real number with
2o = ¢. Then an identity
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(Cy) (-1 — o) pore + T (ptne — frs)] + (Tpo1 — Tn) o + Tnfhn = Cpia
1
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holds true. This identity is called complementary.
Now we derive both P,, and D,, through gap function. Let us define a gap function
h = h(x, p) between x € R™ and p € R™ by

h(z,p) = [ =@ — pu)® + {on = (e — pes1) 2]

+ [(xn—l — Tn — :un)z + (Tn — ,Un)z } (2)

Thus h(x, 1) denotes a total difference between x and pu. It turns out that the quadratic
function h = h(z, p) is convex in (x, y1).
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Lemma 2
(i) flx) —g(w) = Mz, p) > 0 V(z,p) € R"XR"
(i)  h(x,pu) =0 = (x,p) satisfies (ECy).
Theorem 1 (i) [t holds that
f(x) = g(p) on R"xR".
(ii) 1t holds that
f@) = g(p) < (z,p) satisfies (EC,).

Then P, attains a minimum f(z), while D,, attains a mazimum g(p).

Hence a solution (z,u) to (EC;) yields a minimum point z for P,, and a maximum
point p for D,,.

Theorem 2 Let (x, ) satisfy (ECy). Then both sides become a common value with five
ETPTESSIONS:

f(x) = c(c— 1)
(5V1)

n—1

= g() = D [up + (e — per)?] + 202 = e
k=1

The primal P,, has a minimum value

m = f(z) = c(c— 1)

at x, while the dual D,, has a maximum value

[y

3

M= glu) = 3 [+ (= pmesn)?] + 22 = e
k=1
at p.
Hence a solution (z,pu) to (EC;) yields a minimum value f(z) = c¢(c — z;) for P,
and a maximum value g(u) = cpy for D,. Thus the first argument of optimal point

characterizes the common optimum value.



2.2 Characteristic equation for basic-model

Now let us solve the pair of linear systems (EQ,) and (EQ,). We introduce a second-order
linear difference equation

Tpyo —3Tpy1+ 2, =0, =1, 2g=0 (3)

Lemma 3 The Eq (3) has a unique solution
ﬁn —am
g —«

Ty, =

where o (<) 5 are two positive solution

3—vV5 345

“=Ty P )
to the associated characteristic equation
(CE) #-3t+1 =0. (6)
We note that
a=9, f=¢ (7)

where

1+5 1—+5
T2 T2 (8)

are positive and negative solutions to a quadratic equation

¢ = b=

tP—t—1=0.
Both ¢ and ¢ are called the Golden number and its conjugate, respectively. It holds that
o+o =1 ¢ =-1,
a+pf =3, af =1.
Definition 1 Let us define the sequence {K,} by

We call {K,,} a Kibonacci sequence. Thus {K,,} satisfies a second-order linear differ-
ence equation

Kn+l - 3Kn - Kn—l> Kl - 1, K() - O (10)

This has a unique solution (9). The solution — Kibonacci number — K, turns out a
two-step Fibonacci number.



Lemma 4

n n n _ 12 n _ 12
Proof. K, = f—a = il _i = ¢’ _? = F,. a
p-a ¢ — ¢ ¢—¢

We remark that Fibonacci sequence {F,} is defined as the solution to the second-order
linear difference equation

Tpyo — Tpi1 — Tp =0, =1, 29 =0. (12)
Hence
o R i 2 (13)
¢—9
nl|--- -2 -1 01 2 3 4 5 6 7 8 9 10
F,l1--- -1 1 0 1 1 2 3 5 &8 13 21 34 55

Table 1 Fibonacci sequence {F},}

Lemma 5 The system (EQ,) has a unique solution

Kyiiop— K, Fonii_
T, = cC +1-k ko2 2nt1-2k 0<k<n
, while the system (EQ),) has a unique solution
Kn+1—k F2n+2—2k
e = C =c 1<k <n.
i 2K, — K, Fonya -

We see that the x, u satisfy the equality condition (ECy).

Theorem 3 The equality condition (ECy) has a unique solution (x, w);

Kn-l—l—k - Kn—k o F2n+1—2k

F Kn+1 - Kn F2n+1 o o
K1k Fonga_ok
i ‘ 2K, — K, ‘ Fonga =r=r
where
K, = u = Fy,.
b —«

Hence the gap function h attains the zero minimum at (x, ).



