RELATIVIZED LASCAR, KIM-PILLAY, SHELAH GROUPS

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

ABSTRACT. We study relativized Lascar groups, and show that some fundamental facts about the Galois groups of first-order theories can be generalized to the relativized context.

1. Preliminaries

1.1. Hyperimaginaries and model theoretic Galois groups. The proofs for basic properties of hyperimaginaries can be found on [C11] and [K14]. Most of the basic definitions and facts on the Lascar group can be found on [KL23], [Lee22] and [K14], which collect and generalize the results in [Z02], [CLPZ01], [LP01] and more papers to the context of hyperimaginaries.

We denote the automorphism group of \mathfrak{C} by $\operatorname{Aut}(\mathfrak{C})$ and for $A \subset \mathfrak{C}$, we denote the set of automorphisms of \mathfrak{C} fixing A pointwise by $\operatorname{Aut}_A(\mathfrak{C})$

Definition 1.1. Let E be an equivalence relation defined on \mathfrak{C}^{α} and $A \subseteq \mathfrak{C}$. Then E is said to be

- (1) finite if the number of its equivalence classes is finite,
- (2) bounded if the number of its equivalence classes is small,
- (3) A-invariant if for any $f \in Aut_A(\mathfrak{C})$, E(a,b) if and only if E(f(a),f(b)),
- (4) A-definable if there is a formula $\varphi(x,y)$ over A such that $\models \varphi(a,b)$ if and only if E(a,b) holds, just definable if it is definable over some parameters, and
- (5) A-type-definable if there is a partial type $\Phi(x,y)$ over A such that $\models \Phi(a,b)$ if and only if E(a,b) holds, just type-definable if it is type-definable over some parameters.

Definition 1.2. Let E be an \emptyset -type-definable equivalence relation on \mathfrak{C}^{α} . An equivalence class of E is called a *hyperimaginary* and it is denoted by a_E for a representative a. A hyperimaginary a_E is *countable* if |a| is countable.

Definition 1.3. For a hyperimaginary e,

$$\operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) := \{ f \in \operatorname{Aut}(\mathfrak{C}) : f(\boldsymbol{e}) = \boldsymbol{e} \text{ (setwise)} \}.$$

We say an equivalence relation E is e-invariant if for any $f \in \text{Aut}_{e}(\mathfrak{C})$, E(a,b) holds if and only if E(f(a), f(b)) holds.

Definition 1.4. For a hyperimaginary e, we say two 'objects' (e.g. elements of \mathfrak{C} , tuples of equivalence classes, enumerations of sets) b and c are interdefinable over e if for any $f \in \operatorname{Aut}_{e}(\mathfrak{C})$, f(b) = b if and only if f(c) = c.

Fact 1.5 ([K14, Section 4.1] or [C11, Chapter 15]).

- (1) Any tuple (of elements) b in \mathfrak{C} , any tuple c of imaginaries of \mathfrak{C} , and any tuple of hyperimaginaries are interdefinable with a single hyperimaginary.
- (2) Any hyperimaginary is interdefinable with a sequence of countable hyperimaginaries.

Until the end of this paper, we will fix some arbitrary \emptyset -type-definable equivalence relation E and a hyperimagianry $e := a_E$.

Definition 1.6.

- (1) A hyperimaginary e' is definable over e if f(e') = e' for any $f \in Aut_e(\mathfrak{C})$.
- (2) A hyperimaginary e' is algebraic over e if $\{f(e'): f \in Aut_e(\mathfrak{C})\}$ is finite.
- (3) A hyperimaginary e' is bounded over e if $\{f(e'): f \in \operatorname{Aut}_{e}(\mathfrak{C})\}$ is small.
- (4) The definable closure of e, denoted by dcl(e) is the set of all countable hyperimaginaries e' such that f(e') = e' for any $f \in Aut_e(\mathfrak{C})$.

- (5) The algebraic closure of e, denoted by acl(e) is the set of all countable hyperimaginaries e' such that $\{f(e'): f \in Aut_e(\mathfrak{C})\}$ is finite.
- (6) The bounded closure of e, denoted by bdd(e) is the set of all countable hyperimaginaries e' such that $\{f(e'): f \in Aut_e(\mathfrak{C})\}$ is bounded.

Definition/Remark 1.7.

- (1) By Fact 1.5(2), if $f \in Aut(\mathfrak{C})$ fixes bdd(e), then for any hyperimaginary e' which is bounded over e, f(e') = e'. Similar statements also hold for dcl(e) and acl(e).
- (2) By (1), for a hyperimaginary b_F which is possibly not countable, we write $b_F \in \text{bdd}(e)$ if b_F is bounded over e. We use notation $b_F \in \text{dcl}(e)$, acl(e) in a similar way.
- (3) Each of dcl(e), acl(e), and bdd(e) is small and interdefinable with a single hyperimaginary (c.f. [C11, Proposition 15.18]). Thus it makes sense to consider $Aut_{bdd(e)}(\mathfrak{C})$.

Definition 1.8 ([K14, Section 4.1]). Let b_F and c_F be hyperimaginaries.

(1) The complete type of b_F over e, $\operatorname{tp}_x(b_F/e)$ is a partial type over a

$$\exists z_1 z_2 (\operatorname{tp}_{z_1 z_2}(ba) \wedge F(x, z_1) \wedge E(a, z_2)),$$

whose solution set is the union of automorphic images of b_F over e.

(2) We write $b_F \equiv_e c_F$ if there is an automorphism $f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C})$ such that $f(b_F) = c_F$. Then, the equivalence relation $x_F \equiv_e y_F$ in variables xy is a-type-definable, given by the partial type:

$$\exists z_1 z_2 w_1 w_2 (E(a, z_1) \land E(a, z_2) \land \operatorname{tp}(z_1 w_1) = \operatorname{tp}(z_2 w_2) \land F(w_1, x) \land F(w_2, y)).$$

We also write $\operatorname{tp}_x(b_F/e) = \operatorname{tp}_y(c_F/e)$ for $b_F \equiv_e c_F$.

