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1 Introduction

In this short note I would like to present the content of the talk given at the workshop. The
talk was based on joint work with Eduard Feireisl from the Institute of Mathematics of the
Academy of Sciences of the Czech Republic.

On full moon night you can see about 300 stars at the night sky. On a moonless night it
becomes about 2000. However, it is estimated that there is about 200 billion trillion stars in
the known Universe. For us the most important one is the Sun. Despite being one of many it is
believed to have a great resemblance with a lot of other stars and serves as an important model
object on many scales. The Sun is usually presented as divided into zones or layers based on
different physical properties, energy transport mechanisms, and temperatures. The thickness
of these layers, temperature and density vary greatly in magnitute and hence it seems to be a
good subject for mathematical study and modelling.

Furthermore the behavior of the magnetic field of the Sun is quite interesting and not yet
fully understood. Despite it being as “weak” as a fridge magnet it spans all the way out of our
solar system. Quite interesting feature is that it changes its polarity every about 11 years. To
cite Stanford University solar physicist Phil Scherrer on that in 2013 - ” We still don’t have a
really self-consistent mathematical description of what’s happening. And until you can model
it, you don’t really understand it - it’s hard to really understand it. ”

All of the above and more motivates our interest in modelling the behavior of plasma in the
solar covective zone. To do so we describe the solar convective zone as a closed dissipative sys-
tem, i.e., use a family of field equations accompanied with inhomogeneous boundary conditions
describing the behavior of plasma in the solar convective zone.

Let us remind the reader of the following terminology used in this talk. We call a system
closed, if there is no exchange of matter between the system and its surroundings. We call a
system isolated, if it is closed and moreover there is no exchange of energy between the system
and its surroundings. Finaly we call a system open if it exhanges both matter and energy with
its surroundings. The above interactions can be imposed through boundary conditions. When
talking about dissipative systems we imagine a thermodynamically open system that is often
in the out of equilibrium regime.



2 System under consideration

Now let us state the variables that describe the state of a viscous, compressible, electrically
and heat conducting fluid. Namely, mass density o = p(t,z), the (absolute) temperature
¥ = ¥(t,x), the velocity u = u(t, ) and the magnetic field B = B(¢, ). The time evolution
of the fluid is governed by the system of field equations of compressible magnetohydrodynamics
(MHD), see e.g. Weiss and Proctor [9]:

Equation of continuity:
0o + div,(pu) = 0. (2.1)

Momentum equation:
¢ (ou)+div,(pu®u)+(w x gu)+V,p(o,¥) = div,S(¥, V,u)+curl,Bx B+ oV, M. (2.2)
Induction equation:
0;B + curl, (B x u) + curl,({(J)curl,B) = 0, div,B = 0. (2.3)
Internal energy balance:

O(ee(p, 1)) + div,(ee(p, v)u) 4 div,q(v, V,9)
=S¥, V,u) : Vou + ((9)|curl,B|* — p(p,9)div,u.  (2.4)

The system is written in a general rotating frame frequently used in astro/geophysics, where
w X pu is the Coriolis force and the potential M,

1
M:G+§|w><x|2,

includes the gravitational component G = G(t, z) as well as the centrifugal force. Note that G
may depend on the time ¢ in the rotating frame if the source of gravitation is located outside
the fluid domain. The term curl,B x B in (2.2) represents the action of the magnetic field on
the fluid known as Lorentz force. The terms curl,(B x u) and curl,(¢(J)curl,B) appearing
in (2.3) represent advection (induction) effects of the fluid on the magnetic field and diffusion
of the magnetic field, respectively. Furthermore, ((6) is the coefficient of magnetic diffusion.

Since the motivation for this model comes from the convective layer of the sun let us note
that the magnetic Reynolds number (the ratio of advective and diffusive forces) is estimated
to be about 10° and hence the expected effect of the diffusion is quite small.

