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ABSTRACT. We study relativized Lascar groups, and show that some fundamental facts about the Galois
groups of first-order theories can be generalized to the relativized context.

1. PRELIMINARIES

1.1. Hyperimaginaries and model theoretic Galois groups. The proofs for basic properties of
hyperimaginaries can be found on [C11] and [K14]. Most of the basic definitions and facts on the Lascar
group can be found on [KL23], [Lee22] and [K14], which collect and generalize the results in [Z02],
[CLPZ01], [LP01] and more papers to the context of hyperimaginaries.

We denote the automorphism group of € by Aut(€) and for A C €, we denote the set of automorphisms
of € fixing A pointwise by Aut4 ()

Definition 1.1. Let F be an equivalence relation defined on €* and A C €. Then FE is said to be

1) finite if the number of its equivalence classes is finite,

2) bounded if the number of its equivalence classes is small,

3) A-invariant if for any f € Auty(€), E(a,b) if and only if E(f(a), f(b)),

4) A-definable if there is a formula (x,y) over A such that = ¢(a,b) if and only if E(a,b) holds,
just definable if it is definable over some parameters, and

(5) A-type-definable if there is a partial type ®(z,y) over A such that = ®(a,b) if and only if F(a,b)

holds, just type-definable if it is type-definable over some parameters.

S~~~ ~

Definition 1.2. Let E be an (-type-definable equivalence relation on €*. An equivalence class of F is
called a hyperimaginary and it is denoted by ap for a representative a. A hyperimaginary ag is countable
if |a| is countable.

Definition 1.3. For a hyperimaginary e,
Aute(€) := {f € Aut(C) : f(e) = e (setwise)}.

We say an equivalence relation F is e-invariant if for any f € Aute(€), E(a,b) holds if and only if

E(f(a), f(b)) holds.

Definition 1.4. For a hyperimaginary e, we say two ‘objects’ (e.g. elements of €, tuples of equivalence
classes, enumerations of sets) b and ¢ are interdefinable over e if for any f € Aute(€), f(b) = b if and
only if f(c) = ¢

Fact 1.5 ([K14, Section 4.1] or [C11, Chapter 15]).
(1) Any tuple (of elements) b in €, any tuple ¢ of imaginaries of €, and any tuple of hyperimaginaries
are interdefinable with a single hyperimaginary.
(2) Any hyperimaginary is interdefinable with a sequence of countable hyperimaginaries.

Until the end of this paper, we will fix some arbitrary (-type-definable equivalence relation
F and a hyperimagianry e := ap.

Definition 1.6.
(1) A hyperimaginary e’ is definable over e if f(e') = €’ for any f € Aute(€).
(2) A hyperimaginary €’ is algebraic over e if {f(e’) : f € Aut.(€)} is finite.
(3) A hyperimaginary e’ is bounded over e if {f(€'): f € Aute(€)} is small.
(4) The definable closure of e, denoted by dcl(e) is the set of all countable hyperimaginaries e’ such
that f(e') = € for any f € Aute(€).
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(5) The algebraic closure of e, denoted by acl(e) is the set of all countable hyperimaginaries e’ such
that {f(€') : f € Aute(€)} is finite.

(6) The bounded closure of e, denoted by bdd(e) is the set of all countable hyperimaginaries e’ such
that {f(€') : f € Aute(€)} is bounded.

Definition/Remark 1.7.

(1) By Fact 1.5(2), if f € Aut(€) fixes bdd(e), then for any hyperimaginary e’ which is bounded over
e, f(e') = €. Similar statements also hold for dcl(e) and acl(e).

(2) By (1), for a hyperimaginary bp which is possibly not countable, we write br € bdd(e) if by is
bounded over e. We use notation br € dcl(e), acl(e) in a similar way.

(3) Each of dcl(e), acl(e), and bdd(e) is small and interdefinable with a single hyperimaginary (c.f.
[C11, Proposition 15.18]). Thus it makes sense to consider Autyqq(e) ().

Definition 1.8 ([K14, Section 4.1]). Let br and c¢r be hyperimaginaries.
(1) The complete type of bp over e, tp,(br/e) is a partial type over a
321 20(tp,, ., (ba) A F(x,21) A E(a, 22)),

whose solution set is the union of automoprhic images of by over e.