Now we start to recall the model theoretic Galois groups.

Definition 1.9.

(1) $\operatorname{Autf}_{L}(\mathfrak{C}, e)$ is a normal subgroup of $\operatorname{Aut}_{e}(\mathfrak{C})$ generated by

$$\{f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) : f \in \operatorname{Aut}_{M}(\mathfrak{C}) \text{ for some } M \models T \text{ such that } \boldsymbol{e} \in \operatorname{dcl}(M)\}.$$

(2) The quotient group $Gal_L(T, e) = Aut_e(\mathfrak{C})/Autf_L(\mathfrak{C}, e)$ is called the *Lascar group* of T over e.

Fact 1.10 ([KL23, Section 1]).

- (1) $\operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e})$ does not depend on the choice of a monster model up to isomorphism, so it is legitimate to write $\operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e})$ instead of $\operatorname{Gal}_{\operatorname{L}}(\mathfrak{C}, \boldsymbol{e})$.
- (2) $[\operatorname{Aut}_{\mathbf{e}}(\mathfrak{C}) : \operatorname{Autf}_{\mathbf{L}}(\mathfrak{C}, \mathbf{e})] = |\operatorname{Gal}_{\mathbf{L}}(T, \mathbf{e})| \le 2^{|T| + |a|}$, which is small.

Fact 1.11 ([Z02, Lemma 1]). Let M be a small model of T such that $e \in dcl(M)$ and $f, g \in Aut_e(\mathfrak{C})$. If tp(f(M)/M) = tp(g(M)/M), then $f \cdot Autf_L(\mathfrak{C}, e) = g \cdot Autf_L(\mathfrak{C}, e)$ as elements in $Gal_L(T, e)$.

Definition 1.12. Let M be a small model of T such that $e \in dcl(M)$.

- (1) $S_M(M) = \{ \operatorname{tp}(f(M)/M) : f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \}.$
- (2) $\nu: S_M(M) \to \operatorname{Gal}_L(T, \boldsymbol{e})$ is defined by $\nu(\operatorname{tp}(f(M)/M)) = f \cdot \operatorname{Autf}_L(\mathfrak{C}, \boldsymbol{e}) = [f]$, which is well-defined by Fact 1.11.
- (3) $\mu: \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \to S_M(M)$ is defined by $\mu(f) = \operatorname{tp}(f(M)/M)$.
- (4) $\pi = \nu \circ \mu : \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \to \operatorname{Gal}_{L}(T, \boldsymbol{e}), \text{ so that } \pi(f) = [f] \text{ in } \operatorname{Gal}_{L}(T, \boldsymbol{e}).$

Remark 1.13 ([KL23, Remark 1.9]). Let $S_x(M) = \{p(x) : |x| = |M| \text{ and } p(x) \text{ is a complete type over } M\}$ be the compact space of complete types. Note that even if $e \in \operatorname{dcl}(M)$, possibly a is not in M, so that $S_M(M)$ is not $\{p \in S_x(M) : \operatorname{tp}(M/e) \subseteq p\}$. But for any small model M such that $e \in \operatorname{dcl}(M)$, $S_M(M)$ is a closed (so compact) subspace.

Proof. Let

$$r(x,a) = \operatorname{tp}(M/e) = \exists z_1 z_2 (\operatorname{tp}_{z_1 z_2}(Ma) \land x = z_1 \land E(a, z_2))$$

and $r_0(y, M) = \operatorname{tp}(a/M)$. Then

$$r'(x, M) = \exists y (r(x, y) \land r_0(y, M))$$

has the same solution set as $\operatorname{tp}(M/e)$. Thus $S_M(M) = \{p \in S_x(M) : r'(x,M) \subseteq p\}$, which is closed. \square

Fact 1.14 ([KL23, Corollary 1.20]).

(1) We give the quotient topology on $\operatorname{Gal}_{L}(T, \boldsymbol{e})$ induced by $\nu : S_{M}(M) \to \operatorname{Gal}_{L}(T, \boldsymbol{e})$. The quotient topology does not depend on the choice of M.

(2) $Gal_L(T, e)$ is a quasi-compact topological group.

Definition 1.15. Let [id] be the identity in $\operatorname{Gal}_{L}(T, \boldsymbol{e})$, $\operatorname{Gal}_{L}^{c}(T, \boldsymbol{e})$ be the topological closure of the trivial subgroup of $\operatorname{Gal}_{L}(T, \boldsymbol{e})$, and $\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e})$ be the connected component containing the identity in $\operatorname{Gal}_{L}(T, \boldsymbol{e})$. Put $\operatorname{Autf}_{KP}(\mathfrak{C}, \boldsymbol{e}) = \pi^{-1}[\operatorname{Gal}_{L}^{c}(T, \boldsymbol{e})]$ and $\operatorname{Autf}_{S}(\mathfrak{C}, \boldsymbol{e}) = \pi^{-1}[\operatorname{Gal}_{L}^{0}(T, \boldsymbol{e})]$.