The induction equation (2.3) introduced above has been derived (after taking certain physical
considerations into account) from the Maxwell’s equations :

1
div,E = —oE,
€0
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div,B =0,
0,B = —curl L E,

1
—OE = curl,B — pj, (2.5)
c

where E = E(t, z) denotes the electric field, o = gr(t, z) the electrostatic charge density and
j =]j(t, x) the electric current density.

Here we would like to give a small warning about how simplification may lead to confusion. If
one were to further simplify by assuming that the magnetic diffusivity coefficient ( is constant,

the induction equation (2.3) can be further reduced to the form
0B — (A, B+ curl,(B x u) =0, div,B =0. (2.6)

As this system has quite a resemblance to the incompressible Navier-Stokes equations it is
tempting to equip it with zero Dirichlet boundary conditions

Blsa =0, (2.7)
and apply nowadays standard existence theory. Unfortunatelly, system (2.6), (2.7) is overde-

termined. Indeed, compared to the incompressible Navier-Stokes the system (2.6) lacks the

“pressure” term, that gives the so much needed degree of freedom to equip it with no-slip

boundary conditions (2.7). As we shall present later on, admissible boundary conditions for

(2.6) can describe either tangent or normal component only, never both parts at the same time.
We consider a Newtonian fluid, with the viscous stress tensor

S0, V,u) = u(v) (qu +Viu-— gdivxul) + n(v)div,ul, (2.8)

where the viscosity coefficients p > 0 and 1 > 0 are continuously differentiable functions of the
temperature. Similarly, the heat flux obeys Fourier’s law,

q(?, V1) = —k(0) V0, (2.9)
where the heat conductivity coefficient £ > 0 is a continuously differentiable function of the
temperature.

As pointed out by Douglas O. Gough, a rich fluid behaviour is conditioned by a proper choice
of boundary condtions and as we shall see the boundary conditions play a crucial role in the

long time behaviour of the system. We suppose that the fluid occupies a bounded domain
Q) C R? with a smooth boundary,

O =THUTy =T)uTy, =TpuUTk,
D ;‘V,F%,F?V,Fgf?, compact,
LAY =0, THNIY =0, TBnTY =0. (2.10)

Accordingly, each T'j,, ', (x = u,9,B) is either empty or coincides with a finite union of
connected components of 0€2. We impose the following boundary conditions:



Boundary velocity:

ufry =0, (2.11)
u- n|1—“}{; = 07 [8(197 vxu) : n] X n|1"‘1{, = U. (212)

Boundary temperature/heat flux:

Ulps = Vg, (2.13)
q(9, V,9) - n|F}9V = 0. (2.14)
Boundary magnetic field:
B x n|rs = b, (2.15)
B n|s =1b,, [(Bxu)+(curl,B] xn|z =0. (2.16)

Clearly, the boundary conditions prescribed on I'}, are of Dirichlet type, while those on I'},
of Neumann type. The fluxes on I'}; are set to be zero for the sake of simplicity. More general
fluxes are shortly discussed in [4]. In accordance with (2.11), (2.12) there is no exchange of mass
with the outer world and the system is therefore driven by the imposed boundary temperature
and/or magnetic field.

2.1 Levinson dissipativity

The compressible MHD system admits a natural energy

1 1
E(e.0,u,B) = Zoluf*  +  ge(e0)  + 5Bl
— e —

nternal energy ag

kinetic energy ! netic energy

Our goal in the talk is to show that the system is dissipative in the sense of Levinson in terms
of the total energy

5:/E(Q,z9,u,B) dx.
Q

Specifically, there exists a universal constant £, such that

limsup/ E(o,9,u,B)(7,-) dr < &, (2.17)
Q

T—00

for any solution (g, v, u, B) of the compressible MHD system defined on (7', o0). We point out
that £, depends only on the “data” but it is the same for any global trajectory. In particular,
it is independent of the initial energy of the system.

The data are:



the total mass mq of the fluid;

the gravitational potential G;

the rotation vector w;

the boundary temperature v'g;

e the boundary tangential magnetic field b,, the boundary normal magnetic field b,.

