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1 Introduction

Consider a flow in a cavity driven by its lid motion. This is a classical problem in fluid
mechanics. In particular, the so-called two-dimensional lid-driven cavity flow, where the
cavity is an infinitely long rectangular one and the lid moves in the direction normal to its
line of contact with the cavity walls, is frequently considered. There has been extensive
studies for various purposes (see, e.g., Ref. [1]).

For the flow, the no-slip boundary condition makes the solution singular at the contact
point of the moving lid and the resting cavity walls [2]. We call the point a corner
hereafter. The flow velocity changes considerably within arbitrarily short distance near
the corner. It is multivalued there although it is bounded. Some components of the stress
tensor diverge in approaching the corner inversely proportionally to the distance from
there. Since the divergence rate is a nonintegrable one, the total forces acting on the lid
and the cavity walls diverge too. Their divergence imply that there are some difficulties
in the description of the lid-driven cavity flow using conventional fluid mechanics.

Hereafter, we consider a monatomic gas as a fluid. Using the expression of the Stokes
solution, we can estimate from how much distance from the corner the fluid-dynamic
description becomes unreliable. The estimate tells us that, with ¢ being the mean free
path of gas molecules, it is inside the region within O(¢) from the corner (r < ¢) that the
conventional fluid mechanics would fail to describe the behavior correctly. For phenomena
with a mean free path scale, the kinetic theory of gases may give a more reliable result.

There are several studies investigating the lid-driven flow in a rectangular cavity based
on the kinetic theory (see, e.g., Refs. [3, 4, 5, 6]). These works focus on nonequilibrium
effects appearing in the bulk region. Their magnitude is characterized by the Knudsen
number, which is defined as the ratio of the mean free path to the cavity size.

However, consideration of the issue of corner singularity based on the kinetic theory
seems not to be reported yet, despite the expected advantage of the theory. Under this
circumstance, we aim to understand the behavior of the flow velocity and the stress fields



near the corner by the kinetic framework. We consider a slow steady flow in a square
cavity, where its lid slides in the direction of its line of contact with the cavity wall. Along
whichever direction the lid moves, the corner singularity arises, and the simpler setting
allows more accurate observation of the properties of our interest compared to the usual
lid-driven cavity flow problem.

This paper is a résumé of a previous study by the author in Ref. [7]. The rest of
the paper is organized as follows. In Sec. 2, we state the problem and formulate it.
Before proceeding to the numerical results, the properties of the Stokes solution and the
free molecular solution are explained in Sec. 3. The numerical results are presented in
Section 4. Section 5 concludes the paper.

2 Setting
2.1 Problem

Consider a gas in a cavity with a square cross-section —L/2 < Xy < L/2, —L/2 < X, <
L/2 (X; are the Cartesian coordinates). The cavity is infinitely long in the X3 direction.
The upper part of the cavity (Xo = L/2) is closed by a planar lid moving at a constant
speed U, in the X3 direction. The cavity walls and the lid are kept at a common uniform
temperature Tj. There is no external force. We will investigate the steady behavior of the
gas based on the Bhatnagar—Gross—Krook (BGK) equation [8] with the diffuse reflection
boundary conditions on the cavity walls and the lid. The lid speed U, is sufficiently
smaller than the most probable speed (2RT 0)1/ 2 of gas molecules so that the equation
and the boundary condition can be linearized around a uniform equilibrium state at rest
with density py and temperature T (R is the specific gas constant and pg is the average
density of the gas).

2.2 Basic equation

Let us denote by Lx; (i = 1,2,3) the position, by U, = (2RT,)"?u,, the lid speed,
by (2RTH)Y?u;(1, 79) the flow velocity, and by poRTy[0;; + Pij(1,72)] the stress tensor,
respectively. Here, d;; is the Kronecker delta.

The problem can be formulated at first as a boundary-value problem of the linearized
BGK equation for the velocity distribution function (VDF) of gas molecules, which in-
cludes the molecular velocity as its indepedent variables in addition to the position z;.

Fortunately however, thanks to the structure of the linearized BGK equation and the
diffuse reflection boundary condition, they can be further reduced to linear integral equa-
tions for the macroscopic quantities (see, e.g., Ref. [9]). We make use of this reduction.