(1) The KP(-Galois) group of T over e is

$$\operatorname{Gal}_{\operatorname{KP}}(T, \boldsymbol{e}) := \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) / \operatorname{Autf}_{\operatorname{KP}}(\mathfrak{C}, \boldsymbol{e}).$$

(2) The Shelah(-Galois) group of T over e is

$$Gal_{S}(T, e) := Aut_{e}(\mathfrak{C}) / Autf_{S}(\mathfrak{C}, e).$$

Note that we have

$$\operatorname{Gal}_{\operatorname{KP}}(T, \boldsymbol{e}) \cong \operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e}) / \operatorname{Gal}_{\operatorname{L}}^c(T, \boldsymbol{e}), \ \operatorname{Gal}_{\operatorname{S}}(T, \boldsymbol{e}) \cong \operatorname{Gal}_{\operatorname{L}}(T, \boldsymbol{e}) / \operatorname{Gal}_{\operatorname{L}}^0(T, \boldsymbol{e}).$$

Definition 1.16. Given hyperimaginaries b_F, c_F , they are said to have the same

- (1) Lascar strong type over e if there is $f \in \operatorname{Autf}_{L}(\mathfrak{C}, e)$ such that $f(b_F) = c_F$, and it is denoted by $b_F \equiv_{e}^{L} c_F$,
- (2) KP strong type over e (where KP is an abbreviation for Kim-Pillay) if there is $f \in \text{Autf}_{KP}(\mathfrak{C}, e)$ such that $f(b_F) = c_F$, and it is denoted by $b_F \equiv_{e}^{KP} c_F$, and
- (3) Shelah strong type over e if there is $f \in \operatorname{Autf}_{S}(\mathfrak{C}, e)$ such that $f(b_{F}) = c_{F}$, and it is denoted by $b_{F} \equiv_{e}^{S} c_{F}$.

Fact 1.17 ([KL23]). Let b_F and c_F be hyperimaginaries.

- (1) $b_F \equiv_{\boldsymbol{e}}^{\mathbf{L}} c_F$ if and only if for any \boldsymbol{e} -invariant bounded equivalence relation E which is coarser than F, E(b,c) holds; $x_F \equiv_{\boldsymbol{e}}^{\mathbf{L}} y_F$ is the finest such an equivalence relation among them.
- (2) The following are equivalent.
 - (a) $b_F \equiv_{\boldsymbol{e}}^{\mathrm{KP}} c_F$.
 - (b) $b_F \equiv_{\text{bdd}(\boldsymbol{e})} c_F$.
 - (c) For any e-invariant type-definable bounded equivalence relation E which is coarser F, E(b,c) holds $(x_F \equiv_{e}^{KP} y_F \text{ is the finest such an equivalence relation among them}).$
- (3) The following are equivalent.
 - (a) $b_F \equiv_{\mathbf{e}}^{\mathbf{S}} c_F$.
 - (b) $b_F \equiv_{\operatorname{acl}(\boldsymbol{e})} c_F$.
 - (c) For any e-invariant type-definable equivalence relation L coarser than F, if b_L has finitely many conjugates over e, then L(b,c) holds.

If F is just = so that b_F and c_F are just real tuples, then we can omit "coarser than F".

Fact 1.18. Let F be an e-invariant type-definable equivalence relation on \mathfrak{C}^{α} . Then there is an \emptyset -type-definable equivalence relation F' such that for any $c \in \mathfrak{C}^{\alpha}$, c_F and $(ca)_{F'}$ are interdefinable over e so that we can 'replace' an equivalence class of an e-invariant type-definable equivalence relation with a hyperimaginary.

Proof. Since F is $e(=a_E)$ -invariant, F is type-definable over a, say by F(x, y; a). Then for $p(x) = \operatorname{tp}(a)$, put

$$F'(xz, yw) := (F(x, y; z) \land E(z, w) \land p(z) \land p(w)) \lor xz = yw.$$

Then F' is the desired one.

1.2. Relativized model theoretic Galois groups. From now on, we fix an e-invariant partial type $\Sigma(x)$ where x is a possibly infinite tuple of variables, that is, for any $f \in \operatorname{Aut}_{e}(\mathfrak{C})$, $b \models \Sigma(x)$ if and only if $f(b) \models \Sigma(x)$. We write $\Sigma(\mathfrak{C})$ for the set of tuples b of elements in \mathfrak{C} such that $b \models \Sigma(x)$.

Definition 1.19 (Restriction of automorphism groups to Σ). Let $X \in \{L, KP, S\}$.

- (1) $\operatorname{Aut}_{\boldsymbol{e}}(\Sigma) = \operatorname{Aut}_{\boldsymbol{e}}(\Sigma(\mathfrak{C})) = \{ f \upharpoonright \Sigma(\mathfrak{C}) : f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \}.$
- (2) For a cardinal λ , Autf $_{\mathbf{x}}^{\lambda}(\Sigma, \mathbf{e}) =$

$$\{\sigma \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) : \text{ for any of tuple } b = (b_i)_{i < \lambda} \text{ where each } b_i \models \Sigma(x_i), \ b \equiv_{\boldsymbol{e}}^X \sigma(b) \}.$$

(3) Autf_X(Σ , \boldsymbol{e}) =

$$\{\sigma \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) : \text{ for any cardinal } \lambda \text{ and for any tuple } b = (b_i)_{i < \lambda} \}$$

with each $b_i \models \Sigma(x_i), b \equiv_{\boldsymbol{e}}^X \sigma(b) \}.$

Remark 1.20. For $X \in \{L, KP, S\}$, it is easy to check that $Autf_X^{\lambda}(\Sigma, e)$ and $Autf_X(\Sigma, e)$ are normal subgroups of $Aut_e(\Sigma)$.

Definition 1.21.