We shall use the symbol ||(data)|| to denote the norm of the above data in suitable function
spaces specified below.

At this point one might wonder whether the Levinson dissipativity is not too trivial and
basically always given. To show otherwise, let us start with few observations and finish with
an example of a systems with unbounded energy.

Besides the total mass mg, there might be other conserved quantities. As shown e.g. by Bauer,
Pauly, and Schomburg [3], see also Kozono and Yanagisawa [8], any vector field b defined on
) admits a decomposition

b=V,P +h+ curlLA, (2.18)

where
heH(Q) = {h € L2(Q; R?) ‘ curl,h = div,h = 0,h x nfrs =0, h-nls = o} . (2.19)

It follows from the induction equation (2.3) and our choice of the boundary conditions (2.15),

(2.16) that

4 B h dz =0 for any h € H(£2).
dt Jo

For the sake of simplicity, we shall assume
/ B-h dz =0 for all h € H(Q). (2.20)
Q

For notes on the general case and the space H(2) see [4].
Next, to avoid development of rapidly rotating fluid in a rotationally symmetric domain, we
impose

Iy # 0. (2:21)

We impose a technical condition to control the boundary magnetic oscillations. First, we
introduce the class of stationary magnetic boundary data.

Definition 2.1. [Stationary magnetic field]
We say that the boundary data b,, b, are stationary, if there exists a continuously



differentiable vector field Bg such that

diVIBB = 0, curleB =0in Q, BB X n|F% = bT’ BB . n|F% = by'

Stationarity imposes certain restrictions to be satisfied by b,
div.b, = 0 on I'}, where div, denotes the tangential divergence, (2.22)

see Alexander and Auchmuty [1]. To establish the existence of a bounded absorbing set, we
need an extra hypothesis imposed on the boundary data if the magnetic boundary field s not

stationary, namely
% cry. (2.23)
For more details, see [4]
In view of (2.17), one expects that the boundary conditions must allow the outflow of the

thermal energy. We suppose the pressure p = p(p,?) and the internal energy e = e(p, 1) are
interrelated through Gibbs’ equation

UDs = De+pD (é) : (2.24)

where s = s(p,1) is the entropy. Consequently, the internal energy balance (2.4) may be
reformulated in the form of entropy balance equation

di(0s(0,9)) + div,(0s(0,0)u) + div, (M)

= l (S(ﬁ,vxu) :V,u — al

9, V,0) - V0

v

2
3 + ((9)|curl,B| > ,

(2.25)

see e.g. Weiss and Proctor [9]. The quantity on the right-hand side of (2.25) represents the
entropy production rate, and, in accordance with the Second law of thermodynamics, it is
always non-negative. Consequently, all forms of energy are eventually transformed to heat
that must be allowed to leave through 9. Thus, necessarily, we must assume that

'Y 0. (2.26)

2.2 Known results

To the best of our knowledge, the present result is the first one addressing the problem of
long—time behaviour of the compressible MHD system far from equilibrium. For details about
related research please refer to [4] and the references therein.



3 Main hypothesis, weak solutions

Before introducing the concept of weak solution, let us state briefly the main hypotheses
concerning the structural properties of the constitutive relations. The details can be found in
[4] and the references therein.

3.1 Equation of state

The hypotheses imposed on the form of the equations of state are based on the Second law of
thermodynamics enforced through Gibbs’ relation (2.24) and the hypothesis of thermodynamics

stability
dp(o, ) de(p, 1)
—_— —_— . 1
90 > 0, 50 > 0 (3.1)
We suppose the pressure obeys the thermal equation of state
a
p(e,9) = pai(0,9) + pr(9), pr(Y) = 0% a >0, (3.2)

where py; and pr are the molecular and radiation pressure, respectively. Using radiation com-
ponent is not only technically convenient but also relevant to problems in astrophysics, cf.
Battaner [2]. The internal energy satisfies the caloric equation of state

a
6(@19) = eM(Qv 79)+63(Q,19), €R<Q719) = Eﬁ‘l (33)
The gas pressure components p,; and ey, satisfy the relation characteristic for monoatomic
gases:
2
Finally, we impose two technical but physically grounded hypotheses in the degenerate area
2 s
Y2

