Some Remarks on Automorphisms with a Single Orbit

Hirotaka Kikyo
Graduate School of System Informatics
Kobe University

Abstract

Suppose $l > m \geq 3$. The random m-hypergraphs omitting the complete m-hyper-subgraphs of size l admit automorphisms with a single orbit.

1 Introduction

This is a part of a work in progress with Akito Tsuboi.

W. Henson [3] showed that any random graphs which have no complete subgraphs of size $p \ge 4$ have no automorphisms with a single orbit. We show that the situation will be different in the hypergraph case.

Let $m < l < \omega$, and let R be an m-ary relation symbol. By an m-hypergraph, we mean an R-structure where R is symmetric and irreflexive. For a finite m-hypergraph X, R(X) denotes the set of hyperedges on X, and e(X) denote the number of hyperedges on X. So, we have $R(X) = \{A \in [X]^m : X \models R(A)\}$ and e(X) = |R(X)|.

Let \mathcal{H}_l^m denote the class of all countable m-hypergraphs which have no complete m-hyper-subgraphs of size l. We have $X \in \mathcal{H}_l^m$ if and only if whenever $A \subseteq X$ with |A| = l then $e(A) < \binom{l}{m}$.

Let \mathcal{K} be an infinite class of finite R-structures.

M is a random structure for \mathcal{K} if

- (1) M is countable,
- (2) whenever $A \subset_{finite} M$ then $A \in \mathcal{K}$, and

(3) whenever $A \subset_{finite} M$, $A \subset B \in \mathcal{K}$ and B is finite then there is an L-embedding $f: B \to M$ with f(x) = x for $x \in A$.

A random structure for \mathcal{K} is also known as a Fraïssé limit of \mathcal{K} and a generic structure for \mathcal{K} .

If K has HP, JEP, and AP then there is a random structure for K.

Let A, B, C and D be R-structures. We say that D is a free amalgam of B and C over A if $D = B \cup C$, $B \cap C = A$ as the sets of domains, and $R(D) = R(B) \cup R(C)$. We say that a class of finite R-structures K has the free amalgamation property (FAP in short) if whenever D is a free amalgam of B and C over A with $A, B, C \in K$ then $D \in K$.

If $2 \leq m < l$ then \mathcal{H}_l^m has HP, JEP, and FAP.

Suppose that an R-structure M has an automorphism σ with a single orbit. Then, M must be countable. Moreover, for any $b \in M$, we have $M = \{\sigma^n(b) : n \in \mathbb{Z}\}$. Therefore, we can assume that $\text{dom}(M) = \mathbb{Z}$ and $\sigma(x) = x + 1$ (a shift function). Note that

$$M \models R(a,b) \iff R(a+p,b+p)$$

for any $a, b, p \in \mathbb{Z} = \text{dom}(M)$.

2 Henson's Theorem

The random structures for \mathcal{H}_l^2 with 2 < l are called Henson graphs, denoted by H_l .

- Fact 2.1 (Henson). (1) The random graph has an automorphism with a single orbit.
 - (2) H_3 has an automorphism with a single orbit.
 - (3) H_l with $l \geq 4$ has no automorphisms with a single orbit.

We prove (3) with l=4. Suppose H_4 has an automorphism σ with a single orbit. We can assume that $H_4=(\mathbb{Z},R)$ and $\sigma(x)=x+1$.

Let K_4 denote the complete graph with 4 vertices. Consider a new path of length 1 with the ends $0 \in H_4$ and b'. Since this graph is K_4 -free, it can be embedded into H_4 over 0. Let b be the isomorphic image of b' in H_4 . So, b is adjacent to 0. Note that -b is also adjacent to 0 because we can shift 0 and

b by -b. Similarly, we can choose $a \in H_4$ such that a is adjacent to 0, but not adjacent to b and -b. Then (0, a, a + b, b) is a 4 cycle with no diagonals. Since 0 and b are adjacent in H_4 , a and a + b are adjacent by shifting by a. Similarly, since 0 and a are adjacent in H_4 , b and a + b are adjacent by shifting by b.

We can choose c such that c is adjacent to 0, a, b, and a + b. Then $\{0, a, c, c - b\}$ forms a tetrahedron K_4 . Since c and a + b are adjacent, c - b and a are adjacent by shifting by -b. Since 0 and -b are adjacent, c and c - b are adjacent by shifting by c.

3 Random structures for \mathcal{H}_l^m

We show that automorphisms with a single orbit exist on random hypergraphs.

Theorem 3.1. Assume $l > m \geq 3$. Let M be a random structure for \mathcal{H}_l^m . Then M has an automorphism with a single orbit.