- (1) For $X \in \{L, KP, S\}$, for any cardinal λ , $Gal_X^{\lambda}(\Sigma, e) = Aut_e(\Sigma) / Autf_X^{\lambda}(\Sigma, e)$.
- (2) $\operatorname{Gal}_{L}(\Sigma, e) = \operatorname{Aut}_{e}(\Sigma) / \operatorname{Autf}_{L}(\Sigma, e)$ is the $\operatorname{Lascar}(\operatorname{-Galois})$ group over e relativized to Σ .
- (3) $\operatorname{Gal}_{\mathrm{KP}}(\Sigma, e) = \operatorname{Aut}_{e}(\Sigma) / \operatorname{Autf}_{\mathrm{KP}}(\Sigma, e)$ is the KP(-Galois) group over e relativized to Σ .
- (4) $\operatorname{Gal}_{S}(\Sigma, e) = \operatorname{Aut}_{e}(\Sigma) / \operatorname{Autf}_{S}(\Sigma, e)$ is the Shelah(-Galois) group over e relativized to Σ .

Remark 1.22.

- (1) For $X \in \{L, KP, S\}$, if [f] = [id] in $Gal_X(T, e)$, then [f] = [id] in $Gal_X(\Sigma, e)$.
- (2) In general, $\operatorname{Gal}^1_L(\Sigma) \neq \operatorname{Gal}^2_L(\Sigma)$ (c.f. [DKKL21, Example 2.3]).

Fact 1.23.

- (1) $\operatorname{Autf}_{L}(\Sigma, e) = \operatorname{Autf}_{L}^{\omega}(\Sigma, e).$
- (2) $\operatorname{Autf}_{\operatorname{KP}}(\Sigma, \boldsymbol{e}) = \operatorname{Autf}_{\operatorname{KP}}^{\omega}(\Sigma, \boldsymbol{e}).$
- (3) $\operatorname{Autf}_{S}(\Sigma, \boldsymbol{e}) = \operatorname{Autf}_{S}^{\omega}(\Sigma, \boldsymbol{e}).$

Proof. (1): The proof is the same as [DKL17, Remark 3.3] and [Lee22, Proposition 6.3] over a hyperimaginary, so we omit it.

(2): $\sigma \in \operatorname{Autf}_{\mathrm{KP}}(\Sigma, e)$ if and only if for any tuple b of realizations of Σ , $b \equiv_{e}^{\mathrm{KP}} \sigma(b)$. But \equiv_{e}^{KP} is equivalent to $\equiv_{\mathrm{bdd}(e)}$ (which is type-definable) by Fact 1.17, thus if $b' \equiv_{e}^{\mathrm{KP}} \sigma(b)'$ for any corresponding subtuples $b', \sigma(b')$ of $b, \sigma(b')$, which are tuples of finitely many realizations of Σ , then $b \equiv_{e}^{\mathrm{KP}} \sigma(b)$ by compactness. Thus if $\sigma \in \operatorname{Autf}_{\Sigma}(\Sigma, e)$, then $\sigma \in \operatorname{Autf}_{\Sigma}(\Sigma, e)$. The proof for (3) is the same as (2).

Fact 1.24 ([DKL17, Proposition 3.6] or [Lee22, Proposition 6.5]). The relativized Lascar group $Gal_L(\Sigma, e)$ does not depend on the choice of \mathfrak{C} .

2. Topology on relativized model theoretic Galois groups

In this section, we will generalize Fact 1.14 and Fact 1.17 into the relativized Lascar group. More precisely, we will find a topology \mathfrak{t} on the relativized Lascar group $\operatorname{Gal}_{L}(\Sigma, e)$ such that

- the group $\operatorname{Gal}_{\operatorname{L}}(\Sigma, \boldsymbol{e})$ is a quasi-compact group with respect to \mathfrak{t} , and
- $\operatorname{Autf}_{\operatorname{KP}}(\Sigma, \boldsymbol{e}) = \pi'^{-1}[\operatorname{Gal}^0_{\operatorname{L}}(\Sigma, \boldsymbol{e})]$ and $\operatorname{Autf}_{\operatorname{S}}(\Sigma, \boldsymbol{e}) = \pi'^{-1}[\operatorname{Gal}^c_{\operatorname{L}}(\Sigma, \boldsymbol{e})],$

where $\pi' : \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) \to \operatorname{Gal}_{\mathbf{L}}(\Sigma, \boldsymbol{e})$ is the natural surjective map, and $\operatorname{Gal}_{\mathbf{L}}^{0}(\Sigma, \boldsymbol{e})$ and $\operatorname{Gal}_{\mathbf{L}}^{c}(\Sigma, \boldsymbol{e})$ are the identity closure and the connected component of $\operatorname{Gal}_{\mathbf{L}}(\Sigma, \boldsymbol{e})$ in the topology \mathfrak{t} .

Definition 2.1. A small tuple b of realizations of Σ is called a Lascar tuple (in Σ) if $\operatorname{Aut}_{\mathbf{L}}(\Sigma, e) = \{ \sigma \in \operatorname{Aut}_{e}(\Sigma) : b \equiv_{e}^{\mathbf{L}} \sigma(b) \}$.

Lemma 2.2. For any e-invariant partial type $\Sigma(x)$, there is a Lascar tuple in Σ .

Proof. By Fact 1.10(2), the set of Lascar equivalence classes

$$C = \{c_{\equiv_{\boldsymbol{e}}^{\mathbf{L}}} : c \text{ is a countable tuple of realizations of } \Sigma\}$$

is small, say its cardinal is κ .

Let $b=(b_i:i<\kappa)$ be a small tuple that collects representatives of Lascar classes in C, only one for each class. Then b is the desired one; by Fact 1.23, it is enough to show that for an automorphism $f\in \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C})$, if $b\equiv_{\boldsymbol{e}}^{\operatorname{L}}f(b)$, then for any tuple d of countable realizations of Σ , $d\equiv_{\boldsymbol{e}}^{\operatorname{L}}f(d)$. Note that there is $i<\kappa$ such that $d\equiv_{\boldsymbol{e}}^{\operatorname{L}}b_i$. Then we have

$$d \equiv_{\boldsymbol{e}}^{\mathrm{L}} b_i \equiv_{\boldsymbol{e}}^{\mathrm{L}} f(b_i) \equiv_{\boldsymbol{e}}^{\mathrm{L}} f(d)$$

where the last equivalence follows from the invariance of \equiv_{e}^{L} .