The first reflects the effect of the electron pressure in the degenerate area and the second one
is the Third law of thermodynamics.
To summarize it follows that

p(e. ) = pe(o, V),
0F + 0 S plo,0) S of + 0+ 1,
0 < os(0,0) ~9° + o (1 + [log o] + [log v]") . (3.5)
Here and hereafter, the symbol a ~ b means there is a positive constant ¢ such that a < ¢b, the

symbol a ~ b is used to denote a Sband b~ a.
More detailed assumptions can be found in [4].



3.2 Diffusion and the transport coefficients

The transport coefficients appearing in (2.8), (2.9) satisfy

0<pu(1+9)<pu@) <pA+9), @) < cforall >0,
0<n() <n(l+9), (3.6)

IN

and
0<k(14+9°) <k(@W) <E(1+9") for some 8 > 6. (3.7)

Finally, we suppose the coefficient of magnetic diffusion ¢ = ((¢J) is a continuously differen-
tiable function of the temperature,

0<((1+7)<¢W) <C(1+9), [('(W)] < cforalld>0. (3.8)

Note that ((0) = m,
ductivity of the fluid.

where f is permeability of vacuum and o(0) is the electrical con-

3.3 Boundary data

It is convenient to assume the boundary data are given as restrictions of functions defined on
) and for any t € R. Specifically,

Vg =Vlpy, br =Bp xnlrs, b, =Bg-nls

for suitable extensions 9, Bp. Accordingly, certain regularity of the boundary data and com-
patibility conditions are necessary, see [4] for details.
Finally, we introduce the space

Ho, = {b € L*( R*) | curl,b € L*(9; R®), div,b=0,b x nlps =0, b-n|ps = 0} . (3.9)

The space Hy, is a Hilbert space with the norm |[b||3, = [lcurl,b||72 . gs) + [[bllZ2(.5s)- The
space ‘H introduced in (2.19) is a closed subspace of Hy ,, and the following version of Poincaré
inequality

[bllwr2(urs) ~ [|curl,bl|L2(q.zs) holds for all b € H* N Hy,, (3.10)

see Csatd, Kneuss and Rajendran [5, Theorem 2.1].

The specific extensions of the boundary data are constructed in Section 3.1 in [4].

3.4 Weak solutions

As we are interested in the long-time behaviour when the system “forgets” its initial state,
the choice of initial data plays no role in the analysis. Accordingly, it is convenient to introduce
the concept of global in time weak solutions defined for t € (T, 00).



Definition 3.1. (Global in time weak solutions)

A quantity (p,7,u, B) is termed weak solution of the compressible MHD system (2.1)—
(2.4), with the boundary conditions (2.11) — (2.16) in the time-space cylinder (7', 00) x
if the following holds:

e Equation of continuity. o € L2 (T, 00: L3(R)), 0 > 0, and the integral identity

loc

/ / (00 + ou- Voip) da dt =0 (3.11)
T Q

holds for any ¢ € C}((T,00) x Q). In addition, the renormalized version of (3.11)
/ / 0)0p + blo)u- Voo + (b(g) - b’(g)g) divxugp) dzdt =0 (3.12)

holds for any ¢ € C}((T,00) x Q) and any b € C*(R), b € C.(R).

