On Coloring of Fraissé Limits

Akito Tsuboi

We want to generalize some results in Ramsey theory. The results pre-
sented in this article are not final ones. Research is currently ongoing to
obtain better results. Some of the results were obtained in a joint work with
Kota Takeuchi.

Let L be a finite language and K a class of (isomorphism types of) finite
L-structures. For a finite L-structure A, we write A € K if the isomorphism
type A belongs to K. In this paper, we assume K has the following property:

e Hereditary property: Ao C Ae K = Ag € K;
e Free amalgamation property: AC Be K, AC(C e K= B®,C € K;

K has the Fraissé limit M, which is a countable structure. We assume that
M has the triviality:

e Triviality: For any p(x) € S(A) with A finite and for any tuples a,b €
p(M) with the same length, @ =4 b holds.

Our main interest is the case L = {R,Uy,...,U,_1}, where R is a binary
predicate symbol for graph edges and U;’s are unary predicate symbols. By
the elimination of quantifiers for M, and by the free amalgamation, the
triviality above is equivalent to:

o Let A€ K and a,b € K. If Uj(a) <> U;(b) (i < n), then there is no
edge between a and b.

From now on we work on M.

Example 1. L = {R,Uy,...,U,—1}. The following example of K satisfy our
requirements:

1. K is the set of all finite n-partite graphs.
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2. K is the set of all finite triangle free n-partite graphs.

We work in a K-generic M. A, B, ... are used to denote finite subsets o
M.

Definition 2. . We say that B and C are free over A (in symbol B L, C)
it ABN AC = A and if every edge in ABC'is either in AB or in AC. For a
finite sets I = {B;}icn, if B; L s U#i B; holds for all i, we say [ is a free set
over A.

Remark 3. For each i < n, we assume A C B;. Let I = {B;};<,, be a free
set over A. Let p(z) € S(A) and let p;(x) € S(B;) be an extension of p(z)
(i < n). Then there is d = |J,.,, pi(z). Moreover, for any e = (J,_, pi(z),
Id = Ie.

Proof. By QE, each p; is a quantifier free type. Write p; as p; = p;(z; A, B;\ A)
to explicitly indicate its parameters. Let b |= p(z), and consider the type
F(X(), NN Xn_l)l

U pi(b, A, X;) U U { no edges exist between X; and X}

<n 1<j<n

This set is consistent by free amalgamation. Let (C;);<, realize I'. Then

ACy,...,AC,_1 = By,...,B,_1. So there is an automorphism o over A
sending each AC; to B;. Then d := o(b) realizes (J,_,, pi(x). Moreover clause
is clear. O

Definition 4. Let A C B. Let pf(x) € S(B) (i < n) be non-algebraic types.
We say that {p} : i < n} is in general position over A if

(*) For all ADd € K, where D C |J,_,, pi(x) and d € J,.,, pi(M), where
pi = pilA (i <n), then we can find d* € J,_,, p; (M) such that d =4p
d*.

In the above, if A =0, we simply say that {p} : i < n} is in general position.
We also say that ¢* is p*-general, if {p*, ¢*} is in general position.

Lemma 5. (Existence of general position) Let p # q € S(0). Let p* D p and
q* D q be two non-algebraic types in S(A). Then p* and ¢* are in general
position, if any of the following are true:

1. There is an edge between p*(M) and g*(M).

2



2. There exists no edge connecting p(M) and q(M).

3. q*(x) is the free extension to the domain A, i.e., ¢*(x) = q(x) U
{=R(z,a):a € A}.

Proof. 1. Let DyDyd € K, where Dy C p*(M) and Dy C ¢*(M) are finite
sets. By symmetry, we can assume d € ¢(M). We need to find e € ¢*(M)
such that d =p,p, e.

Let dy € ¢*(M) \ Dy. Then we have Dyd = D;d;, by the triviality.

Claim A. For each b € Dy, we can choose b’ € p*(M) such that bDyd =
b' D1d;.