Proof. Let \mathbb{Z} be the domain of the structure, and σ the shift function $(\sigma(x) = x + 1)$.

We are going to construct a relation R on \mathbb{Z} such that (\mathbb{Z}, R) is a random structure for \mathcal{H}_l^m and σ will be an R-automorphism of (\mathbb{Z}, R) .

Enumerate all tuples (A, D) as (A_n, D_n) , where $A \in \mathcal{H}_l^m$, and D is a finite subset of \mathbb{Z} with |D| = |A| - 1. For a finite subset $F \subset \mathbb{Z}$, we define the width of F to be $\operatorname{wd}(F) = \max F - \min F$.

We inductively define R_n , $w_n \in \omega$ and $d_n \in \mathbb{Z}$ satisfying the following:

- 1. $R_0 \subset R_1 \subset \cdots \subset R_n$; R_n is shift-closed.
- 2. $2(w_i + \operatorname{wd}(D_{i+1})) < w_{i+1} \ (i < n)$.
- 3. Let $B \in R_n R_{n-1}$ be a new hyperedge and $b = \max(B)$. If $x \in B \{b\}$ then $w_{n-1} < b x \le w_n$.
- 4. The hypergraph (\mathbb{Z}, R_n) belongs to \mathcal{H}_l^m .
- 5. If $(D_n, R_{n-1}) \cong A'_n$, where A'_n denotes the substructure obtained from A_n by omitting the last point (of the enumeration of A_n), then this isomorphism can be extended to $(D_n \cup \{d_n\}, R_n) \cong A_n$.

We consider the n-th stage.

To clarify our argument, we introduce terminology. For x and y in \mathbb{Z} , we say they have a *short distance* at the n-th stage if $|x-y| \leq w_{n-1}$, otherwise, we refer to it as a *long distance*. We also say that x is *close to* y if x and y have a short distance, otherwise we say that x is *far from* y.

We map d to $d_n \in \mathbb{Z}$ so that d_n is far from elements in D_n , and add new hyperedges to form R_n so that $(D_n \cup \{d_n\}, R_n) \cong A_n$.

Suppose, for a contradiction, that $A = \{a_1, a_2, \dots, a_l\}$ is a substructure of (\mathbb{Z}, R_n) with $a_1 < a_2 < \dots < a_l$ and

$$e(A) = \binom{l}{m}.$$

Since a new hyperedge must exist in A, it follows that a_1 and a_l have a long distance. By shifting, we can assume $a_l = d_n$.

Note that If $1 \le i < j \le l$ then a_i and a_j are adjacent in $A = \{a_1, \ldots, a_l\}$ in the sense that there is $B \in [A]^m$ with $a_i, a_j \in B$ and $A \models R(B)$.

Claim 1. a_l and a_i (i < l) are adjacent with new hyperedges in $R_n(A) - R_{n-1}(A)$.

Suppose the claim is false. Then a_l and some a_j are adjacent with an old hyperedge in R_{n-1} . Hence, a_l is close to a_j at the stage n. But a_l is far from a_1 . Choose $B \in [A]^m$ with $a_1, a_j, a_l \in B$. Then $B \notin R_{n-1}$ because a_l is far from a_1 but also $B \notin R_n - R_{n-1}$ because a_l is close to a_i . This means that A is not complete m-hypergraph at the stage n. We have the claim.

Since we are assuming $a_l = d_n$, we have $a_i \in D_n$ for i = 1, ..., l-1. Therefore, $(A, R_n(A))$ is isomorphic to some substructure of $(D_n \cup \{d\}, R_n(D_n \cup \{d\})) \cong A_n \in \mathcal{H}_l^m$. Therefore, A should be a member of \mathcal{H}_l^m . But this contradicts the choice of A.

A more general case will be treated in [5].

Acknowledgments

The work is supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] P. J. Cameron, Cyclic automorphisms of a countable graph and random sum-free sets, Graphs and Combinatorics 1 (1985), 129–135.
- [2] R. Diestel, Graph Theory, Fourth Edition, Springer, New York (2010).
- [3] C. W. Henson, A family of countable homogeneous graphs, Pacific Journal of Mathematics **38**, No. 1 (1971), 69–83.
- [4] E. Hrushovski, Simplicity and the Lascar group, preprint, 1998.
- [5] H. Kikyo and A. Tsuboi, On automorphisms with a single orbit of some random structures, in preparation.

Graduate School of System Informatics Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 JAPAN kikyo@kobe-u.ac.jp

神戸大学大学院システム情報学研究科 桔梗 宏孝