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1 Background

The fully conservative convection schemes are the finite difference schemes for the con-
vection term which preserve primary and secondary conservation quantities simultane-
ously. Therefore, they are now recognized as useful tools for unsteady turbulence simula-
tions like direct numerical simulation (DNS) and large eddy simulation (LES). However,
the original motivation of the scheme construction came from the latter.

The amplitude of the subgrid scale stress of the LES is estimated as the order of the
squared filter width from the Taylor expansion. The subgrid scale stress is rooted in the
convection term, therefore, at least 4th-order accuracy is advisable for the convection
scheme so that the truncation error of the scheme does not overcome the subgrid scale
stress. The standard 2nd-order accurate convection scheme in a staggered grid [1] which
is suitable for incompressible flow simulations is fully conservative, however, its result is
not fine. On the other hand, an existing 4th-order accurate convection scheme [2] was not
fully conservative, and made unphysical results at high Reynolds numbers. Therefore,
constructing high-order and fully conservative convection schemes was one of important
studies for LES in 1990s.

In 1995 [3], the author finally found the 4th- and higher-order accurate fully conservative
convection schemes in a staggered grid for incompressible flows. After that, the schemes
are extended to those for compressible flows and flows on moving grid.

In this presentation, fully conservative convection schemes for incompressible flows [3, 4],

for compressible flows [5], and for flows on moving grid [6] are introduced.



2 Full conservative convection schemes for incompressible flows

The governing equations for incompressible flows are the continuity and the Navier-
Stokes equations.
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where wu; is the z; component of velocity, p pressure, p density, v kinematic viscosity, and

+ fi, (2)

fi is the x; component of body force. For the incompressible flow, p is constant. In the
NS equation (Eq.(2)), the convection term is written in conservative form. This form is
also called divergence form. On the other hand, the convection term is sometimes written
in different forms.
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The first variant is non-conservative form, or also called advection form. The average of
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the divergence and advection forms is called skew-symmetric form. The last variant is
rotation form or also called Lam form, which is written by using vorticity and dynamic

pressure.

2.1 Forms of convection term in incompressible flow equation

The variants of the convection term are divergence, advection, skew-symmetric, and
rotation forms, respectively, defined as follows:
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These forms are commutable with each other with the Leibniz rule of calculus (aéii’) =
3—;”1 + @Z)(;%) and with the aid of the continuity of Eq.(1).
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Note that the rotation form is just a rewritten form of the advection form and omitted in
the following discussions. In the variants of the convection forms, the divergence form is
primary conservative a priori, and the skew-symmetric form is secondary conservative a
priori. The secondary conservation property of the skew-symmetric form is demonstrated
as follows:
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The commutability and conservation properties are used for the guiding principle for
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constructing fully conservative convection schemes in this study:.

2.2 Discrete operators

In order to construct the convection schemes, some discrete operators are defined at
the beginning. In this study, the discrete points are distributed uniformly for simplicity.
Therefore, (71); = IAzy, (72); = JAxs, (13)x = KAx3, and tN = NAt, where Az, Awy,
and Axs are spatial increments, and At is the time increment. The discrete values are
represented as ¢((21)1, (22)y, (23)x. ") = ¢«

Then, spatial discrete operators for z; direction with stencil width m are defined as

follows:
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Operators in x5 and 3 are also defined in the same manner.

In addition to the definitions, two application rules are prescribed for the spatial discrete
operators. First, the direction index j in the finite difference operator of 6, /0mz; is
physical and follows the summation convention. Second, the direction indices j in the

“ and the permanent product of g?ﬁzvpmj are numerical and do not

interpolation of &
follow the summation convention. Instead, these numerical indices take the same value
as the same physical index in the same term.

Temporal discrete operators with stencil width 1 are also defined in this study as follows.
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These temporal operators are used in spatio-temporal discretized schemes.
From the definitions, the following identities are satisfied among the discrete operators.
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The identity of Eq.(19) is the commutability between the spatial finite difference and
interpolation operators. The identity of Eq.(20) is a discrete analogue of the Leibniz rule.
The identity of Eq.(21) is used for the proof of the secondary conservation property of
the skew-symmetric form. Eqs.(22)-(24) are identities for the temporal discrete operators.
Commutabilities between the temporal and the spatial operators are also satisfied.



2.3 Fully conservative convection schemes for incompressible flows

The next stage is constructing the fully conservative convection schemes for incompress-
ible flows. From the analytical relations, the guiding principle of the scheme construction
is decided as follows: 1) Find proper set of convection schemes which satisfy the com-
mutability and the conservation properties in a discrete sense. 2) Extend them to higher
order ones with keeping the commutability and the properties.

In this study, a staggered grid arrangement [1] is used for incompressible flows. In this
arrangement, the velocity components are located at the cell surfaces, while the pressure
is located at the cell center. In addition, the components of the Navier-Stokes equation are
discretized at the velocity points, while the continuity is discretized at the pressure point.
The staggered grid is preferred for proper coupling of the Navier-Stokes and continuity
equations.

