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Abstract

We review recent applications of o-minimal theory in Hodge theory. One of key theorems is
o-minimal Chow theorem which proves the algebraicity of an analytic subset X C C”. Unlike the
usual Chow theorem X need not be an analytic subvariety of the projective set.

Proving the definability of period maps and with o-minimal Chow theorem Bakker, Klingler,
and Tsimerman showed the algebraicity of Hodge loci in 2018.

On the other hand, Bakker, Brunebarbe and Tsimermam proved in 2018 an O-minimal version
of GAGA type theorem which generalizes o-minimal Chow theorem. Applying the definability
theorem of period maps, they solved the long-standing Griffiths conjecture with their o-minimal
GAGA theorem.

1 Chow’s Theorem

First recall

Theorem 1 (Chow’s theorem). Any analytic subvariety of projective space P"(C) is algebraic.
More generaly any closed analytic subset Z of a complex projective variety S is algebraic.

Remark 2. This fails when S is quasi-projective variety i.e., a locally closed subset of a projective
variety.

We follow Mumford’s arguments in Chapter 4 of [M].

Definition 3 (Analytic set). Let U C C" be open, and X C U be closed. For any v € X there
exist an open neighborhood U, C U of x and finitely many analytic functions f1,--- , fr over U,
and

XNUs={yeUs| fily) == fuly) =0}
The X is said to be analytic set. This is the external characterization of analyticity.

Definition 4 (n-dimesional complex variety). Hausdorf sapace M is called a n-dimensional com-
plex variety when it is a union of charts U, and each chart is homeomorphic to an open subset V,
of C™ and functions between V, and Vs are analytic, i.e,

bo : U = v, JUa=M
«
() open () open
M cn

and each ¢po ¢5t : Vo — Vg is analytic.
Definition 5 (x-analytic set). Let U C C™ be open and X C U be closed. If we have

X=x"yuxr-Oy...uxO®
where each X is i-dimensional complex subvariety of U and
XOcx®yuxt-Dy...ux©

Then X s said to be *-analytic. This is the internal characterization of analyticity.



The following is a key theorem which asserts the equivalence of two definitions of analyticity.
Theorem 6. analytic <= *-analytic

Proof : (of Chow’s theorem).
Suppose X is an analytic subvariety of P™(C). Let

7 "\ {0} — P™(C)

be a projection and CX := 7=1(X) be a cone over X. Then CX is x-analytic with strata of one
higher dimension than those of X..

Consider Z := CXU{0} C C"*!. Then Z is closed hence *-nalytic with {0} its zero-dimensional
strata. By Theorem 6, Z is analytic. Hence Z is the zero set of finitely many analytic functions
f1,-++, fr near a convex neighborhood A of 0..

Note that Z is invariant under scalar multiplication Z — A -Z (since X C P") .

For any A € C, |\| <1, set f (w0, -+ ,xn) := fi(Axo,--- ,Az,). Then Z is also the zero set of

fA@)’s, ie., )
N\ @ = } :

i=1

Z—{EEAQ

Write each analytic function as

fi(@) = Z ¢ .z (infinite series)
«

where o = (. -+ , v, ). Further let

fir@) =Y Dz

lal=r

then for all A and T € Z we have
@)=Y N fir(@ =0
r=0

ThuS f()r a:ny )\,S, and T € Z we ha\/e thal
d)\ 7 )\ s 7,7 .

Setting A = 0, for all T € Z we have f;,(%T) = 0. It follows that Z is the zero set of possibly
infinitely many homogeneous polynomials

fir(@), (1<i<k, 1<r<oc0).
We now apply Hilbert Basis Theorem to choose finitely many polynomials from {f; ,.} such that
Z:V( afiﬂ‘a"')'

Therefore X is a finite union of algebraic varieties. |

Key points

e 7 is invariant under scalar multipication since X C P".

e Hilbert Basis Theorem guaratees that Z is an algebraic variety.




2  O-minimal Chow’s theorem

Using the fact that C = R x R, we can study complex analysis in o-minimal settings.
Example 7. The following are all o-minimal.

o Ry, := (R, +,-,<,0,1, {all restricted analytic functions}) (van den Dries)
o Reyp := (R, +,-,<,0,1,exp) (Wilkie)
® Ranexp := Ran + Rexp  (van den Dries, Miller)

From now on in this note, when we say a subset X C C” is definable, we mean that X is
definable in an o-minimal structure whose underlyong set is C™.