For simplicity, we assume R(b,d) holds, since the other case is easier.
Let r(z) = qftp(b/AD;) and s(z,y) = p*(z) U ¢*(y) U {R(x,y)}. The set
s(x,y) is consistent, since there is an edge connecting p*(M) and ¢*(M).
Since D; L4 d;, by Remark 3, we can find ' realizing r(x) U s(z,d;). This
b’ satisfies

(i) b=ap, V' (in particular ¥ |= p*);
(ii) bD1d = b’ D1dy. (This also follows from Remark 3.)

Therefore the claim was established. Now let #,(z,y) = qftp(d',dy/ADy).
Since Dy is a free set over AD;, by (i), the set

U tb(b7 y)

be Dy

is consistent, and is realized in M, say by e. Clearly, e = ¢*. Moreover,
by (ii) and by the choice of e, we have bD1d = bDye for all b € Dy. Hence
DyDyd = DyD:e, by the triviality.

2. Trivial.

3. This follows from 1 and 2. O

Proposition 6. Let A C B and let pf(z) € S(B) (1 < n). We assume
{pf : 1 < n} is in general position over A. Then we can find a generic
substructure N D A such that p;(N) = p; (M) for all i < n, where p; = p;|A.

Proof. Let F* C M\ (U,-,, pi(M)) be the maximum set with F*-L 4 B. No-
tice that F* D A. We claim that N = (U,.,, p; (M))F™ is such a substructure.
Let DF'd € K, wehre D C |J,_,, pi(M), F C F* and d € M. For our purpose,
it is sufficient to show the existence of e € N such that DFd = DFe.



Case 1. d € |J,_,,pi(M). By the definition of general position over A, we
can find d’ € p*(M) such that Dd =, Dd'. Choose a copy F’ of F such that

DFd =, DF'd.
By the free amalgamation property, we can assume:

F L B
ADd’

Clearly, BN (ADd') = BN (AD). Also, d ¢ F’ holds. Hence we know
that F” L 4p B. From this and F-L,p B, we have F'B ~4p FB. Let o be
an elementary mapping over AD such that o(F'B) = FB. Then, DFd =4
DF'd =, DFo(d'). Since o|B = idp, e := o(d’) realizes p*.

Case 2. d ¢ |J,.,,i(M). By moving d over ADF', we can assume

d L B.
ADF
Since BN (ADF) = A, we have dl 4 B. So, d € F. Then e = d has the
desired property. [l

Corollary 7. 1. Let p*(x),q"(x) € S(A). Suppose that p* and q¢* are in
general position (ove (). Then there is a generic substructure N such
that p(N) = p*(M) and q(N) = ¢*(M), where p = p*|0, ¢ = ¢*|0.

2. Let A C B be finite subsets of M. Let p(x) € S(0) and let g;(x) (i < n)
be types over A extending p. Further, for each i < n, let ¢f(x) € S(B)
be an extension of ¢;(x). Then there is a generic substructure N C M
containing A such that ¢;(N) = qf (M) for all i < n.

Proof. 1 is clear. 2 follows from the triviality.
O

Proposition 8 (Vertex Coloring). Let ¢ : M — n be a vertex coloring. For
any A Cpin M, we can find N C M such that N =4 M and that c is A-locally
monochromatic on N, i.e., for any a,b € N, a =4 b implies c(a) = c(b).

Proof. Let p(z) € S(A). We show that there is a generic substructure N C M
with A C N such that p(/V) is monochromatic for the coloring c. If this is
shown, then by an iterated application of this argument, we can find N
with the full condition. For the same reason, we can also assume that c is
2-coloring, i.e., n =2 = {0,1}.



Case 1: There is a finite B D A and a non-algebraic ¢ € S(B) extending p
such that ¢ = 0 on q(M).

By the second item of Corollary 7, we can find a generic substructure
N D A with p(N) = ¢(M). N has the desired property.

Case 2: There is no ¢ D p with ¢(M) monochromatic. Let {a;}ic, be an
enumeration of M. Then, we can inductively define b; (i € w) such that, for
each n,

1. a<p =4 by
2. ¢(by) =0,if b, = p.

N := {b; };c., satisfies our requirements. O
From now on, G is a generic graph with triviality.