(2) We write bp =, cp if there is an automorphism f € Aute(€) such that f(bp) = cp. Then, the
equivalence relation xp =, yp in variables xy is a-type-definable, given by the partial type:

Iz 20wy wo (E(a, 21) A E(a, z2) Atp(z1wy) = tp(zaws) A F(wy, z) A F(wa,y)).
We also write tp, (br/e) = tp,(cr/e) for br =, cF.
Now we start to recall the model theoretic Galois groups.

Definition 1.9.
(1) Autfy, (¢, e) is a normal subgroup of Aute(€) generated by
{f € Aute(®) : f € Autp(€) for some M =T such that e € dcl(M)}.
(2) The quotient group Galy, (T, e) = Aut.(€)/ Autfy, (€, e) is called the Lascar group of T over e.

Fact 1.10 ([KL23, Section 1]).
(1) Galy(T,e) does not depend on the choice of a monster model up to isomorphism, so it is legitimate
to write Galy, (T, e) instead of Galy (€, e).
(2) [Aute(€) : Autfy (€, e)] = | Galy (T, e)| < 2/T1*+1alwhich is small.
Fact 1.11 ([Z02, Lemma 1]). Let M be a small model of T such that e € dcl(M) and f, g € Aute(€). If
tp(f(M)/M) = tp(g(M)/M), then f - Autfy,(€,e) = g - Autfy, (€, e) as elements in Galy (T, e).
Definition 1.12. Let M be a small model of T such that e € dcl(M).
(1) Su(M) = {tp(f(M)/M) : f € Aute(€)}.
(2) v: Sy(M) — Galy(T,e) is defined by v(tp(f(M)/M)) = f - Autf, (€, e) = [f], which is well-
defined by Fact 1.11.
(3) p:Aute(€) = Sy (M) is defined by u(f) = tp(f(M)/M).
(4) m=vopu:Aute(€) — Gal,(T, e), so that n(f) = [f] in GalL(T, e).
Remark 1.13 ([KL23, Remark 1.9]). Let S, (M) = {p(x) : |z| = |[M| and p(z) is a complete type over
M} be the compact space of complete types. Note that even if e € del(M), possibly a is not in M, so
that Sy (M) is not {p € S,(M) : tp(M/e) C p}. But for any small model M such that e € dcl(M),
Sy (M) is a closed (so compact) subspace.

Proof. Let
r(z,a) = tp(M/e) = 3z122(tp,, ,,(Ma) Nz = 21 A E(a, 22))
and 7¢(y, M) = tp(a/M). Then
v (z, M) = 3y (r(x,y) Aoy, M))
has the same solution set as tp(M/e). Thus Sy (M) = {p € Sx(M) : r'(x, M) C p}, which is closed. O
Fact 1.14 ([KL23, Corollary 1.20]).

(1) We give the quotient topology on Galy,(T,e) induced by v : Sy (M) — Galy,(T,e). The quotient
topology does not depend on the choice of M.
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(2) Gal,(T,e) is a quasi-compact topological group.
Definition 1.15. Let [id] be the identity in Galy(T,e), Galf (T, e) be the topological closure of the
trivial subgroup of Galp(T,e), and Galg (T, e) be the connected component containing the identity in
Caly, (T, e). Put Autfxp(C,e) = 7~ [Gal{ (T, e)] and Autfs(¢, e) = 7~ [Gal) (T, e)].
(1) The KP(-Galois) group of T over e is
Galkp (T, e) := Aute(€)/ Autfxp (€, e).
(2) The Shelah(-Galois) group of T over e is
Galg(T, e) := Aut(€)/ Autfs (T, e).
Note that we have
Galgp (T, e) = Galy,(T, e)/ Galf (T, e), Galg(T, e) = Galy,(T,e)/ Gal} (T, e).
Definition 1.16. Given hyperimaginaries br, cp, they are said to have the same
(1) Lascar strong type over e if there is f € Autfy (€, e) such that f(bp) = cp, and it is denoted by
bF EI; Ccr,
(2) KP strong type over e (where KP is an abbreviation for Kim-Pillay) if there is f € Autfxp(C, e)
such that f(br) = cr, and it is denoted by bp =XF cp, and
(3) Shelah strong type over e if there is f € Autfg(€, e) such that f(bp) = cp, and it is denoted by
br EE CF.
Fact 1.17 ([KL23]). Let bp and cp be hyperimaginaries.