For the present case, as a result, an integral equation for the flow velocity field uz(x) is
derived and given as
uz(x) — Alus)(x) = uyb(x). (1)

Here,

Alug](x) = /Q [G(“3)(:c* —x) + G (x, — z)| uz(x,)de., (2)
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The positions = (x1,22) and & = (—x1, 22), the integration variable &, = (14, T2.),

and the position Y = (14, 1/2) on the lid are the two-dimensional vectors in the ;9

plane. In (2), dz, = dz1,dxe,. The domain 2, appearing in the linear integral operator
11 1
5 T35 < Tax < 3.
The source term uyb(x) is given as the integral along the lid surface zy, = 1/2 [see (4)].

A[] given by (2) is the right half of the cavity cross section 0 < xq, <

The functions Jy and J; are the Abramowitz functions defined by
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The parameter k occurring in (2)—(4) is given by
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Here, A.py and ¢, are the collision frequency and the mean free path of gas molecules
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for the BGK model in the equilibrium state at rest with density py and temperature 7j
(Ag: constant), and Kn is the Knudsen number. Since the range of integration in Afus]
is limited to Qg, the integral equation (1) can be solved in Qg.

The function b(x) in (1) is multivalued at the upper corner (x1,z5) = (1/2,1/2) (its
limiting value depends on the direction from which the corner is approached). Then,
as expected from the structure of equation (1), the flow velocity component wug(x) can
also be multivalued. To deal with the property appropriately, the following plane polar
coordinates with their origin at corners, say (o4, ¢ ) and (0_, ¢ ), are introduced:

1 1
1= 5 04 COS Py, ngzzlzéqiaisingoi (0 < e <m/2). (7)
Here, o4 is the distance from the top or bottom corner on the right side (1/2,4+1/2) = x*

+

to the point @, and ¢, is an angle of the vector & — x

measured from o = +1/2 to
xr1 = 1/2. In terms of these coordinates, e.g., the values of uz(x) at the upper right corner



are written as uz(x(oy = 0, ¢, )). Hence, its possible multivalueness can be appropriately
taken into account as its dependence on the angle ¢, .
As for the stress components Pj3 and Ps3, they are given in terms of ug as

Pa(@)| 1 G (@, — ) + G (2. — @)
:_/ ug(x,)dx,
Py(x)| k7lon |GP) (@, — x) + G (2, — T)
Quy (M2 (1/2 — 15) | (T1e — )|zt — |, (lw’(“U) B :c|/k) d (8)
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Once we obtain the unknown flow velocity field us, Pi3 and Pa3 can be obtained by (8).

Note that the flow velocity component us and the stress components P53 and 3 can be
considered to be symmetric with respect to z; = 0, as expected from the geometry and
the direction of the lid motion. The us and P3 are even and P;3 is odd with respect to x;.
Also note, in the present problem, that the density and temperature are uniformly py and
To, respectively, that the flow is unidirectional (u; = us = 0), and that only Pj3(= Ps;)
and Pa3(= Psz) are nonzero among the perturbation of the stress.

3 Properties of Stokes and free molecular solutions

Before going to numerical analysis of the integral equation (1), let us explain the Stokes
solution and the solution in the free molecular limit (k — oo) briefly in this section.

3.1 Stokes solution

In the present problem, the Stokes solution can be sought assuming that the flow is
unidirectional and there is no pressure gradient. Then, we are led to the Laplace’s
equation for the flow velocity us in the square domain, Aus = 0, with the Dirichlet
boundary conditions uz = uy (on zo = 1/2, the lid), ug = 0 (on 23 = —1/2 or 2y =
+1/2, the bottom or side walls). Here A is the Laplacian A = 02 + 92,. The stress
components Py3 and P»3 are given in terms of us based on the Newton’s law:
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(i=1,2), (10)

where £ is defined in (6).
To have a quantitatively satisfactory solution, which we shall use later in Sec. 4, we
extract the singular part of the solution. We easily see that a simple linear function



