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abstract Locally o-minimal structures are some local adaptation from o-minimal
structures. They were treated, e.g.in [1], [2]. O-minimal structures are characterized by
the notion of forking. We try analogous argument in locally o-minimal structures.

1. Introduction

First we recall some definitions.

Definition 1 A linearly ordered structure M = (M, <, ---) is o — minimal if every definable
subset of M! is a finite union of points and intervals.
A linearly ordered structure M = (M, <,---) is weakly o —minimal if every definable subset

of M1 is a finite union of convex sets.

Definition 2 Let M = (M, <,---) be a densely linearly ordered structure.

M is locally o — minimal if for any a € M and any definable set A C M?", there is an open
interval I © a such that I N A is a finite union of points and intervals.

M is strongly locally o —minimal if for any a € M, there is an open interval I > a such that
whenever A is a definable subset of M, then I N A is a finite union of points and intervals.

( We call the interval I "SLOM — interval” of a.)

M is uni formly locally o — minimal if for any formula ¢(x, %) over () and any a € M, there
is an open interval I > a such that I N (M, b) is a finite union of points and intervals for any

b€ M™, where ¢(M,b) is the realization set of o(z,b) in M.

Example 3 The following examples are shown in [1] and [2].

(R,+,<,Z) where Z is the interpretation of a unary predicate, and (R,+,<,sin) are
(strongly ) locally o-minimal structures.

Let a language L = {<} U{P; : i € w} where P; is a unary predicate. Let M = (Q, <M
,PM PM .. .) be the structure defined by PM = {a € M : a < 27%/2}. Then M is uniformly



locally o-minimal, but it is not strongly locally o-minimal.
We recall some fundamental results of locally o-minimal structures.
Theorem 4 [1]  Weakly o-minimal structures are locally o-minimal.

Theorem 5 [1] Local o-minimality is preserved under elementary equivalence. But, strongly

local o-minimality is not preserved under elementary equivalence.

Theorem 6 [2] Let M be strongly locally o-minimal. And let D be a definable set of M and
f: D — M a definable function.

Then for any a € D, there are open intervals I C M containing a and J C M containing
f(a) such that, by putting f* = f N (I x J), the domain of f* can be broken up into a finite
union of points and open intervals, on each of which f* is constant, strictly increasing and

continuous, or strictly decreasing and continuous.

Theorem 7 [2] Let M be strongly locally o-minimal. And let a € M™. Then the following
results hold.

1. Let X4, -+, X, be definable subsets of M™. Then there is an open box B 5 a and a finite
decomposition P of B into cells partitioning X1 N B, --- , X,, N B.

2. Let X C M™ be a definable set and f : X — M a definable function. Then there is an
open box B 3 (a, f(a)) such that for the restriction f* = f N B, the domain of f* admits a

finite decomposition P into cells so that for anyY € P, f*|Y is continuous.

2. Characterization of strongly locally o-minimal structures by fork-
ing

O-minimal structures are usually argued in the monster model, that is, sufficiently large
saturated model. But strongly local o-minimality is not elementary property. Thus we set

some assumption and argue on it in the following.

Assumption
We consider a complete thoery 1" of a locally o-minimal structure whose language L is

countable. T has an Ry—saturated strongly locally o-minimal model.

Under this assumption, all Ng—saturated models of 1" are strongly locally o-minimal. In
particular, we argue in the monster model of T'.

We recall some definitions.

Definition 8 A formula ¢(Z,a) divides over a set A if there is a sequence {a; : i € w} with



tp(a;/A) = tp(a/A) such that {p(Z,a;) : i € w} is k-inconsistent for some k € w.
A formula ¢(Z,a) forks over A if ¢(Z,a) - \/,_, ¥i(Z,b;) and each ¢;(Z,b;) divides over A.

We try some analogous argument developed in [3]. We can prove the next theorem.

Theorem 9  Let M be a sufficiently large saturated strongly locally o-minimal structure and
a€ MF.
Then there is an open box B > a satisfying that ;

For any My < M such that My contains the endpoints ¢ of B, and for p(x) € Sx(My) the
type of a over My and P = p(M),

if {X(ac) : a € P} is an My—definable family of closed and bounded subsets of B,

then {X(ac) : a € P} has the finite intersection property if and only if there is d € M
such that d € X (ac) for every a € P.

According to the argument in [3], we show some lemmas. First lemma is proved by the

monotonicity theorem of strongly locally o-minimal structure.