¢ Momentum equation.

ou € L2 (T, 00; L1(Q; R?)), u € L2 (T, 00; W2($); R?)), ulpy =0, u-nlpy =0, and

loc

the integral identity

/ / (gu cOpt+ouxu: Ve + (ouxw)- e+ p(o, ﬁ)divzng) dz
T Ja

:/ /S(ﬁ,vxu):vzgo dxdt—/ /(B@B—1|B|QI[) : Ve dadt
o Ja v Jo 2

—/ /QVxM'Lp dz dt (3.13)
v Ja
for any @ € Ccl((T7 OO) X ﬁa R3)7 90|l_“l‘) = 07 - an‘]{, = 0.
e Induction equation. B € L ((T, 00); L*(Q; R?)),
div,B(7,-) =0 for any 7 € (T, 00), (3.14)
(B —Bp) € Liy (T, 00; Hy o (% R)). (3.15)

The integral identity

/ / (B - Oip — (B x u) - curl,¢p — ((V)curl, B - curl, Lp) dedt =0 (3.16)
T Jo

holds for any ¢ € C}((T,00) x Q; R?),

¢ xmle =0, ¢-nfs =0. (3.17)



e Entropy inequality. ¥ € L (T,00; L*(Q)) N L?

loc loc

(T, 00) x Q, log(¥) € LE (T, 0o0; WH2(Q)),

(T, 00; WH2(Q2)), ¥ > 0 a.a. in

The integral inequality

> 0, V0
/ /(QS(@,ﬂ)ﬁt¢+QS(Q,ﬁ)u-sz0+%-sz0> dr dt
T

/ / ( (9, V,u) : Vou — q(v. vzg)'vxﬁ—l—C(ﬂﬂcurlzBF) dz dt
(3.18)

holds for any ¢ € CH((T,00) x Q), p >0, g0|F% = 0.

e Ballistic energy inequality. The inequality
o 1 1 ~
/ @w/ (—Q|u|2 + 0e(0,9) + 5[BJ” — Vos(e,9) =B - B) da dt

/ 1/)/ ( (¥,V,u): Vyu— qtv. Vx:;) ' Vil +C(79)|curle|2> dx dt

5 5 9.V, 5
> / 1/)/ (Qs(@ )0y + 0s(0,9)u - V0 + % . Vﬂ?) dzdt
T Q
+ / " / (B .9;Bp — (B x u) - curl, By — ((d)curl, B- curlzBB) da dt
T Q
—/ @b/ oV, M -u dxdt (3.19)
T Q

holds for any ¢ € C1(T,00), ¢ > 0, and any ¥ € C''([T, 00) x ), ¥ > 0, 1§|F% = p.

In our definition we use ballistic energy inequality instead of the more common energy in-

equality. The reason is that given our boundary conditions (2.13) we have no control over the

flux on T'%, that would appear in any energy inequality.

Remark 3.2. Note carefully that the ballistic energy inequality (3.19) remains valid if we

replace Bp by any other extension B such that

div,B =0, B xn|s =Bp xn|s, B-njz =Bg - n|s,

respectively. Indeed the difference Bg — B becomes an eligible test function for the weak

formulation of the induction equation (3.16), (3.17).

The existence of global-in—time weak solutions as well as the weak—strong uniqueness property

for any finite energy initial data was shown in [6] under more restrictive hypotheses on the

boundary data.

10



4 Main result - Bounded absorbing set

Finally we can state the main result of this talk. More precise statement as well as its proof

can be found in [4].

4.1 Existence of bounded absorbing set

It is convenient to suppose that both the potential G as well as the boundary data 95, b,,
and b, are defined for all t € R. Accordingly, we introduce

[(data)|| = mo +mg" +[|Gllwrrxa) + W] + 195 | L rxory)
+§gyWB&wﬂm@m@%y+i£H@ﬂMme@p
+ sup ||b,(t, - oo (1B 3y + Sup |0y || 2,00
teg” (t, )lw= (T'B;R3) teg” w2 (TB)

+ sup ||8tb7—(t, ')||W1*°°(F%;R3) + sup ||8tby||wl,oo(l“%). (41)
teR teR

In what follows, we shall use the symbol ¢(]||(data)||) to denote a generic positive function of
||(data)|| bounded for bounded arguments.