(1) br =% cr if and only if for any e-invariant bounded equivalence relation E which is coarser than
F, E(b,c) holds; xr =L yr is the finest such an equivalence relation among them.
(2) The following are equivalent.
(a) bF EEP Cp.
(b) br =bad(e) CF-
(¢) For any e-invariant type-definable bounded equivalence relation E which is coarser F', E(b, ¢)
holds (xr =K yr is the finest such an equivalence relation among them,).
(8) The following are equivalent.
(a) bF Eg Cp.
(b) br =acl(e) CF-
(¢) For any e-invariant type-definable equivalence relation L coarser than F, if by, has finitely
many conjugates over e, then L(b,c) holds.

If F is just = so that by and cp are just real tuples, then we can omit “coarser than F7.
Fact 1.18. Let F be an e-invariant type-definable equivalence relation on €%. Then there is an (-type-
definable equivalence relation F' such that for any ¢ € €%, cp and (ca)p: are interdefinable over e so
that we can ‘replace’ an equivalence class of an e-invariant type-definable equivalence relation with a
hyperimaginary.
Proof. Since F is e(= ag)-invariant, F' is type-definable over a, say by F(z,y;a). Then for p(x) = tp(a),
put

F'(wz,yw) i= (F(a,y: 2) A B(z,0) A p(2) A p(w)) V 2z = yu.
Then F’ is the desired one. O

1.2. Relativized model theoretic Galois groups. From now on, we fix an e-invariant partial type
Y (z) where z is a possibly infinite tuple of variables, that is, for any f € Aut(€), b = X(z) if and only
if f(b) = X(z). We write X(€) for the set of tuples b of elements in € such that b = X(z).

Definition 1.19 (Restriction of automoprhism groups to X). Let X € {L,KP, S}.
(1) Aute(X) = Aute(X(€)) = {f 1 2(€) : f € Aute(C)}.
(2) For a cardinal \, Autf (3, e) =

{0 € Aute(X) : for any of tuple b = (b;);<) where each b; = %(x;), b=2 o(b)}.
(3) Autfx(X,e) =
{0 € Aut(X) : for any cardinal A and for any tuple b = (b;);i<x
with each b; = X(z;), b =5 o(b)}.
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Remark 1.20. For X € {L,KP,S}, it is easy to check that Autf (X, e) and Autfy (X, e) are normal
subgroups of Aute(X).

Definition 1.21.

(1) For X € {L,KP,S}, for any cardinal A, Gal} (2, e) = Aut(X)/ Autf} (3, e).

(2) Galp(X,e) = Aute(X)/ Autf, (X, e) is the Lascar(-Galois) group over e relativized to .
(3) Galkp (X, e) = Aute(X)/ Autfkp (X, e) is the KP(-Galois) group over e relativized to X.
(4) Galg(X,e) = Aute(X)/ Autfs(Z, e) is the Shelah(-Galois) group over e relativized to .

Remark 1.22.
(1) For X € {L,KP,S}, if [f] = [id] in Galx (T, e), then [f] = [id] in Galx (%, e).
(2) In general, Galf (%) # Gali (®) (c.f. [DKKL21, Example 2.3)).

Fact 1.23.

(1) Autfy (X, e) = Autff (X, e).
(2) Autfxp(X, e) = Autfip(%, e).
(3) Autfs(X, e) = Autfg (2, e).

Proof. (1): The proof is the same as [DKL17, Remark 3.3] and [Lee22, Proposition 6.3] over a hyper-

imaginary, so we omit it.

(2): o € Autfgp(3,e) if and only if for any tuple b of realizations of ¥, b =KV o(b). But =EP is

equivalent to =pqq(e) (Which is type-definable) by Fact 1.17, thus if b’ =KP 5(b)’ for any corresponding

subtuples ¥,0 (V') of b, ('), which are tuples of finitely many realizations of ¥, then b =KF & (b) by
compactness. Thus if o € Autff (X, e), then o € Autfy (X, e). The proof for (3) is the same as (2). O

Fact 1.24 ([DKL17, Proposition 3.6] or [Lee22, Proposition 6.5]). The relativized Lascar group Galp, (%, e)
does not depend on the choice of €.