Uy (2/m)[(7/2) — 4 (x)] satisfies the Laplace equation in the domain Qg (x; > 0), the
boundary conditions on the lid (¢ = 0) and on the side wall (¢4 = 7/2). (It does not
satisfy the condition on the bottom wall.) Hoping that the function well represents the
behavior of the flow velocity field us near the upper corner, we decompose ug into the
following known part u;; and unknown part uf:

us(@) = ul(@) + uff (x). (11)
Here, ul(x) is defined as
QUy (T
uh(@) = = (5 - 04 (@)) S(or (@) (212 0) (12a)
m
o 1/(1-22) 1
S(z) = e—(1/22) 1 e—l/(1—2z)H (5 - Z) d (12b)

where H is the Heaviside function and u}(z1, 25) = ul(—x1, 23) (z1 < 0). Near the corner,
the approximation u), agrees well with the abovementioned function wu.(2/7)[(7/2) —
¢4 (x)]. The unknown part uf is a solution of the Dirichlet problem of the Poisson’s
equation, which is derived by substituting the decomposition (11) into the equation and
boundary conditions for us.

Thanks to the present choice of ug, the problem for uf can be safely handled without
singular factors. We solve it numerically by a standard second-order central finite differ-
ence scheme. Hence, ug for the case of Stokes solution is expressed as a sum of the explicit
expression for the singular part and numerical information for the smooth remaining part.

From the numerical result, it can be confirmed that uf approaches 0 as the corner is
approached (o, — +0). Meanwhile, 11,§|J+:0 = Uy(2/7)[(7/2) — ¢+ (x)] depends on the
angle . Thus, uz(= u;ﬂ) +u§£) is multivalued. Now, we introduce the following azimuthal
component P of the stress:

P,s = Pigsing, — Pagcosp, = —i% (13)
04 0py
From (13) and the decomposition (11) of the flow velocity us, P,3 can be expressed as
Py =Pl,+ P, Ply= —ﬁgi;, Py = Plising, — Pj cosp,, (14)
0+ 0P+
and P and Pj are defined by (10) with us being replaced by uf. Since Vi is bounded
(this can be confirmed from the numerical result), so is Pﬁ,’. In the meantime, because
substituting (12a) into the second equation in (14) leads to the relation

2k
Pl = 2 S0,y (15)
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and S — 1 as oy — +0, ng and consequently P3(= P;3 + Pi;) diverge with the rate
o' as o, — +0.

The cavity has a corner also on the bottom (21 = 1/2, 25 = —1/2). The aforementioned
singular properties do not appear at this corner (1/2, —1/2) and the solution is smooth
including there. The difference in the effect of the corner on the behavior of the gas
between top and bottom boundaries stems from that the velocity of the boundaries is
discontinuous at the top corner while it is continuous at the bottom one.

3.2 Free molecular solution

In the free molecular limit (k — oo), the BGK equation (omitted here) reduces to a
simple equation, where the effect of intermolecular collision is neglected. This can be easily
solved under the diffuse reflection boundary conditions to yield the explict expression of
solution at the level of the VDF. Here, we only present the flow velocity and stress fields
obtained by taking the moments of the VDF:

Uy

us(@) = o _[f(x) — Or ()], (16a)
Puy(z) = —2“&% [sin 0y, (z) — sin Oy ()], (16b)
Py3(x) = w [cos Oy, () — cosOg(x)], (16¢)

2y
where Og(x) and 0y, (x) are the angles of the vectors (1/2 — x1,1/2 — x5) and (—1/2 —
r1,1/2 — x3), respectively. They are measured counterclockwise from the z; direction.
Note that Or(x) = ¢4 (x). From (16a), us(x)/uy is equal to the proportion of the
contribution of molecules coming from the moving lid surface (z2 = 1/2) over that of the
whole molecules, when measured by the range of angle.

As is clear from (16b) and (16¢), the stress is bounded for the free molecular solution,
which contrasts with the Stokes solution [see the paragraph including (15)]. Because
Or(x) = ¢, (x) and O (x) — 7 as o4 — +0, from (16a),

us(x) — ;—;[7? — oo (@)] as oy — 40, (17)
Hence, the flow velocity us is multivalued at the corner also in the free molecular solution.
The multivalueness emerges because ug is determined by the proportion of the contribution
of the molecules coming from the lid which depends on the azimuthal angle ¢, , and this
feature remains the same when the corner is approached (o, — +0). The gradient of s
in the ¢, direction, i.e., 07'0,, us, diverges as oy — +0. It should be noted that this
divergence does not contradict the boundedness of the stress because the stress is not
expressed by the velocity gradient in the kinetic framework.