Theorem 8 (Corollary 4.5, [PS]). Let X be a definable C-analytic subset of C”. Then X is an
algebraic subset of C™.

There are several different proofs. We discuss here one of key lemmas needed for the proof of
o-minimal Chow theorem presented in [YZ] which is the second proof in [B].

Lemma 9. Any definable holomorphic function f : C* — C is a polynomial.

Proof : By induction on n. When n = 1, suppose that f is a definable entire function. If f is
bounded then f is a constant function by Liouville. So suppose f is not bounded nor a polynomial.
Consider ¢g(z) := f(1/z). Then z = 0 is not a pole of g(z) but an essential singularity. Hence f(z)
has an essential singularity at infinity. By Picard Big Theorem in an arbitrary small neiborhood
A of the essential singurarity, for almost all @ € C, f~1(a) is an infinite set. For a = 0 we have
that f~1(0) is an infinite discrete set since f cannot have accumerated zero, contradicting the
o-minimalty of the underlying structure.

Assume the statement is true for n — 1. Let f : C* — C be definable and holomorphic. Let
(z,w) € C x C"! and consider the Taylor expansion of f(z,w) along with z-axis;

S K 1 o~f
f(Z,’lU) = ng(’LU)Z , where gk(w) = E : W(Oaw)
k=0 ’

Each gi(w) : C*~! — C is holomorphic, hence a polynomial by induction hyothesis,

We need to show that there are only finitely many such gi(w). Note first that for any w € C*~1,
the unary funcion f,,(z) := f(z, w) is a complex polynomial. Now consider the graph I'(f) C C"*!
of f. Project T'(f) on to the last n-coordinates. Then the fiber at (w,v) € C"~1 x C is the set

Fpo={2€C]| f(z,w) = v}.

When f,, # 0, then |Fy | < deg(fw). On the other hand if f,, = 0, then F, o = C and Fy, , =0
(v #£0).

Applying the cell decomposition theorem we see that the number of connected components of
the projection are uniformly bounded, Thus for any w € C"*~*!, deg(f,,) is uniformly bounded, say
by N € N. Thus for k > N we have g, = 0. It follows that

N

Fzw) = glw)*

k=0

and f(z,w) is a polynomial. |

Unlike the classical Chow theorem, in o-minimal settings analytic subset X C C™ need not be
an analytic subvariety of the projective space. Lemma 9 plays an important role in showing the
algebraicity of X. By the tameness of o-minimal structure the definable holomorphic functions are
restricted to polynomial functions.

In [PS], Peterzil and Starchenco give another proof of O-mimimal Chow Theorem. First they
show;

Theorem 10 (Theorem 4.4. [PS]). Let M be a complex manifold and E C M a C-analytic subset
of M (of arbitrary dimension). If A is a C-analytic subset of M \ E which is also subanalytic in
M then CI(A) is a C-analytic subset of M.



Proof : (O-mimimal Chow Theorem)

Since C" is obtained from P™(C) by removing a C-analytic set, it follows from Theorem 10
that the closure of X in P"(C) is a C-analytic subset of P"(C). Now apply the classical Chow’s
Theorem. |

Theorem 11 (Theorem ([PS]). Let S be a quasi-projective complex variety and Z C S be a closed
analytic subset. If there exists an o-minimal structure expanding R,y in which Z is definable, then
Z is algebraic.

Corollary 12. Note that every closed analytic subset of a projective variety is Ra,-definable. There-
fore the classical Chow theorem is a corollary of this o-minimal version of Chow theorem.

3 O-minimal GAGA
Before stating the O-minimal GAGA, we need some definitions.

3.1 Definable topological space
Definition 13. (X, {U;}, ¢;) is said to be a definable topological space if we have

e X is a topological space,

{U;} is a finite open covering of X,

each ¢; : U; — V; C R" is a homeomorphisms,
e all V; and V;; = ¢;(U; NU;) are definable,
the maps ¢; o cpj_l : Vi; = Vi; are definable.