Corollary 9. Let f: [G]> = n be a finile coloring for the two element sels.
Then, for any finite A C G, there is a generic subgraph H D A such that for
any h € H there is a finite B C H with A C B such that the coloring f(h,x)
1s B-locally monochromatic.

Proof. Let G = {¢;}icw be an enumeration. By induction on ¢, using the
above proposition, we choose elements h; and generic subgraphs H; such
that

1. go...gi Za ho... hy;
2. Ahg...h; C Hy;
3. GDOHyD---DH;;
4. f(h;,x) is Ahg ... hi-locally monochromatic on H;.
Then, H = {h;}ic. has the desired property. O

Theorem 10 (Main Theorem). Let f : R(G) — n be any edge coloring on
G. There is a generic subgraph H C G such that for each tuple (p,q) of
types over (, there is an n,, < n such that for all a € p(H) and for almost
all b € q(H), if R(a,b) then f({a,b}) = ny,,. (almost all = all but finitely
many)

Proof. We work on fixed types p and ¢. (If this was done, then we can
continue the process until all pairs of types are considered.) Also we can
assume n = 2.



Case 1: There is a generic subgraph G’, a finite set A C G’, and a non-
algebraic extension p* € S(A) of p such that for any a € p*(G’) there is a p*-
general ¢* € S(A) extending ¢ such that for all but finitely many b € ¢*(G’),
if R(a,b) then f(a,b) =0.

We consider the mapping a — ¢* as a finite coloring on p*(G’). Ow-
ing to Proposition 8, by taking a subgraph again, this coloring is A-locally
monochromatic. In other words, we can assume ¢* is a fixed type (not de-
pending on the choice of a). By the first item of Corollary 7, choose a
generic subgraph H such that p(H) = p*(G’) and ¢(H) = ¢*(G’). Then, for
all @ € p(H) and for almost all b € g(H), if there is an edge between a and
b, then we have f(a,b) =0.

Case 2: For all generic subgraphs G’, and for all finite A C G" and p* € S(A)
with p* D p, there is a € p*(G’) for which every p*-general extension ¢* €
S(A) of ¢ has an infinite set I~ C ¢*(G’) such that R(a,b) and f(a,b) = 1
for all b € I~.

In this case we claim the following:

Claim A. For all generic subgraphs G', and for all finite A C G" and p* €
S(A) with p* D p, there is a generic subgraph G" C G’ containing A and its
element a € p*(G") such that f(a,b) =1 for all but finitely many b € q(G")
with R(a,b).

If this claim is proved, then we can find a desired subgraph as follows.
The argument here is a modification of that in the proof of Corollary 9. Let
G = {gi }icw be an enumeration. Then we can inductively find h; € G and a
generic subgraph H; with Hy D --- D H;  h; such that

1. go...q;: =2 hg...h;
2. if g; = p, then f(h;,b) =1 for almost all b € q(H;).

When finding h; and H;, we can use Claim A for G’ = H; 1, A =
{ho,...,h;—1}, and p*(x) asserting go...¢g; = ho...h; 1.

Now we concentrate on showing Claim A. So suppose G', A and p* are
given. By Corollary 9, we can choose a generic subgraph H C G', A C H,
satisfying the following:

e For every h € H, there is a finite set B such that the function f(h,z)
is B-locally monochromatic.



For this H, applying the case assumption, choose a € p*(H) and I,~’s with
the property as described there. By the choice of H, there is a finite B C
H with Aa C B such that f(a,z) is B-locally monochromatic. For every
q* € S(A) that is p*-general (and extending ¢), there is a non-algebraic
extension ¢** € S(B) for which I~ N¢**(H) # 0. By f(a,z) being B-locally
monochromatic, this means that f(a,b) = 1 for allb € ¢**(H). Take a generic
subgraph G” C H containing Aa such that

(¢ Aa)(G") = ¢™*(H)

holds for all p*-general types ¢* € S(A). (Here we used Corollary 7.) Now
notice that (¢**|Aa)(x) is equivalent to ¢*(x) U{R(a,z)}. Notice also that if
q* is not p*-general then ¢*(z) U {R(a,x)} has no solutions. Thus we know
that G” has the required property.
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