4 Numerical results and discussions

We solve the integral equation (1) by successive approximation. A sequence {u}} by
the recurrence formula

uy(z) = Aluf (x) + uyb(xz) (n=1,2,...) (18)

is considered, starting from some initial guess u3(x). As the limit of the sequence, the
solution of (1) is obtained. The actual numerical computation based on (18), involving
a numerical approximation for the integral A[u} '], is carried out basically by following
Refs. [10, 11, 12].

4.1 Macroscopic quantities in the vicinity of corner

As the main interest lies in the fluid-dynamic circumstances and the behavior of the gas
near the corner, we focus on cases for small Knudsen numbers. For the sake of consiseness,
putting aside the behavior of the gas in overall region, here we examine the behavior of
the gas near the corner from the beginning. First, let us focus on the case for £ = 0.01.
We show in Fig. 1 the contour plots of the macroscopic quantities ug/uy, Pi3/ty, and
Pa3/uy, in the region 0.45 < z1 5 < 0.5 for both the Stokes and the BGK solutions.

For the Stokes solution, the contour lines of usz/uy, are emitted radially from the corner
[Fig. 1(a)]. There is no contour line impinging to the lid (z2 = 1/2) and the side wall
(x1 = 1/2) since the solution is constant along the surfaces owing to the no-slip condition.
On the other hand, for the BGK solution [Fig. 1(d)] some contour lines impinge to the
boundaries. Although the considered Knudsen number is fairly small (£ = 0.01), the
results show that the kinetic theory gives a fairly different result compared to the Stokes
solution. The magnitude of velocity slip is larger than 0.2 over some parts of the lid
(0.49 < 21 < 0.5, 13 = 1/2) and the side wall (0.49 < x5 < 0.5, ; = 1/2). This is
evidently larger than the magnitude of the slip observed over positions away from the
corner, which is O(k) [see, e.g., the plots over o, > 0.2 in Figs. 2(a) shown later].

Figures 1(b) and 1(c) show the stress components for the Stokes solution. The contour
lines which are the closest to the corner are the ones with the maximum magnitude level
among the drawn lines (the corresponding values are Pi3/uy, = 0.45, Pas/uy, = —0.6).
In the regions enclosed by these lines and the boundaries, the magnitude of P53 and Ps3
increases infinitely as the corner is approached as explained in the paragraph including
(15) in Sec. 3.1. In contrast to this, for the BGK solution, P35 and Ps3 are bounded [see
Figs. 1(e) and 1(f)] as in the free molecular limit in Sec. 3.2. The magnitudes of Pj3/u,
and Pa3/u,, are both less than 0.445 in the whole region including the corner. Hence,
although what we examine here is the result for only one specific case £ = 0.01, it implies
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Fig. 1: Contour plots of the macroscopic quantities near the corner (1/2,1/2) for the Stokes and BGK
solutions with k = 0.01. (a) uz/uw (Stokes), (b) Pi3/uyw (Stokes), (¢c) Pas/uw (Stokes), (d) uz/uw (BGK),
(e) Pi3/uy (BGK), and (f) Po3/uy (BGK). The curves are drawn with intervals 0.1, 0.05, and 0.06 in
(a) and (d), (b) and (e), and (c) and (f), respectively.



(a) ug/uy (b) Pys/uw

Fig. 2: Profiles of flow velocity and shear stress near the corner (1/2,1/2) for k = 0.1, 0.01, and 0.001.
o+ =0. (a) uz/uw and (b) Pp3/uy. The solid and dashed lines indicate the BGK and Stokes solutions,

respectively. The quantities are plotted as functions of o, the distance from the corner.

that the problem of stress divergence for the Stokes solution is resolved in the description
based on the kinetic theory.

In Fig. 2, we show the flow velocity and the stress for £ = 0.1, 0.01, and 0.001 along
the direction of the angle ¢, = 0 (the lid surface) as functions of the distance o,. As
for the stress, its azimuthal component P,3 associated with the coordinates (o, ) is
plotted [see also (13) and P,3 = —P3 (p4 = 0)]. From Fig. 2(a), it is seen that, while
ug/uy for ¢, = 0 approaches toward the value unity of the Stokes solution due to the
no-slip condition in overall region as k£ decreases, it approaches to another value 0.625...
near o, = 0 for the cases with any & shown in the figures. While the stress Pp3/uy, is
O(k) for large o, and also agrees well with the Stokes solution for £ = 0.01 and 0.001
[Fig. 2(b)], the BGK solution approaches another O(1) value 0.443... near o, = 0 for the
cases with any k shown in the figures. The results imply that the magnitude of velocity
slip and stress remains O(1) near the corner indepedent of k. Note that corresponding
properties can be confirmed for the side wall as well.