Lemma 10 Let M be a sufficiently large saturated strongly locally o-minimal structure.
And let p(x), q(x) € S1(A) where A contains some endpoints of SLOM-intervals (of some
realizations ) of p(x) and q(x).
Then either

(a) (i) all A—definable f : p(M) — q(

(ii) all A—definable f : p(M) — q¢(M) are decreasing.
(b) In case (i), whenever B D A, a € p(M) and a > dcl(B) N p(M),
then dcl(aA) N g(M) > dcl(B) N g(M),

In case (ii), whenever B D A, a € p(M) and a < dcl(B) N p(M),
then dcl(aA) Ng(M) > dcl(B) N g(M).

M) are increasing, or

In the lemma above, we just say that if there is a function f between p(M) and ¢(M), then
f has these properties. There is no function between a cut (irrational) type and a noncut
(rational ) type.

By this lemma, they consider characteristic extensions of complete types in [3].

In the following, let M be a sufficiently large saturated strongly locally o-minimal structure.

Definition 11~ Suppose p(x1,- - ,x,) € Sp(A) where A contains some endpoints of SLOM-
intervals ( for realizations of p).

For 1 <i <mn, let p;(x1,---,x;) be the restriction of p to the variables z1,--- , x;.

Fix some sequence n = (n(1),--- ,n(n)) where each n(i) is 1 or 0. And let B D A.

We define an extension p; € S, (B) of p. Choose a realization (by,--- ,b,) of p’; inductively

as follows ;



by € p1(M) and if n(1) = 1, then by > del(B) N p1(M), while if (1) = 0, then
by < dcl(B) Np1(M).
For some realization by, - - - , b; of p;(x1,- -+, x;), let b;11 be arealization of p; 1 (b1, -+ ,b;, Ti11)
such that :
if n(i+1) =1, then b;y1 > del(B, by, -+ ,b;) N pir1(by, -+ b;; M) and
if n(i+1) =0, then b1 < del(B, b1, ,b;) N pig1(b1,---biy M).

Lemma 12 Let p(x1,--- ,xn) € Sn(A) and let q(y) € S1(A) where A contains some endpoints
of SLOM-intervals ( for realizations of p and q ).
Then there is n € "2 as in the definition above such that ;
for any B D A and any realization @ of p',, dcl(aA) N g(M) > dcl(B) N g(M).

Lemma 13 Let X(ac) be a closed and bounded subset of M™ ! defined over a tuple ac €
M where ¢ is some endpoints of SLOM-intervals. Assume that X (ac) Ndcl(c) = (.
Let p = tp(a/c) and for n € '2, let a,) = pl.. And let 7 : M"TL —s M™ be the projection

on the first n coordinates.

Then the set ™ (X(ac) Al ) X(anc)) does not contain any element of dcl(c) N M™.

By means of these lemmas, we can prove Theorem 9.

And we can state the previous results of forking in the language of cover.

Corollary 14 Let X € M™ be a closed and bounded set, definable over a model My where
My contains some endpoints of SLOM-intervals.
Then if {p(M,s) : s € p(M)} where p(y) € Sy (M) is a definable open cover of X, then it

contains a finite subcover of X.
And there is some corollary.

Corollary 15 Let ¢(z, ac) be a closed and bounded subset of M defined over ac € M™ where
c is some endpoints of SLOM-intervals.
Assume that p(M, ac) is nonalgebraic.

Then ¢(x,ac) forks over ().

Sketch of proof :

©(M, ac) is a finite union of closed intervals, I (ac) < - -+ < Ix(ac). For anyi with1 <i <k,
Ii(ac)Ndcl(c) = 0. So any I;(ac) is contained in the realization set of a complete nonalgebraic
type q¢; € S1(c).

If ; # qj, then there is a formula v;j(x, c) such that V;;(z, c) € ¢; and —;;(x, c) € g;.
Claim. &(x,ac) = @(z,ac) N \,z; ~ij(z, c) divides over {.

Fortp(a/c) :=p(z1,--- ,zp) and q;(y) € Si(c), we take the appropriate n; and a realization



a,,; of pet. in the lemma above. We write aj := ay,. Moreover, by the same way, we take
{ajr + k < w} inductively such that aj, is a realization of pZil...ajk_lc. The endpoints of
Ii(ac) are in dcl(ac) N qj(M). So the endpoints of I;(ajrc) are in dcl(ajic) N q;(M).

By the lemma above, the endpoints of 1;(a;ic) lie above the endpoints of 1;j(ajic) for any
i < k. Thus {{(x,a,xc) : k <w} is 2—inconsistent. |

3. Further problems

The argument of forking in o-minimal structures were applied to the characterization of
definable groups in o-minimal structures afterward. For example, these characterization form
the foundation of the argument of generic sets in definably compact groups, or groups with
finitely satisfiable generics definable in o-minimal structures.

I will investigate whether definable groups in locally o-minimal structures are characterized

by the argument of forking after this.
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