Theorem 4.1. Let Q C R? be a bounded domain of class C*™, the boundary of which
admits the decomposition (2.10). Let the pressure p be related to the internal energy e
through the equations of state (3.2), (3.3), (3.4), where more detailed assumptions can be
found in [4]. Let the transport coefficients u, n, k, and ¢ be continuously differentiable
functions of the temperature satisfying (3.6)—~(3.8). Finally, let G € BCY(R x Q) and let
the boundary data belong to the class specified in [4], where

T £ 0, T #0. (4.2)

If, in addition, the boundary magnetic field b,(7,,+), b (Ta, ) is not stationary for some

sequence of times T,, — 00, we assume
B
I'pCcrIyp. (4.3)

Then there exists a positive constant E(||(data)||) depending only on the amplitude of
the data specified in (4.1) such that following holds. For any weak solution (o,9,u,B) of
the compressible MHD system in (T, 00) x Q satisfying

/Q dz = my, /B-h dz =0 for all h € H(Q),
Q 0
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there exists a time 7 > 0 such that

/ E(o,9,u,B)(t,:) de < & forallt >T + 7.
Q
Moreover, the length of the time T depends only on ||(data)|| and on the “initial energy”

Er Elimsup/E(Q,ﬁ,u,B)(t,-) dx.
Q

t—T—

A similar result in the context of the Rayleigh-Bénard convection problem was shown in [7].
The influence of the magnetic field on the fluid motion, however, requires essential modifications
of the proof presented in [7]. In particular, we construct a two component extension of the
boundary magnetic field, where the first component is solenoidal, irrotational and satisfies
the Neumann boundary condition, while the second one is solenoidal and small in a suitable
Lebesgue norm in Q with bounded rotation, see [4].

As mentioned previously, the result claimed in Theorem 4.1 cannot hold if the fluid system

is thermally isolated, meaning
Y =0 (4.4)

Indeed it follows from the entropy inequality (3.18) that the total entropy

T|—>/Qgs(g,19)(7',-) dx

is a non—decreasing function, which precludes the existence of a bounded absorbing set depend-
ing solely on the data specified in (4.1).
What is more, let us show that (4.4) may give rise to trajectories with unbounded energy.

4.2 Closed systems that generate energy

Let us suppose that there is a global-in—time solution (p,?,u, B) and a sequence of times
7, — 00 such that

sup/E(g,ﬂ,u, B)(7,,) dz < . (4.5)
Q

n>1
It follows from the constitutive restrictions (3.5) that boundedness of total energy implies
boundedness of the total entropy fQ 0s(0,9)(Tn, ) dx. However, by virtue of the no—flux
boundary conditions induced by (4.4), the total entropy is a non—decreasing function of the
time. Consequently, we may infer that

/ / 3 (S(ﬁ,vxu) :Vou— q(v, V:cg) Va¥ - C(ﬁ)|cur1xB|2> dzdt < oo. (4.6)
T Jo
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In particular, it follows from (4.6) that
Tn+1 1
/ / 3 (S(W, Vu) : Vou+ ((9)|curl,B]?) dazdt — 0 as n — oc. (4.7)
Tn Q

Consequently, introducing the time shifts
u, =u(-+1,), B, =B(-+1,),
we deduce
u, — 0in L2(0, 1 W(Q; %)), B, — Biin L*(0,1; L2(22; R?)) and weakly in L*(0, 1; W12(€; R?)).
As the limits satisfy the induction equation (2.3), we conclude

B = B(x), div,B =0, curl,B=01in Q, B x n|es =b,, B- n|s =b,. (4.8)
D N

Thus the boundary data b,, b, must be stationary in the sense of Definition 2.1. Otherwise,
the conclusion contradicts (4.5).
Using the necessary condition for stationarity (2.22) we obtain the following result.

Theorem 4.2. [Systems with unbounded energy]

Suppose
I'p # 0, F% =0,

and b,, b, independent of t,
I'B £, where b, -n =0, div,b, # 0.

Then
/ E(o,7,u,B)(r,:) dz — 00 as 7 — o
Q

for any global-in—time weak solution to the compressible MHD system.
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