The spatial variations of the macroscopic quantities observed in Fig. 2 can be understood
clearer by changing a length scale used in plots from the cavity size to a length of the
order of the mean free path. With such a length scale, ug/u,, and P,3/u, with o, = 0 are
plotted again in Figs. 3(a) and (b). The plot curves for various k converge to a common
place as k decreases. This indicates the variation of a mean free path scale near the corner
when the Knudsen number is small.

Before closing this subsection, to examine if the flow velocity is multivalued or not, we
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show ug/uy for & = 0.01 as functions of the angle ¢, with the distance o, being fixed
at several values in Fig. 4. The slope of curves for the BGK solution is small due to the
velocity slip compared to the Stokes solution. However, the plot curves for the former also
converge to the nonconstant profile as ¢ — +0. This demonstrates that the flow velocity
is multivalued not only in the Stokes solution but also in the kinetic solution.

The origin of the multivalueness is essentially similar to that of the free molecular
solution, which was explained in the last paragraph of Sec. 3.2. we explain the reason
below. The flow velocity component consists of Afus] and uyb: uz(x) = Afug](x) +uyb(x)
[see (1)]. At the corner (z1,x9) = (1/2,1/2), Alus)(x) is not multivalued, which can be
confirmed with the aid of the numerical results. On the other hand, for b(x) [see (4)], by
the change of variable from xq, to ¢ as x1, — 27 = (1/2 — x5)/ tan ¢, we have

1 (@) 1/2 —
b(z) :_/ (@) g < ksin v >d1/)

1 (0@ oL sing,y
T / L ( k sin ) )d@b

%1/ SO dy = T=2H @)oo, (19)
T Jo, 2m

In (19), we used that 6(x) — 7 in taking the limit' o, — +0 and that J;(0) = 1/2.
From (19), uyb(x) is identical to the free molecular solution (17). This accords with
the situation that the molecules coming from the lid to the corner do not experience
intermolecular collision.

4.2 Forces exerted on lid and cavity walls

We denote by po RTouw LEFy, poRTouy LFg, and pgRTouy, LFR the total forces in the X3
direction per unit length in X3 exerted on the lid, the bottom wall, and the right side
wall, respectively. Then, Fy, Fg, and FR are written as

1

1 1
2 1 1 2 1
Uy Fy = / ) P23(’J>'17 §)d$1, Uy IR = —/1 P23(~Ll, __)duLl; Uy R = / ) P13(§,l‘2)dl‘2-

2 2 2

(20)

1Since both the denominator ksint and the numerator o4 sin ¢4 of the argument of J; tend to 0 as o4 — +0 and
1 — 01,(x), care should be taken in taking the limit o4 — +0. The result in (19) can be justified, for example, as follows.
To begin with, 01,(z) can be expressed as 0, = T — @ with o = tan™! (04 sinp4 /(1 — 04 cospy)). Take another angle
B = tan~ (/o1 sinpy /(1 — o4 cosp)), which is larger than o and tends to 0 as oy — +0. Then, split the integral

as b(x) = w1 f;:a Jydy = 71 f;;ﬁ Jidyp 4+ 71 [T7% Jidyp. Thanks to the choice of 8, in the first integral, where
P4+ < ¢ < 7 — B, the argument of J; approaches 0 uniformly as o4 — +0. Thus, it approaches the result in (19). On the
other hand, we see that the second integral tends to 0 because its magnitude is bounded from above by 7~ 1.J; 0)(B— )

[J1(0) is the maximum of the function Ji| and o, 8 — 0 as o4 — +0.
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Fig. 5: The forces acting on the lid and the cavity walls. Plots related to Fy, Fg, and Fyr as functions
of k. (a) (—Fy, Fp, Fr) in log-log plot and (b) (—Fuy/k, Fs/k, Fr/k) in semilog plot. Horizontal lines
in (a) indicate the free molecular solution, (—Fu, Fi, Fr)|k—see = (1,V2 — 1,1 — 1/+/2)/y/7, which is
obtained from (16b) and (16c).