Remark 2.3.

- (1) Any small tuple of realizations of Σ can be extended into a Lascar tuple.
- (2) Any concatenation of two Lascar tuples is again a Lascar tuple.

Now we fix a Lascar tuple b in Σ and a small model M with $b \in M$ and $e \in dcl(M)$. Let

$$S_b(b) := \{ \operatorname{tp}(\sigma(b)/b) : \sigma \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) \}$$

= \{ \text{tp}(f(b)/b) : f \in \text{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \}.

For the natural restriction map $r: S_M(M) \to S_b(b)$, which is continuous with respect to the logic topology on the type space, we have that $S_b(b)$ is a compact space. Next, Consider a map

$$\nu_b: S_b(b) \to \operatorname{Gal}^{\lambda}_{\mathbf{L}}(\Sigma, \mathbf{e}), \ p = \operatorname{tp}(\sigma(b)/b) \mapsto [\sigma].$$

Then, it is not hard to check that ν_b is well-defined because b is a Lascar tuple (the same proof of Fact 1.11 works).

Remark 2.4. We have the following commutative diagram of natural surjective maps:

Aut_e(
$$\mathfrak{C}$$
) $\stackrel{\mu}{\longrightarrow} S_M(M) \stackrel{\nu}{\longrightarrow} \operatorname{Gal}_{\mathbf{L}}(T, \mathbf{e}) \stackrel{\eta_{\mathrm{KP}}}{\longrightarrow} \operatorname{Gal}_{\mathbf{KP}}(T, \mathbf{e}) \stackrel{\eta_{\mathrm{S}}}{\longrightarrow} \operatorname{Gal}_{\mathbf{S}}(T, \mathbf{e})$

$$\downarrow^{\xi} \qquad \qquad \downarrow^{r} \qquad \qquad \downarrow^{\xi_{\mathbf{L}}} \qquad \qquad \downarrow^{\xi_{\mathrm{KP}}} \qquad \downarrow^{\xi_{\mathrm{S}}}$$
Aut_e(Σ) $\stackrel{\mu_b}{\longrightarrow} S_b(b) \stackrel{\nu_b}{\longrightarrow} \operatorname{Gal}_{\mathbf{L}}(\Sigma, \mathbf{e}) \stackrel{\eta_{\mathrm{KP}, \Sigma}}{\longrightarrow} \operatorname{Gal}_{\mathbf{KP}}(\Sigma, \mathbf{e}) \stackrel{\eta_{\mathrm{S}, \Sigma}}{\longrightarrow} \operatorname{Gal}_{\mathbf{S}}(\Sigma, \mathbf{e})$

Put $\pi_b := \nu_b \circ \mu_b$ and $\pi_{\Sigma} := \pi_b \circ \xi = \xi_{\mathbb{L}} \circ \pi$. Note that $\pi = \nu \circ \mu : \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C}) \to \operatorname{Gal}_{\mathbb{L}}(T, \boldsymbol{e})$ and $\pi_b = \pi' : \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) \to \operatorname{Gal}_{\mathbb{L}}(\Sigma, \boldsymbol{e})$.

Remark 2.5 (Relaivized Galois groups are topological groups). Consider a topology \mathfrak{t}_b on $\mathrm{Gal}_{\mathrm{L}}(\Sigma, \boldsymbol{e})$ given by the quotient topology via ν_b . Then, $(\mathrm{Gal}_{\mathrm{L}}(\Sigma, \boldsymbol{e}), \mathfrak{t}_b)$ is a quasi-compact topological group whose topology \mathfrak{t}_b is independent of the choice of a Lascar tuple b.

Proof. Then the restriction map $r: S_M(M) \to S_b(b)$ is a continuous surjective map between compact Hausdorff spaces, hence a quotient map. Thus $\nu_b: S_b(b) \to \operatorname{Gal}_L(\Sigma, \boldsymbol{e})$ and $\nu_b \circ r: S_M(M) \to \operatorname{Gal}_L(\Sigma, \boldsymbol{e})$ induce the same quotient topology on $\operatorname{Gal}_L(\Sigma, \boldsymbol{e})$.

But the quotient topology on $\operatorname{Gal}_{L}(\Sigma, e)$ given by the natural projection map $\xi_{L} : \operatorname{Gal}_{L}(T, e) \to \operatorname{Gal}_{L}(\Sigma, e)$ is also the same as the above topology, thus the topology of $\operatorname{Gal}_{L}(\Sigma, e)$ is independent of the choice b (Fact 1.14) and it is a topological group since a quotient group of a topological group with quotient topology is a topological group (it is the same reasoning as [DKL17, Remark 3.4]).

The following is a relativized analogue of [KL23, Proposition 2.3]. The purpose of Proposition 2.6 is to interpret closed subgroups of $Gal_L(\Sigma, e)$ using bounded hyperimaginaries.

Proposition 2.6. Let $H \leq \operatorname{Aut}_{\boldsymbol{e}}(\mathfrak{C})$. The following are equivalent.

- (1) $\pi_{\Sigma}(H)$ is closed in $\operatorname{Gal}_{L}(\Sigma, \boldsymbol{e})$ and $H = \pi_{\Sigma}^{-1}[\pi_{\Sigma}(H)]$.
- (2) $H = \operatorname{Aut}_{e'e}(\mathfrak{C})$ for some hyperimaginary $e' \in \operatorname{bdd}(e)$, and one of the representatives of e' is a tuple of realizations of Σ .

Proof. The method of proof is the same as the proof of [KL23, Proposition 2.3], but we use a Lascar tuple b instead of a model M.