(U;, i) are called charts.

A morphism between two such topological spaces is a continuous map which is definable on
the given charts.

3.2 Definable geometric quotient

Let & be a definable topological space and R C X x X be a closed definable equivalence relation.
A definable geometric quotient X' /R is a surjective morphism p : X — Y of definable topological
spaces such that the fibres of p are the equivalence classes of R and ) carries the quotient topology.
If such a quotient exists, then it is unique. We say that R is definably proper if the preimages
by the projections of definable compact subsets of X are compact subsets of R.

Theorem 14 (van den Dries 1998). If X is a definable topological space and R is a closed definably
proper equivalence relation, then the geometric quotient X' /R exists.

3.3 Definable analytic space

Let & be a definable topological space and X be definable site, objects are definable subsets U C X
and admissible coverings are finite coverings.

Definition 15 (Definable analytic space). A definable analytic space is a pair (X,Ox) consisting
of a definable topological space X and a sheaf Oy on X.

NB: In the above definition, analyticity of the space is hidden in the sheaf Oy.

Theorem 16 ([BBT|). Geometric quotients also exist, even in the category of definable analytic
spaces, if R C X x X is an étale closed definable equivalence relation (i.e. the projection maps are
open and locally an isomorphism onto their images)

3.4 Géométrie algébrique et géométrie analytique

In the introduction of the famous GAGA paper, Serre explains the GAGA principle as follows.



Toute variété algébriqgue X sur le corps des nombres complexes peut étre munie, de
fagon canonique, d’une structure d’espace analytique ; tout faisceau algébrique cohérent
sur X détermine un faisceau analytique cohérent. Lorsque X est une variété projective,
nous montrons que, réciproquement, tout faisceau analytique cohérent sur X peut étre
obtenu ainsi, et de facon unique ; de plus, cette correspondance préserve les groupes
de cohomologie. Ces résultats contiennent comme cas particuliers des théorémes clas-
siques de Chow et Lefschetz, et permettent d’aborder la comparaison entre espaces fibrés
algébriques et espaces fibrés analytiques de base une variété algébrique projective.

In English; for any algebraic complex variety X, we can define canonically an analytic space in
such a way that for each coherent algebraic sheaf we can define a coherent analytic sheaf. If X is
a projective variety, we can do the contrary: each coherent alalytic sheaf comes from a coherent
algebraic sheaf.

The following theorem of Serre generalizes in fact theorems of Chow and Lefschetz;

Theorem 17 (Serre, 1955). Let X be a proper complex algebraic variety and X" be the associated
analytic space. Then the categories of coherent sheaves Coh(X) and Coh(X?") are equivalent.

3.5 O-minimal GAGA

In O-minimal settings, Bakker, Brunebarbe and Tsimermam proved in 2018 an O-minimal version
of GAGA type theorem;

Theorem 18 (Thm 1.3 [BBT]). Let X be a separated algebraic space of finite type over C and
X9t be the associated definable analytic space. Then the definabilization functor

Def : Coh(X) — Coh(X )
1s fully faithful, exact, and its essential image is closed under subobjects and quotients.

Corollary 19. O-minimal Chow’s theorem also holds for algebraic spaces.

This corollary will be used repeatedly in the proof of Griffiths conjecture.

4 Hodge Theory

We now discuss basic notions of Hodge Theory.

4.1 Legendre family of ellipitic curves
Consider the Legendre family of elliptic curves £y defined by the equation
v =z —1)(z—-)N) (AeC\{0,1})

Each &), defines a Riemann surface.

For all A £ 0,1,
&y are isomorphic as differential manifolds, they are tori.

However

Theorem 20 (Theorem 1.1.1, [CSP], p.4)). Suppose that A # 0,1. Then there is an € > 0 such
that for all X' within distance € from X\ the Riemann surfaces Ex and Ey are not isomorphic as
complex manifolds.

So A encodes the complex structure of &£j.

4.2 Period maps

We can define structures called Hodge structures in the Legendre family of Riemann surfaces
(elliptic curves) £y. Period maps describe properties of elliptic curves.

Similarly, in general, period maps describe how Hodge structures vary on a family of smooth
projective varieties.