First of all, existing second-order accurate convection schemes are assessed based on
the guiding principle. The continuity is discretized in the staggered grid arrangement as
follows.
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The standard convection scheme in the staggered grid by Harlow & Welch [1] is the
divergence form and primary conservative.
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The skew-symmetric form which is the average of the divergence and advection forms was
proposed by Piacsek & Williams [8].
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The divergence and advection forms are commutable with the aid of the discrete continuity
of Eq.(25).
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This commutability is demonstrated by using the identities of Eqgs.(20) and (19). The
secondary conservation property of the skew-symmetric form is demonstrated as follows.
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where no summation of « is taken for the staggered grid arrangement. The secondary
conservation property is demonstrated by using the identity of Eq.(21). Therefore, the
convection forms of (Div.” — S2);, (Adv.” — S2);, and (Skew.” — S2); are commutable and
fully conservative with the aid of the continuity of Eq.(25), and compose the proper set
of second-order accurate convection schemes for incompressible flows.

On the other hand, existing fourth-order accurate convection schemes [2, 7, 9] were
not fully conservative. There were no fourth-order accurate fully conservative convection
schemes for incompressible flows until 1995 at least in literatures.

In 1995, the author finally found the fourth-order accurate fully conservative convection
schemes for incompressible flows. The continuity is discretized with the fourth-order
accurate finite difference in the staggered grid as follows.

r_ =20 25
(Cont.” — S4) = S0z, 8051, 0 (31)

The members of the proper set of fourth-order accurate convection scheme for incom-
pressible flows are defined as follows.
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where the forth-order interpolation of the convection velocity is defined as w;*"-*i =
guj 8“3 . The commutability and the secondary conservation property of the skew-
symmetric forms are expressed as follows.
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Here, the recipe of constructing high-order fully conservative convection scheme is: (1)
The same high-order interpolation is used for the convection velocity. (2) The same stencil
width is used for the finite difference and interpolation operators in a term except for the
convection velocity. This recipe makes possible to use the identities of Eqgs.(19)-(21) even
for high-order discretization.



Once we know the recipe, higher-order fully conservative convection schemes are easily
obtained. Sixth-order accurate fully conservative convection schemes with the continuity
discretization are defined as follows [4].
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can be made in the same manner.

i. Higher-order accurate fully conservative convection schemes

2.4 Spatio-temporal discretization schemes

In the discussions so far, the temporal discretization is ignored. Therefore, the conser-
vation properties are suffered from time marching error. In what follows, spatio-temporal
discretization is considered. Here, spatio-temporal staggered grid is used for incompress-
ible flows.

The governing equations for incompressible flows are again the continuity and the
Navier-Stokes equations of Eqs.(1) and (2). Fully (spatio-temporally) discretized equa-
tions with the implicit midpoint time marching method are as follows.

St s
(Cont.! — FS2) = 51—“9 — 0, (41)
125
diu; Oy letlmiu_iltlmj 1 dip o 0wt
4 = y —+fi (42)
51t 5117]' pélxl 511’]' (51$j

Note that the discrete operators with stencil width of 1 are used, therefore, the discrete
Navier-Stokes equation is second-order accurate in space and time. Since the spatial
accuracy can properly be increased by the method explained so far, the second-order
accurate spatial discretization is considered hereafter.



In the fully discretized Navier-Stokes equation, the divergence form is used for convec-

tion.
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Corresponding advection and skew-symmetric forms are defined as follows.

13:~
1$'L 517,(/1 !
I — 1 -1 1 I

The commutability between the divergence and advection forms is demonstrated by using
the identities of Eqgs.(20) and (19).
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The secondary conservation property of the skew-symmetric form is demonstrated by
using the identities of Eqgs.(24) and (21).
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Therefore, these convection schemes are fully discretized and fully conservative with the
aid of the corresponding discrete continuity.

Note that for the fully discretized schemes, the conservation properties are satisfied in
the order of round-off error of computer. Therefore, the corresponding time marching
method is absolute stable as long as the discrete system is solved. The present implicit
method is particularly useful for the turbulence simulations with the streamwise grid
spacings are extremely small.

3 Full conservative convection schemes for compressible flows

Now, we move on the topic for compressible flows. The governing equations for com-
pressible flows are the continuity, momentum, and internal energy equations as well as
the equation of state.
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p=np(p,e) or p=p(p,e) or e=e(p,p), (51)

where e is the internal energy, S, the heat source, 7;; the viscos stress, and ¢; the heat flux.

The internal energy equation can be replaced by one of energy equations, for instance,
the total energy (E = e + u;u;/2) and enthalpy (h = e+ p/p) equations.
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3.1 Forms of convection term in compressible flow equation

The momentum and energy equations for compressible flows are written in the general
form of transport equation.
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The conservative form above is usually preferred for the compressible low analysis. The
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left-hand side corresponds to the divergence form of convection.
On the other hand, the left-hand side of the general transport equation can be rewritten
into the non-conservative form.
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The left-hand side corresponds to the advection form of convection.