 (\Rightarrow) : We have

$$\operatorname{Aut}_b(\mathfrak{C}) = \operatorname{Aut}_{b\boldsymbol{e}}(\mathfrak{C}) \le \xi^{-1}[\operatorname{Autf_L}(\Sigma,\boldsymbol{e})] \le H$$

and since $\pi_{\Sigma}(H)$ is closed, $\nu_b^{-1}(\pi_{\Sigma}(H))$ is closed and thus $\{h(b): h \in H\}$ is type-definable over b. Hence by [KL23, Proposition 2.2], $H = \operatorname{Aut}_{b_F \boldsymbol{e}}(\mathfrak{C})$ for some \emptyset -type-definable equivalence relation F.

We have $b_F \in \text{bdd}(e)$ because $[\text{Aut}_{e}(\mathfrak{C}) : H] = \kappa$ is small since $\text{Autf}_{L}(\mathfrak{C}, e) \leq H$, and so there is $\{f_i \in \text{Aut}_{e}(\mathfrak{C}) : i < \kappa\}$ such that $\text{Aut}_{e}(\mathfrak{C}) = \bigsqcup_{i < \kappa} f_i \cdot H$. Then for all $g, h \in \text{Aut}_{e}(\mathfrak{C})$, if $g \cdot H = h \cdot H$, then $h^{-1}g \in H$ and hence $g(b_F) = h(b_F)$.

(\Leftarrow): Say $e' = c_F$ where c is a tuple of realizations of Σ and F is an \emptyset -type-definable equivalence relation. By Remark 2.3 and Remark 2.5, we may choose a Lascar tuple b which contains c. For $q(x) = \operatorname{tp}(c/e)$, because $e' \in \operatorname{bdd}(e)$,

$$F'(z_1, z_2) := (q(z_1) \land q(z_2) \land F(z_1, z_2)) \lor (\neg q(z_1) \land \neg q(z_2))$$

is an e-invariant bounded equivalence relation on $\mathfrak{C}^{|c|}$. Since c is a tuple in $\Sigma(\mathfrak{C})$, for any $\sigma \in \operatorname{Autf}_{\mathbb{L}}(\Sigma, e)$, $\sigma(c) \equiv_{e}^{\mathbb{L}} c$ and thus $F'(\sigma(c), c)$ by Fact 1.17(1). Note that $c_F = c_{F'}$, so we have $\xi^{-1}[\operatorname{Autf}_{\mathbb{L}}(\Sigma, e)] \leq H = \operatorname{Aut}_{c_F e}(\mathfrak{C})$, hence $\pi_{\Sigma}^{-1}[\pi_{\Sigma}[H]] = H$. Notice that $H = \{f \in \operatorname{Aut}_{e}(\mathfrak{C}) : f(c) \models F(z, c)\}$. Then $\nu_b^{-1}[\pi_{\Sigma}[H]] = \{p(z') \in S_b(b) : F(z, c) \subseteq p(z')\}$ where $z \subseteq z'$ and |z'| = |b|. Thus H is closed. \square

Definition 2.7.

- (1) For $H \leq \operatorname{Aut}_{e}(\mathfrak{C}), \equiv^{H}$ is an orbit equivalence relation such that for tuples b, c in $\mathfrak{C}, b \equiv^{H} c$ if and only if there is $h \in H$ such that h(b) = c.
- (2) For $H \leq \operatorname{Aut}_{\boldsymbol{e}}(\Sigma)$, we will use the same notation \equiv^H but it is confined to the tuples of realizations

Remark 2.8. Let $H \leq \operatorname{Aut}_{e}(\Sigma)$ and c, d be tuples of realizations of Σ .

- (1) If $H = \operatorname{Autf}_{L}(\Sigma, \boldsymbol{e})$, then $c \equiv^{H} d$ if and only if $c \equiv^{L}_{\boldsymbol{e}} d$. (2) If $H = \operatorname{Autf}_{KP}(\Sigma, \boldsymbol{e})$, then $c \equiv^{H} d$ if and only if $c \equiv^{KP}_{\boldsymbol{e}} d$. (3) If $H = \operatorname{Autf}_{S}(\Sigma)$, then $c \equiv^{H} d$ if and only if $c \equiv^{S}_{\boldsymbol{e}} d$.

Proposition 2.9. Give the following topology on $\operatorname{Aut}_{\mathbf{e}}(\Sigma)$: Its basic open sets are of the form $O_{c,d}$ where c and d are tuples of finitely many realizations of Σ , and $\sigma \in O_{c,d}$ if and only if $\sigma(c) = d$. Then $\pi_b: \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) \to \operatorname{Gal}_{\operatorname{L}}(\Sigma, \boldsymbol{e}) \text{ is continuous.}$

Proof. It can be proved in the same way as in [KL23, Proposition 3.1] using a Lascar tuple b. Let U be an open subset of $\operatorname{Gal}_{L}(\Sigma, \boldsymbol{e})$ and $[\sigma] = \sigma \cdot \operatorname{Autf}_{L}(\Sigma, \boldsymbol{e}) \in U$. Then $\nu_{b}^{-1}[U]$ is open and so there is a basic open set $V_{\varphi(x)} = \{p \in S_b(b) : \varphi(x) \in p\} \subseteq \nu_b^{-1}[U]$ such that $\operatorname{tp}(\sigma(b)/b) \in V_{\varphi(x)}$. Let b_0 be subtuple of b, which is a tuple of finitely many realizations of Σ and contains the finite tuple of b which corresponds to $\varphi(x)$ in $V_{\varphi(x)}$. Then $\mu_b^{-1}[V_{\varphi(x)}] = \{ \tau \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) : \tau(b_0) \models \varphi(x) \}$ contains σ . Note that the basic open set $O_{b_0,\sigma(b_0)} = \{ \tau \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) : \tau(b_0) = \sigma(b_0) \}$ contains σ and is contained in $\mu_b^{-1}[V_{\varphi(x)}]$. Thus $\pi_b^{-1}[U]$ is

