Locally definable $C^{\infty}G$ manifolds

Tomohiro Kawakami Department of Mathematics, Wakayama University

1 Introduction

Let $\mathcal{M} = (\mathbb{R}, <, +, \cdot, e^x, \dots)$ be an exponential o-minimal expansion of the field \mathbb{R} of real numbers with C^{∞} cell decomposition. By [7], there exist uncountably many o-minimal expansions of \mathbb{R} .

We refer [1], [2] for definable maps, definable sets. By [8], a generalization of o-minimal structures of \mathbb{R} are studied. There exists an o-minimal expansion of \mathbb{R} such that it does not admit C^{∞} cell decomposition ([6]). Everything is considered in \mathcal{M} unless otherwise stated.

We study approximations of locally definable C^rG maps by locally definable $C^{\infty}G$ maps.

2 Locally definable $C^{\infty}G$ manifolds

Definition 2.1. (1) A subset X of \mathbb{R}^n is locally definable set if for each point $x \in X$, there exists an open ball A such that $X \cap A$ is definable.

Note that every open subset of \mathbb{R}^n is locally definable.

(2) Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be locally definable sets. A continuous map $f: X \to Y$ is locally definable if the graph of $f \subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m$ is a locally definable set. A locally definable map $f: X \to Y$ is a locally definable

²⁰¹⁰ Mathematics Subject Classification. 14P10, 03C64. Key Words and Phrases. O-minimal, locally definable C^{∞} manifolds.

homeomorphism if there exists a locally definable map $f': Y \to X$ such that $f \circ f' = id_Y$, $f' \circ f = id_X$.

(3) Assume that X, Y are open. A locally definable map $f: X \to Y$ is a locally definable C^r map if it is a C^r map. A locally definable C^r map $f: X \to Y$ is a locally definable C^r diffeomorphism if there exists a locally definable C^r map $f': Y \to X$ such that $f \circ f' = id_Y, f' \circ f = id_X$.

Remark that the complement of a locally definable set and the projection image of a locally definable set are not always locally definable ([5]).

- **Definition 2.2.** (1) A group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable.
- (2) Let G be a definable group. A pair (X, ϕ) consisting a definable set X and a G action $\phi : G \times X \to X$ is a definable G set if ϕ is definable. We simply write X instead of (X, ϕ) .
- (3) A definable map $f: X \to Y$ between definable G sets is a definable G map if for any $x \in X, g \in G$, f(gx) = gf(x). A definable G map is a definable G homeomorphism if it is a homeomorphism.
- **Definition 2.3.** A Hausdorff space X is an n-dimensional locally definable C^r manifold if there exist a countable open cover $\{U_i\}_{i=1}^{\infty}$ of X, countable open sets $\{V_i\}_{i=1}^{\infty}$ of \mathbb{R}^n , and a countable collection of homeomorphisms $\{\phi_i: U_i \to V_i\}_{i=1}^{\infty}$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and open, and $\phi_j \circ \phi_i^{-1}: \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $(\{U_i\}_{i=1}^{\infty}, \{\phi_i: U_i \to V_i\}_{i=1}^{\infty})$ of sets and homeomorphisms is called a locally definable C^r coordinate system.
- **Definition 2.4.** A pair (X, ϕ) consisting a locally definable C^r manifold and a group action $\phi: G \times X \to X$ such that ϕ is a locally definable C^r map is a locally definable C^rG manifold.

The following is our result.

Theorem 2.5 ([4]). Let G be a compact definable C^{∞} group. Let X, Y be an affine locally definable $C^{\infty}G$ manifold and r a positive integer. Suppose that $f: X \to Y$ is locally definable C^rG map. Then f is approximated by locally definable $C^{\infty}G$ map with respect to the Whitney C^r topology

This is a generalization of the following theorem.

Theorem 2.6 ([3]). Let G be a compact definable C^{∞} group. Let X, Y be an affine definable $C^{\infty}G$ manifold and r a positive integer. Suppose that $f: X \to Y$ is definable C^rG map. Then f is approximated by definable $C^{\infty}G$ map with respect to the definable C^r topology

References

- [1] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [2] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [3] T. Kawakami, An affine definable C^rG manifold admits a unique affine definable $C^{\infty}G$ mannifold structure, Bull. Fac. Edu. Wakayama Univ. **68** (2018), 7-13.
- [4] T. Kawakami, Approximations of locally definable $C^{\infty}G$ maps of locally definable $C^{r}G$ maps, in preparation.
- [5] T. Kawakami, Locally definable C^sG manifold structures of locally definable C^rG manifolds, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. No. **56** (2006), 1–12.
- [6] Le Gal, Olivier and J.P. Rolin, An o-minimal structure that does not admit C^{∞} cellular decomposition, C. R. Math. Acad. Sci. Paris **346** (2008), 309–312.
- [7] J.P. Rolin, P. Speissegger and A.J. Wilkie, *Quasianalytic Denjoy-Carleman classes and o-minimality*, J. Amer. Math. Soc. **16** (2003), 751–777.
- [8] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.