In order to examine the forces for small Knudsen numbers, we show Fy, Fy, and Fy as
functions of k in Fig. 5(a) with a log-log plot. The force Fg exerted on the bottom wall
is actually proportional to k. This Fp can be also recovered satisfactorily by the Stokes
solution in Sec. 3.1. The Stokes equation under the no-slip condition can predict well
the force exerted on the bottom wall although the bottom wall meets corners between it
and the side walls. The effect of corners on the behavior of the gas is rather weak on the
bottom side.

From Fig. 5(a), on the other hand, it is found that Fy; and Fg are not proportional to
k. In order to find the dependence of Fyy and Fg on k, another plot is shown in Fig. 5(b).
As k decreases, —Fy/k and Fgr/k increase, and the markers are nearly on the straight
lines in the figure. This means that Fy and Fr behave like kIn & for small k.

We consider why the forces Fyy and Fg behave as klnk. In Fig. 6(a), the stress on the
lid is shown with a log-log plot. The results for £ = 0.1, 0.01, 0.001, and 0.0003 are shown.
For small k, the magnitude of the stress grows up inversely proportionally to o, over a
wide range from around o, = 0.1 ~ 0.2 to the neighborhood of the corner. This is the
fluid-dynamic behavior of the stress confirmed in the paragraph including (15) in Sec. 3.1.
Figure 6(b) shows another plot with the distance o, being rescaled by k. The curves for
the BGK model overlap well up to larger o, /k as k becomes smaller and the Stokes
solution agrees well with the BGK solution up to o /k = 10 or 20. Figures 6(a)(b) imply
that the BGK solution increases inversely proportionally to the distance from the corner
over the range from comparatively far position to the position that is a few tens of mean
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Fig. 6: Profiles of shear stress on the lid. In (a) and (b), they are shown as a function of o4 and o4 /k,

the distance from the corner and the rescaled one, respectively.

free paths away from there (for example, o, = ck with ¢ = 10 or 20). Then, consider the
integral of k/o, on the interval read from the above observations, i.e., on ck < o, < xg
(20 is, e.g., 0.1 or 0.2). The factor klnk occurs as [.°(k/oy)doy = —kIn(ck) + kIn(ao).
Hence, k1nk appears because of the continuation of the abovementioned fluid-dynamic
stress increase up to the position that is only a few tens of mean free paths away from
the corner and of the subsequent transition to another bounded profile at positions closer
to the corner.

5 Concluding remarks

We considered a gas flow in a square cavity driven by a lid sliding in the direction of its
line of contact with the cavity walls. The problem was formulated as the boundary-value
problem of the linearized BGK equation under the diffuse reflection boundary condition
and it was reduced to the integral equation for the flow velocity field that is suitable for an
accurate analysis. Applying the Stokes equation with the no-slip boundary condition, the
flow velocity becomes multivalued at the corner between the lid and the cavity wall and
the shear stress diverges there inversely proportionally to the distance from the corner.
For the free molecular solution, first, the flow velocity is still multivalued because the flow
velocity is determined by the proportion of the molecules coming from the lid over that of
the whole molecules that depends on the azimuthal angle measured from the corner, and
this feature remains the same when the corner is approached. Second, the shear stress
and accordingly the forces exerted on the lid and the cavity walls are bounded. The two
properties were common in the numerical results for the small Knudsen numbers, which
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correspond to the usual fluid-dynamic circumstances. The second property implies that
the difficulty in the case of the Stokes equation is resolved by using the kinetic approach.
The shear stresses given by the Stokes solution and the BGK one for small Knudsen
numbers agree well with each other up to the position that is a few tens of mean free paths
away from the corner. Within the region, the shear stress varies inversely proportionally
to the distance from the corner. At positions closer to the corner, the increase of the
stress is suppressed and its magnitude remains bounded for the BGK solution. According
to these behavior of the shear stress, the total forces acting on the lid and the side cavity
wall behave as kInk (k < 1), where k[= (2//m)Kn] is a parameter corresponding to the
Knudsen number Kn.
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