! Jean-Pierre Serre, Annales de I'Institut Fourier, Vol 6 (1956), p.1-42



4.2.1 Hodge locus

The Hodge locus of the variation of Hodge structures is defined as the union HL(S,V) C S of all
preimages which are not the whole S of Mumford-Tate subvarieties under the period map, i.e.,
HL(S,V) is a countable union of irreducible closed analytic subvarieties of S.

As soon as one leaves the realm of abelian varieties, these arithmetic quotients are complex
analytic spaces which almost never carry an algebraic structure, so the holomorphic, non-algebraic
period maps could a priori behave wildly at infinity.

The spaces

D =T\G(R)/M

that are targets of period maps are examples of arithmetic quotients.

Theorem 21 ([BKT]). The real analytic manifold Sr.c.pm = T\G/M can be endowed with a
functorial structure of R¥&-definable manifold such that, for each Siegel set & C G/M, the map

7'l'|@7 :6 — SF,G,M

is Ra&_definable.

4.3 Definability of period maps

Theorem 22 ([BKT]). Let S be a smooth connected quasi-projective complex variety and V be a
polarised variation of pure Hodge structures of weight k on S.
Then the associated period map
d:S — SF,G.,M

5 Ran cxp-definable.

Theorem 23 ([BKT]). All period maps have tame geometry: they are definable in the o-minimal
structure Ran exp Telatively to a natural semialgebraic structure on St g .

the Hodge conjecture

If the variation of Hodge structures V arises from a family of smooth projective varieties then
the Hodge locus HL(.S, V) is a countable union of closed irreducible algebraic subvarieties of S.

Theorem 24 (Cattani, Deligne, and Kaplan (1995)). The conjecture holds unconditionally and
for all variations of Hodge structures, whether they have geometric origin or not.

As a corollary of the definability of period maps, Bakker, Klingler, and Tsimerman obtain a
new proof of this theorem.

Theorem 25 ([BKT]). Let V be a polarised variation of pure Hodge structures of weight k on
a smooth connected quasi-projective complex variety S. Then the Hodge locus HL(S,V) C S is a
countable union of closed irreducible algebraic subvarieties.

Proof : Let ® : S — St ¢ a be the period map associated with the variation of Hodge structures.
We show that
HL(S, V) = U dL(Y).

Y: Mumford-Tate subvariety of St g v
It suffices to prove that the preimage W = ®~1(Y) of such a Y C Sr,c,m is algebraic.

e Mumford-Tate subvariety Y C Sp ¢ ar is of the form Sr/ ¢/ p and hence Ral8_definable.

e It follows from the definability of the period map that the subset W = ®~}(Y) C S is
Rin exp-definable.

e W is also a complex analytic subvariety, so the o-minimal Chow theorem implies that W is
algebraic.



4.4 Summarly
New proof of Theorem (Cattani,Deligne, and Kaplan (1995))

4 N
Definability of + o-minimal Chow Thm
period maps (PS 2009)
(BKT 2018)
4
the algebaicity of
Hodge loci
(BKT 2018)
- /

4.5 Proof of Griffiths conjecture

Around fifty years ago, P. A. Griffiths (1970) conjectured that period maps have quasi-projective
images and proved it when S is compact. Then Sommese (1978) showed that, up to a proper
modification, the image is algebraic.

Equipped with the definability of period maps and o-minimal GAGA theorem, Bakker, Brunebarbe,
and Tsimerman (2018) proved a long-standing conjecture of Griffiths that images of period maps
are quasi-projective algebraic varieties.

The main result of Bakker, Brunebarbe, and Tsimerman (2018) is the general case of this
conjecture.

Theorem 26 ([BBT]). Let S be a smooth connected quasi-projective complex variety and ® : S —
Sr.a.m be a period map. Then there exists a unique dominant morphism of complex algebraic
varieties f : S — T and a closed immersion v : T — St g m of analytic spaces such that @
factors as:

gan o

> Sr.aMm

Tan
Moreover, the variety T is quasi-projective.

4.5.1 Proof of Griffiths conjecture BBT 2018

Definability of + o-minimal GAGA
period maps (BBT 2018)
(BKT 2018)

4
Proof of
Griffiths conjecture
(BBT 2018)
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