3 Primal vs dual for basic-model
Let us consider the paired n-variable problem:
minimize f(x)

Py
subject to (i) z € R", (ii) =g =c¢

Maximize g(u)
D,
subject to (i) p€ R"
Lemma 6 (i) Let x be a minimum point for P,. Then x satisfies

Case n=1

(EQ,) 2z =c¢

where
f(z1) = (c—x1)* + a3
Case n=2
(EQ.) 3x1 — X = ¢
’ -1 + 2!232 =d
where
f@r,22) = [(c—x1)* + 27| + [(z1 — 22)* + 23]
Case n>3

3r1 — x93 = ¢
(EQ,) —xp—1+3x, — 21 = 0 2<k<n-1
—Tp 1+ 2z, = 0,
The minimum value f(z) is given by f(x) = c(c — x1).
(ii) Let o be a mazimum point for D,,. Then p satisfies
Case n=1

(BQ,) 2 = ¢

where
9(m) = 2 — 243,

(14)



Case n=2

2 —po =c
(EQ,)

—p1+3p2 =0
where ) ) )
9, p2) = 2cpn — (i + (pa — p2)?] — 245,

Case n>3
2 —pe = c
(EQ,) —Hg—1 + 3k — 1 = 2<k<n-1

0
—fp—1 + 3,un =0
The mazimum value g(p) is given by g(p) = Acpy.

Theorem 4 The primal P,, attains a minimum

K, - K,_ F
2 n n—1 2 2n
m = f(x) =clc—x1) = c 1——) =c
f( ) ( 1) ( Kn+1 - Kn F2n+1
at x;
KTL —k Kn— FTL _
Tp = C ok b Rk 0<k<n.
The dual D,, attains a mazrimum
K F.
W)= = "Ry~ T
at ji;
K, - Fopios
+1-k - In+2—2k l<k<n

= C = C
e = 9K, — Ko Fooia
Both the optima are equal.

We remark that
Kn—l—l - 3Kn + Kn—l =0
i.e. Kn+l - Kn - (Kn - Kn—l) = Kn

yields

_ Kn - Kn—l o Kn FQn

1 = .
Kn+1 - Kn 2I(n - Kn—l F2n+1

(15)



4 Four-variable pair for basic-model

The primal problem
minimize (¢ — z1)* + z7 + [(21 — 22)* + 73]
Py + [(xg — x3)* + x%} + [(xg —x4)? + xi]
subject to (i) (@1,72,73,74) € RY, (i) 70 =rc.

has a minimum value

) 21
m4—c(c—x1)—3—40
at a point & = (1, 2o, T3, T4) :
. 13 R 5) R 2 R 1
T = —¢, Tg=—c¢ I3=—2¢ I4=—0=c
SR VIR VIR VI Y

The dual problem

Maximize  2cuy — [pf + (1 — p2)?] — (15 + (2 — ps)?
D, — (15 + (s — p1a)?] — 2143
SUbjeCt to (1) (Mlv M2, 43, ,U4) € R4

has a maximum value

P> +4p> +8p+8 2
34

My = pjc =

at a point p* = (pf, p3, i3, 1)
21 8 ., 3 .1

ST e T T

Note that the equality condition EC; for 4-variable pair P4, D, has a unique solution
(z, 1) ;

K5 — Ky,
_ o Msk T Mok oy
T CTOK, — Ky =P
Ks_
L B
j22" C2K4—K3 SRS

We show how both the minimum point & = (21, &9, Z3, £4) and the maximum point p* =
(g5, ps, 143, j1;) are obtained. First we have

oK, — K3 = 2.21 -8
= 34



that is

2K, — K3 = 34. (16)
Further

Ky—Ks =13

K;—Ky, =5

Ky— K, =2

K- K, = 1.
Here

K2 - 3, K3 - 8, K4 = 21.
Thus we obtain the desired minimum point :

Ky — K5 13

A

$120m=§0
jQZE.M:iC
p 2K, — K3 34
. Ky — K4 2
S R R TR
. ¢ K -Ky, 1
x4—ﬁ‘m—3—40

In a similar way, the desired maximum point is obtained as follows.

. K, 21
| = CcC———7F = —c
1 0K, — K5 34
_c K 8
P = oK, — Ky 34
* (& KZ 3
- = — Y = — C
Hs = 2 oK, K, 34
* C K1 1
= — —— = —°¢.
Fa = 8 oK, — Ky 34
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