With regard to the skew-symmetric form, some skew-symmetric like forms, that is,
quasi-skew-symmetric forms were used in literatures ([10, 11, 12]). However, they are
not secondary conservative. The skew-symmetric form which is secondary conservative a
priori was not discovered for compressible flows until 2010.

From the analogy between incompressible and compressible flows, the commutability
between the divergence and advection forms with the aid of the continuity is satisfied
including time derivative terms for compressible flows.
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Therefore, the skew-symmetric form which is secondary conservative a priori should be
the average of the divergence and advection forms.
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However, the equation above includes a couple of time derivative terms, and it seems

impractical for time marching. This is probably the reason for the overlook of the proper
skew-symmetric form for compressible flows. Fortunately, the author found in 2010 [5]
that the couple of time derivative terms can be transformed into a single form by using
the Leibniz rule.
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The couple of spatial derivative term can also be transformed into a single form.
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By using the 4 variants of time and the 4 variants of spatial derivative terms, there are

at least 16 variants of the skew-symmetric form. Among the variants, the author selected
the canonical form of the skew-symmetric form for compressible flows as follows.
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This form is easily integrable even with an explicit time marching method. The secondary
conservation property of the skew-symmetric forms is demonstrated as follows.
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3.2 Fully conservative convection schemes for compressible flows

Then, the fully conservative convection schemes for compressible flows are constructed.
Here, a spatio-temporal regular grid is used where all variables are located at the same
discrete points.
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Based on the analytical relations and the discrete operators, the fully discretized and
fully conservative convection schemes for compressible flows are constructed. The conti-
nuity is discretized as follows.
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where g; = p* xju_J” ” is the numerical mass flux. The convection schemes for divergence,

advection, and skew-symmetric forms are defined respectively as follows.
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where g5 = % is the special temporal interpolation for compressible flow equations

(density weighted equations), which is required for the commutability and the conser-
vation properties. The commutability between the divergence and advection forms is
demonstrated by using the identities of Eqgs.(23) and (20).

(Div. — FR2)y = (Adv. — FR2), + ¢ (Cont. — FR2) (69)
The skew-symmetric form is the average of the divergence and advection forms.
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The divergence form is primary conservative a priori. The secondary conservation prop-
erty of the skew-symmetric form is demonstrated by using the identities of Eqs.(24) and
(21).
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Therefore, these forms are fully discretized and fully conservative convection schemes for
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compressible flows.
The spatial order of accuracy for compressible flow schemes can be increased by the
same way as explained in section 2.3.
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4 Full conservative convection schemes for lows on moving grid

Finally, the fully conservative convection schemes for flows on moving grid are intro-
duced. Here, an ALE (Arbitrary Lagrangian and Eulerian) type moving grid is used. In
the ALE simulations a numerical grid in a physical space (t,x1, z2, x3) is mapped into a
simple numerical grid in a computational space (7, !, €2, €3).

The continuity and the transport equations (Eqgs. (48) and (54) ) in a physical space
are transformed into those in a computational space.
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where VI = ol u + i and (YJ = éj— J = 5ijk%%g—‘?g is the Jacobian of the transfor-
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mation.

Note that the transformed equations are Jacobian and density weighted, while the
original equations are density weighted. Therefore, the analogy between different weights
should be available for the scheme construction.

4.1 Forms of convection term in flow equations on moving grid

From the analogy, the forms of the convection term in flow equations on moving grid
are defined as follows.
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The commutability and the secondary conservation property are satisfied in the same
manner as those for the original compressible flow equations.
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4.2 Fully conservative convection schemes for flows on moving grid

In the present ALE type simulations, a spatio-temporal regular grid is used in a com-
putational space. As we have already known the fully discretized and fully conservative
convection schemes for compressible flows, we can easily extend them for flows on moving
grid through the analogy.

The continuity is discretized as follows.
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where (Jg)! = p'™ ¢ (Jozg) E” + J%} is the numerical mass flux in the compu-

tational space. The convection schemes for divergence, advection, and skew-symmetric
forms are defined respectively as follows.
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where gb = %‘? is the special temporal interpolation for flows on moving grid (Jaco-
P

bian and density weighted equations), which is required for the commutability and the

conservation properties. The commutability between the divergence and advection forms

is demonstrated by using the identities of Eqgs.(23) and (20).
(Div. — FMR2), = (Adv. — FMR2), + ¢ (Cont. — FMR2) (84)
The skew-symmetric form is the average of the divergence and advection forms.

1
(Skew. — FMR2)y = 5 (Div. — FMR2)y + 3 (Adv — FMR2), (85)

The divergence form is primary conservative a priori. The secondary conservation prop-
erty of the skew-symmetric form is demonstrated by using the identities of Eqs.(24) and
(21).
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Therefore, these forms are fully discretized and fully conservative convection schemes for
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flows on moving grid.
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5 Summary

Fully conservative convection schemes preserve primary and secondary conservation
quantities simultaneously in discrete sense. The simulations with the convection schemes
are now available for incompressible flows [3, 4], compressible flows [5], and flows on
moving grid [6].
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