Forking in locally o-minimal structures

前園久智 (Hisatomo Maesono) 早稲田大学グローバルエデュケーションセンター (Global Education Center, Waseda University)

概要

abstract Locally o-minimal structures are some local adaptation from o-minimal structures. They were treated, e.g. in [1], [2]. O-minimal structures are characterized by the notion of forking. We try analogous argument in locally o-minimal structures.

1. Introduction

First we recall some definitions.

Definition 1 A linearly ordered structure $M = (M, <, \cdots)$ is o - minimal if every definable subset of M^1 is a finite union of points and intervals.

A linearly ordered structure $M = (M, <, \cdots)$ is weakly o-minimal if every definable subset of M^1 is a finite union of convex sets.

Definition 2 Let $M = (M, <, \cdots)$ be a densely linearly ordered structure.

M is $locally \ o-minimal$ if for any $a \in M$ and any definable set $A \subset M^1$, there is an open interval $I \ni a$ such that $I \cap A$ is a finite union of points and intervals.

M is strongly locally o-minimal if for any $a \in M$, there is an open interval $I \ni a$ such that whenever A is a definable subset of M^1 , then $I \cap A$ is a finite union of points and intervals.

(We call the interval I "SLOM - interval" of a.)

M is uniformly locally o-minimal if for any formula $\varphi(x, \overline{y})$ over \emptyset and any $a \in M$, there is an open interval $I \ni a$ such that $I \cap \varphi(M, \overline{b})$ is a finite union of points and intervals for any $\overline{b} \in M^n$, where $\varphi(M, \overline{b})$ is the realization set of $\varphi(x, \overline{b})$ in M.

Example 3 The following examples are shown in [1] and [2].

 $(\mathbb{R}, +, <, \mathbb{Z})$ where \mathbb{Z} is the interpretation of a unary predicate, and $(\mathbb{R}, +, <, \sin)$ are (strongly) locally o-minimal structures.

Let a language $L = \{<\} \cup \{P_i : i \in \omega\}$ where P_i is a unary predicate. Let $M = (\mathbb{Q}, <^M, P_0^M, P_1^M, \ldots)$ be the structure defined by $P_i^M = \{a \in M : a < 2^{-i}\sqrt{2}\}$. Then M is uniformly

locally o-minimal, but it is not strongly locally o-minimal.

We recall some fundamental results of locally o-minimal structures.

Theorem 4 [1] Weakly o-minimal structures are locally o-minimal.

Theorem 5 [1] Local o-minimality is preserved under elementary equivalence. But, strongly local o-minimality is not preserved under elementary equivalence.

Theorem 6 [2] Let M be strongly locally o-minimal. And let D be a definable set of M and $f: D \longrightarrow M$ a definable function.

Then for any $a \in D$, there are open intervals $I \subset M$ containing a and $J \subset M$ containing f(a) such that, by putting $f^* = f \cap (I \times J)$, the domain of f^* can be broken up into a finite union of points and open intervals, on each of which f^* is constant, strictly increasing and continuous, or strictly decreasing and continuous.

Theorem 7 [2] Let M be strongly locally o-minimal. And let $a \in M^n$. Then the following results hold.

- 1. Let X_1, \dots, X_m be definable subsets of M^n . Then there is an open box $B \ni a$ and a finite decomposition \mathcal{P} of B into cells partitioning $X_1 \cap B, \dots, X_m \cap B$.
- 2. Let $X \subset M^n$ be a definable set and $f: X \longrightarrow M$ a definable function. Then there is an open box $B \ni (a, f(a))$ such that for the restriction $f^* = f \cap B$, the domain of f^* admits a finite decomposition \mathcal{P} into cells so that for any $Y \in \mathcal{P}$, $f^*|Y$ is continuous.

2. Characterization of strongly locally o-minimal structures by forking

O-minimal structures are usually argued in the monster model, that is, sufficiently large saturated model. But strongly local o-minimality is not elementary property. Thus we set some assumption and argue on it in the following.

Assumption

We consider a complete thoery T of a locally o-minimal structure whose language L is countable. T has an \aleph_0 -saturated strongly locally o-minimal model.

Under this assumption, all \aleph_0 -saturated models of T are strongly locally o-minimal. In particular, we argue in the monster model of T.

We recall some definitions.

Definition 8 A formula $\varphi(\bar{x}, \bar{a})$ divides over a set A if there is a sequence $\{\bar{a}_i : i \in \omega\}$ with

 $tp(\bar{a}_i/A) = tp(\bar{a}/A)$ such that $\{\varphi(\bar{x}, \bar{a}_i) : i \in \omega\}$ is k-inconsistent for some $k \in \omega$.

A formula $\phi(\bar{x}, \bar{a})$ forks over A if $\phi(\bar{x}, \bar{a}) \vdash \bigvee_{i < n} \psi_i(\bar{x}, \bar{b}_i)$ and each $\psi_i(\bar{x}, \bar{b}_i)$ divides over A.