Proposition 2.10. Let H be a subgroup of $\mathrm{Aut}_{\mathbf{e}}(\Sigma)$ containing $\mathrm{Autf}_{\mathbf{L}}(\Sigma,\mathbf{e})$ such that $\pi_b(H)$ is a closed subgroup of $Gal_L(\Sigma, e)$. Then

- (1) For any tuples c and d of realizations of Σ , $c \equiv^H d$ if and only if for all corresponding subtuples c' and d' of c and d, which are tuples of finitely many realizations of Σ , $c' \equiv^H d'$.
- (2) $H = \{ \sigma \in \operatorname{Aut}_{\mathbf{e}}(\Sigma) : \sigma \text{ fixes all the } \equiv^H \text{-classes of any tuples of realizations of } \Sigma \}$
 - $= \{ \sigma \in \operatorname{Aut}_{e}(\Sigma) : \sigma \text{ fixes all the } \equiv^{H} \text{-classes of any tuples of finitely many realizations of } \Sigma \}.$

Proof. (1): Suppose that for all corresponding subtuples c' and d' of c and d, which are tuples of finitely many realizations of Σ , $c' \equiv^H d'$. Note that, by Proposition 2.6, $H' := \pi_{\Sigma}^{-1}[\pi_b[H]] = \operatorname{Aut}_{e'e}(\mathfrak{C})$ for some hyperimaginary $e' \in \operatorname{bdd}(e)$ such that one of its representatives is a tuple of realizations of Σ . Then by commutativity of diagram in Remark 2.4, $H = \xi[H'] = \operatorname{Aut}_{e'e}(\Sigma)$ and so $c \equiv^H d$ if and only if $\operatorname{tp}(c/e'e) = \operatorname{tp}(d/e'e)$. Since $\operatorname{tp}(c'/e'e) = \operatorname{tp}(d'/e'e)$ for all corresponding subtuples c' and d' of c and d, which are tuples of finitely many realizations of Σ , by compactness, we have that $\operatorname{tp}(c/e'e) = \operatorname{tp}(d/e'e)$ and so $c \equiv^H d$.

(2): We show that

 $H \supseteq \{ \sigma \in \operatorname{Aut}_{\boldsymbol{e}}(\Sigma) : \sigma \text{ fixes all the } \equiv^H \text{-classes of any tuples of finitely many realizations of } \Sigma \}.$

Let σ be an element on the right. For any subtuple b' of b, which is a tuple of finitely many realizations of Σ , $b' \equiv^H \sigma(b')$, and so by (1), $b \equiv^H \sigma(b)$. Thus there is $\tau \in H$ such that $\tau(b) = \sigma(b)$ and $\tau^{-1}\sigma(b) = b$. We have

$$\tau^{-1}\sigma \in \operatorname{Aut}_b(\Sigma) \leq \operatorname{Autf}_L(\Sigma, e) \leq H,$$

and conclude that $\sigma \in \tau H = H$.

Definition 2.11.

- (1) $\operatorname{Gal}_{L}^{c}(\Sigma, \boldsymbol{e})$ is the topological closure of the trivial subgroup of $\operatorname{Gal}_{L}(\Sigma, \boldsymbol{e})$.
- (2) $\operatorname{Gal}_{\mathrm{L}}^{\bar{0}}(\Sigma, e)$ is the connected component containing the identity in $\operatorname{Gal}_{\mathrm{L}}(\Sigma, e)$.

Note that $\operatorname{Gal}_{\mathbf{L}}^{c}(\Sigma, \boldsymbol{e})$ and $\operatorname{Gal}_{\mathbf{L}}^{0}(\Sigma, \boldsymbol{e})$ are closed normal subgroups.

Lemma 2.12. Autf_{KP} (Σ, e) / Autf_L (Σ, e) and Autf_S (Σ, e) / Autf_L (Σ, e) are closed in Gal_L (Σ, e) .

Proof. We have

$$\nu_b^{-1} \eta_{\mathrm{KP},\Sigma}^{-1}[\mathrm{Autf_{KP}}(\Sigma,\boldsymbol{e})/\,\mathrm{Autf_{L}}(\Sigma,\boldsymbol{e})] = \{\mathrm{tp}(f(b)/b): b \equiv_{\boldsymbol{e}}^{\mathrm{KP}} f(b)\}.$$

By Fact 1.17(2) and the proof of Remark 1.13, \equiv_{e}^{KP} is type-definable and there is an e-invariant partial type $\Gamma(x,y)$ over b such that $\{\operatorname{tp}(f(b)/b): b \equiv_{\boldsymbol{e}}^{\boldsymbol{e}} f(b)\} = \{p(x) \in S_b(b): \models \Gamma(x,b)\}$, implying that $\operatorname{Autf}_{KP}(\Sigma, e)/\operatorname{Autf}_{L}(\Sigma, e)$ is closed. The proof for $\operatorname{Autf}_{S}(\Sigma, e)/\operatorname{Autf}_{L}(\Sigma, e)$ is exactly the same; replace KP by S.

Proposition 2.13.

- (1) Let $H = \pi_b^{-1}(\operatorname{Gal}_{\mathbf{L}}^c(\Sigma, \boldsymbol{e})) \leq \operatorname{Aut}_{\boldsymbol{e}}(\Sigma)$. Then $c \equiv^H d$ if and only if $c \equiv^{\operatorname{KP}}_{\boldsymbol{e}} d$. (2) Let $H = \pi_b^{-1}(\operatorname{Gal}_{\mathbf{L}}^0(\Sigma)) \leq \operatorname{Aut}_{\boldsymbol{e}}(\Sigma)$. Then $c \equiv^H d$ if and only if $c \equiv^{\operatorname{E}}_{\boldsymbol{e}} d$.
- *Proof.* (1): By Proposition 2.6, we know that $\pi_{\Sigma}^{-1}[\operatorname{Gal}_{L}^{c}(\Sigma, \boldsymbol{e})] = \operatorname{Aut}_{\boldsymbol{e}'\boldsymbol{e}}(\mathfrak{C})$ for $\boldsymbol{e}' \in \operatorname{bdd}(\boldsymbol{e})$. Thus by commutativity of diagram in Remark 2.4, $H = \xi(\operatorname{Aut}_{\boldsymbol{e}'\boldsymbol{e}}(\mathfrak{C})) = \operatorname{Aut}_{\boldsymbol{e}'\boldsymbol{e}}(\Sigma)$ and so $c \equiv^{H} d$ if and only if $c \equiv_{\boldsymbol{e}'\boldsymbol{e}} d$. By Fact 1.17(2), $c \equiv_{\boldsymbol{e}}^{\operatorname{KP}} d$ if and only if $c \equiv_{\operatorname{bdd}(\boldsymbol{e})} d$, and $\boldsymbol{e}' \in \operatorname{bdd}(\boldsymbol{e})$, thus $c \equiv_{\boldsymbol{e}}^{\operatorname{KP}} d$ implies

By Lemma 2.12, $\operatorname{Gal}_{\operatorname{L}}^c(\Sigma, \boldsymbol{e}) \leq \operatorname{Autf}_{\operatorname{KP}}(\Sigma, \boldsymbol{e}) / \operatorname{Autf}_{\operatorname{L}}(\Sigma, \boldsymbol{e})$. We already have proved that $c \equiv_{\boldsymbol{e}}^{\operatorname{KP}} d$ implies $c \equiv^H d$, and $c \equiv^{\operatorname{Autf}_{\operatorname{KP}}(\Sigma, \boldsymbol{e})} d$ if and only if $c \equiv_{\boldsymbol{e}}^{\operatorname{KP}} d$ by Remark 2.8, so it follows that $c \equiv^H d$ if and only if $c \equiv_{\boldsymbol{e}}^{\operatorname{KP}} d$.

(2): It can be proved using Fact 1.17(3) and the fact that in a topological group, the connected component containing the identity is the intersection of all closed normal subgroups of finite indices. \Box

Theorem 2.14.

- (1) $\operatorname{Gal}_{L}^{c}(\Sigma, \boldsymbol{e}) = \operatorname{Autf}_{KP}(\Sigma, \boldsymbol{e}) / \operatorname{Autf}_{L}(\Sigma, \boldsymbol{e}).$ (2) $\operatorname{Gal}_{L}^{0}(\Sigma, \boldsymbol{e}) = \operatorname{Autf}_{S}(\Sigma, \boldsymbol{e}) / \operatorname{Autf}_{L}(\Sigma, \boldsymbol{e}).$

Proof. (1): Let $H_1 = \pi_b^{-1}[\operatorname{Gal}^c_{\mathbf{L}}(\Sigma, \boldsymbol{e})]$ and $H_2 = \operatorname{Autf}_{\mathrm{KP}}(\Sigma, \boldsymbol{e})$. By Remark 2.8 and Proposition 2.13, \equiv^{H_1} and \equiv^{H_2} are the same equivalence relations on the tuples of realizations of $\Sigma(\mathfrak{C})$. Then by Corollary $2.10, H_1 = H_2.$

(2): By exactly the same proof as (1), by letting $H_1 = \pi_h^{-1}[\operatorname{Gal}_L^0(\Sigma, \boldsymbol{e})]$ and $H_2 = \operatorname{Autf}_S(\Sigma, \boldsymbol{e})$.

References

[C11] Enrique Casanovas, Simple theories and hyperimaginaries (Lecture Notes in Logic), Cambridge University Press,

[CLPZ01] Enrique Casanovas, Daniel Lascar, Anand Pillay and Martin Ziegler, Galois groups of first order theories, Journal of Mathematical Logic, 1, (2001), 305–319.

[DKKL21] Jan Dobrowolski, Byunghan Kim, Alexei Kolesnikov and Junguk Lee, The relativized Lascar groups, typeamalgamation, and algebraicity, Journal of Symbolic Logic, 86, (2021), 531-557.

[DKL17] J. Dobrowolski, B. Kim, and J. Lee, The Lascar groups and the first homology groups in model theory, Ann. Pure Appl. Logic, 168, (2017), 2129–2151.

[K14] Byunghan Kim, Simplicity theory, Oxford University Press, 2014.

[KL23] B. Kim, and H. Lee, Automorphism groups over a hyperimaginary, J. Math. Soc. Japan, 75, (2023), 21–49,

[L82] Daniel Lascar, On the category of models of a complete theory, Journal of Symbolic Logic, 47, (1982), 249–266.

[LP01] Daniel Lascar and Anand Pillay, Hyperimaginaries and automorphism groups, Journal of Symbolic Logic, 66, (2001), 127 - 143.

[Lee22] H. Lee, Quotient groups of the Lascar group and strong types in the context of hyperimaginaries, Ph.D thesis, Yonsei University, 2022.

[Z02] Martin Ziegler, Introduction to the Lascar group, Tits buildings and the model theory of groups, London Math. Lecture Note Series, 291, Cambridge University Press, (2002), 279-298.

DEPARTMENT OF MATHEMATICS Yonsei University 50 Yonsei-ro Seodaemun-gu SEOUL 03722 SOUTH KOREA

Email address: hyoyoonlee@yonsei.ac.kr