We try some analogous argument developed in [3]. We can prove the next theorem.

Theorem 9 Let \mathcal{M} be a sufficiently large saturated strongly locally o-minimal structure and $a \in \mathcal{M}^k$.

Then there is an open box $B \ni a$ satisfying that;

For any $M_0 \prec \mathcal{M}$ such that M_0 contains the endpoints c of B, and for $p(x) \in S_k(M_0)$ the type of a over M_0 and $P = p(\mathcal{M})$,

if $\{X(ac): a \in P\}$ is an M_0 -definable family of closed and bounded subsets of B,

then $\{X(ac): a \in P\}$ has the finite intersection property if and only if there is $d \in M_0$ such that $d \in X(ac)$ for every $a \in P$.

According to the argument in [3], we show some lemmas. First lemma is proved by the monotonicity theorem of strongly locally o-minimal structure.

Lemma 10 Let \mathcal{M} be a sufficiently large saturated strongly locally o-minimal structure. And let p(x), $q(x) \in S_1(A)$ where A contains some endpoints of SLOM-intervals (of some realizations) of p(x) and q(x).

Then either

- (a) (i) all A-definable $f: p(\mathcal{M}) \longrightarrow q(\mathcal{M})$ are increasing, or
 - (ii) all A-definable $f: p(\mathcal{M}) \longrightarrow q(\mathcal{M})$ are decreasing.
- (b) In case (i), whenever $B \supset A$, $a \in p(\mathcal{M})$ and $a > dcl(B) \cap p(\mathcal{M})$,

then $dcl(aA) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$,

In case (ii), whenever $B \supset A$, $a \in p(\mathcal{M})$ and $a < dcl(B) \cap p(\mathcal{M})$, then $dcl(aA) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$.

In the lemma above, we just say that if there is a function f between $p(\mathcal{M})$ and $q(\mathcal{M})$, then f has these properties. There is no function between a cut (irrational) type and a noncut (rational) type.

By this lemma, they consider characteristic extensions of complete types in [3].

In the following, let \mathcal{M} be a sufficiently large saturated strongly locally o-minimal structure.

Definition 11 Suppose $p(x_1, \dots, x_n) \in S_n(A)$ where A contains some endpoints of SLOM-intervals (for realizations of p).

For $1 \leq i \leq n$, let $p_i(x_1, \dots, x_i)$ be the restriction of p to the variables x_1, \dots, x_i .

Fix some sequence $\eta = (\eta(1), \dots, \eta(n))$ where each $\eta(i)$ is 1 or 0. And let $B \supset A$.

We define an extension $p_B^{\eta} \in S_n(B)$ of p. Choose a realization (b_1, \dots, b_n) of p_B^{η} inductively as follows;

 $b_1 \in p_1(\mathcal{M})$ and if $\eta(1) = 1$, then $b_1 > dcl(B) \cap p_1(\mathcal{M})$, while if $\eta(1) = 0$, then $b_1 < dcl(B) \cap p_1(\mathcal{M})$.

For some realization b_1, \dots, b_i of $p_i(x_1, \dots, x_i)$, let b_{i+1} be a realization of $p_{i+1}(b_1, \dots, b_i, x_{i+1})$ such that:

if
$$\eta(i+1) = 1$$
, then $b_{i+1} > dcl(B, b_1, \dots, b_i) \cap p_{i+1}(b_1, \dots b_i, \mathcal{M})$ and if $\eta(i+1) = 0$, then $b_{i+1} < dcl(B, b_1, \dots, b_i) \cap p_{i+1}(b_1, \dots b_i, \mathcal{M})$.

Lemma 12 Let $p(x_1, \dots, x_n) \in S_n(A)$ and let $q(y) \in S_1(A)$ where A contains some endpoints of SLOM-intervals (for realizations of p and q).

Then there is $\eta \in {}^{n}2$ as in the definition above such that;

for any $B \supset A$ and any realization \bar{a} of p_B^{η} , $dcl(\bar{a}A) \cap q(\mathcal{M}) > dcl(B) \cap q(\mathcal{M})$.

Lemma 13 Let X(ac) be a closed and bounded subset of \mathcal{M}^{n+1} defined over a tuple $ac \in \mathcal{M}^{l+m}$ where c is some endpoints of SLOM-intervals. Assume that $X(ac) \cap dcl(c) = \emptyset$.

Let $p = \operatorname{tp}(a/c)$ and for $\eta \in {}^{l}2$, let $a_{\eta} \models p_{ac}^{\eta}$. And let $\pi : \mathcal{M}^{n+1} \longrightarrow \mathcal{M}^{n}$ be the projection on the first n coordinates.

Then the set
$$\pi\left(X(ac)\cap\bigcap_{\eta\in{}^{l}2}X(a_{\eta}c)\right)$$
 does not contain any element of $dcl(c)\cap\mathcal{M}^{n}$.

By means of these lemmas, we can prove Theorem 9.

And we can state the previous results of forking in the language of cover.

Corollary 14 Let $X \subset \mathcal{M}^n$ be a closed and bounded set, definable over a model M_0 where M_0 contains some endpoints of SLOM-intervals.

Then if $\{\varphi(\mathcal{M}, s) : s \in p(\mathcal{M})\}$ where $p(y) \in S_m(M_0)$ is a definable open cover of X, then it contains a finite subcover of X.

And there is some corollary.

Corollary 15 Let $\varphi(x, ac)$ be a closed and bounded subset of \mathcal{M}^1 defined over $ac \in \mathcal{M}^n$ where c is some endpoints of SLOM-intervals.

Assume that $\varphi(\mathcal{M}, ac)$ is nonalgebraic.

Then $\varphi(x,ac)$ forks over \emptyset .

 $Sketch \ of \ proof :$

 $\varphi(\mathcal{M}, ac)$ is a finite union of closed intervals, $I_1(ac) < \cdots < I_k(ac)$. For any i with $1 \le i \le k$, $I_i(ac) \cap dcl(c) = \emptyset$. So any $I_i(ac)$ is contained in the realization set of a complete nonalgebraic type $q_i \in S_1(c)$.

If $q_i \neq q_j$, then there is a formula $\psi_{ij}(x,c)$ such that $\psi_{ij}(x,c) \in q_i$ and $\neg \psi_{ij}(x,c) \in q_j$. Claim. $\xi(x,ac) := \varphi(x,ac) \wedge \bigwedge_{i\neq j} \neg \psi_{ij}(x,c)$ divides over \emptyset .

For $tp(a/c) := p(x_1, \dots, x_n)$ and $q_i(y) \in S_1(c)$, we take the appropriate η_i and a realization

 a_{η_j} of $p_{ac}^{\eta_j}$ in the lemma above. We write $a_j := a_{\eta_j}$. Moreover, by the same way, we take $\{a_{jk} : k < \omega\}$ inductively such that a_{jk} is a realization of $p_{a_{j1}\cdots a_{jk-1}c}^{\eta_j}$. The endpoints of $I_j(ac)$ are in $dcl(ac) \cap q_j(\mathcal{M})$. So the endpoints of $I_j(a_{jk}c)$ are in $dcl(a_{jk}c) \cap q_j(\mathcal{M})$.

By the lemma above, the endpoints of $I_j(a_{jk}c)$ lie above the endpoints of $I_j(a_{ji}c)$ for any i < k. Thus $\{\xi(x, a_{jk}c) : k < \omega\}$ is 2-inconsistent.

3. Further problems

The argument of forking in o-minimal structures were applied to the characterization of definable groups in o-minimal structures afterward. For example, these characterization form the foundation of the argument of generic sets in definably compact groups, or groups with finitely satisfiable generics definable in o-minimal structures.

I will investigate whether definable groups in locally o-minimal structures are characterized by the argument of forking after this.

References

- [1] C.Toffalori and K.Vozoris, Note on local o minimality, MLQ Math.Log.Quart., 55, pp 617–632, 2009.
- [2] T.Kawakami, K.Takeuchi, H.Tanaka and A.Tsuboi, *Locally o minimal structures*, J. Math. Soc. Japan, vol.64, no.3, pp 783–797, 2012.
- [3] Y.Peterzil and A.Pillay, Generic sets in definably compact groups, Fund. Math, 193, pp 153–170, 2007.
- [4] A.Dolich, Forking and independence in o minimal theories, J. Symb. Logic, vol.69, pp 215–240, 2004.
- [5] A.Pillay and C.Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc, 295, pp 565–592, 1986.
- [6] J.Knight, A.Pillay and C.Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc, 295, pp 593-605, 1986.
- [7] E.Hrushovski, Y.Peterzil and A.Pillay, *Groups*, measures, and the NIP, J. Amer. Math. Soc, Vol.21, pp 563–596, 2008.
- [8] E.Hrushovski and A.Pillay, On NIP and invariant measures, J. Eur. Math. Soc, 13, pp 1005-1061, 2011.
- [9] A.Conversano and A.Pillay, Connected components of definable groups and $o-minimality\ I$, Advan. Math, vol.231, pp 605–623, 2012.

- [10] A.Onshuus, Properties and consequences of thorn independence, J. Symb. Logic, vol.71, pp 1-21, 2006.
- [11] D.Marker, Omitting types in o minimal theories, J. Symb. Logic, vol.51, pp 63–74, 1986.
- [12] H.D.Macpherson, D.Marker and C.Steinhorn, $Weakly\ o-minimal\ structures\ and\ real\ closed\ fields$, Trans. Amer. Math. Soc, 352, pp 5435–5482, 2000.
- [13] L.van den Dries, $Tame\ topology\ and\ o-minimal\ structures$, London Math. Soc. Lecture Note Ser, 248, Cambridge University Press, 1998.
- [14] A.Pillay, Geometric Stability Theory, Oxford University Press, 1996.