2. TOPOLOGY ON RELATIVIZED MODEL THEORETIC (GALOIS GROUPS

In this section, we will generalize Fact 1.14 and Fact 1.17 into the relativized Lascar group. More
precisely, we will find a topology t on the relativized Lascar group Galp, (X, e) such that

e the group Gal (X, e) is a quasi-compact group with respect to t, and
e Autfip(¥, e) = 7/~ 1Gald (3, e)] and Autfs(¥, e) = 7/~ [GalS (3, )],

where 7/ : Aute(X) — Galy, (2, e) is the natural surjective map, and Gal} (X, e) and Galf (%, e) are the
identity closure and the connected component of Galy, (3, e) in the topology t.

Definition 2.1. A small tuple b of realizations of ¥ is called a Lascar tuple (in X) if Autf,(X,e) = {o €
Aute(2) : b =L o(b)}.

Lemma 2.2. For any e-invariant partial type ¥(x), there is a Lascar tuple in 3.
Proof. By Fact 1.10(2), the set of Lascar equivalence classes
C = {c=v : ¢ is a countable tuple of realizations of ¥}

is small, say its cardinal is k.

Let b = (b; : i < k) be a small tuple that collects representatives of Lascar classes in C, only one
for each class. Then b is the desired one; by Fact 1.23, it is enough to show that for an automorphism
f € Aut.(€), if b =L £(b), then for any tuple d of countable realizations of 3, d =L f(d). Note that there
is i < k such that d =L b;. Then we have

d=¢ b =¢ [(bi) =¢ f(d)
where the last equivalence follows from the invariance of =L. U

Remark 2.3.

(1) Any small tuple of realizations of ¥ can be extended into a Lascar tuple.
(2) Any concatenation of two Lascar tuples is again a Lascar tuple.
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Now we fix a Lascar tuple b in ¥ and a small model M with b € M and e € dcl(M). Let
Sp(b) := {tp(c(b)/b) : 0 € Aute(X)}
= {tp(f(b)/b) : f € Aut(O)}.

For the natural restriction map r : Sy (M) — Sp(b), which is continuous with respect to the logic topology
on the type space, we have that S, (b) is a compact space. Next, Consider a map

vy = Sp(b) = Gal} (2, e), p = tp(a(b)/b) — [o].

Then, it is not hard to check that v} is well-defined because b is a Lascar tuple (the same proof of Fact
1.11 works).

Remark 2.4. We have the following commutative diagram of natural surjective maps:

Aute(€) —— Sy (M) —2— Galp(T,e) —=2% Galkp (T, e) —= Galg(T, e)

l& l’“ lEL ngP lﬁs
Aute (D) —2— Sy(b) —2— Galp, (T, e) =25 Galkp (S, e) —Z» Galg(X, e)
Put mp, := vy o pup and 7y = M 0 & = &, om. Note that 1 = v o p : Aute(€) — Galy(T,e) and
Ty =7 Aute () — Galp (3, e).

Remark 2.5 (Relaivized Galois groups are topological groups). Consider a topology t, on Galy, (X, e)
given by the quotient topology via 1. Then, (Gal, (X, e),t,) is a quasi-compact topological group whose
topology t; is independent of the choice of a Lascar tuple b.

Proof. Then the restriction map r : Sy (M) — Sp(b) is a continuous surjective map between compact
Hausdorff spaces, hence a quotient map. Thus v : Sp(b) — Galp (X, e) and vy or : Sy (M) — Gal (X, e)
induce the same quotient topology on Galy, (%, e).

But the quotient topology on Galy, (X, e) given by the natural projection map &, : Galp(T,e) —
Galp, (%, e) is also the same as the above topology, thus the topology of Galp (X, e) is independent of
the choice b (Fact 1.14) and it is a topological group since a quotient group of a topological group with
quotient topology is a topological group (it is the same reasoning as [DKL17, Remark 3.4]). g

The following is a relativized analogue of [KL23, Proposition 2.3]. The purpose of Proposition 2.6 is
to interpret closed subgroups of Galy, (X, e) using bounded hyperimaginaries.

Proposition 2.6. Let H < Aute(€). The following are equivalent.
(1) ms(H) is closed in Galy,(X,e) and H = 7y [rs(H)].
(2) H = Auter(€) for some hyperimaginary €' € bdd(e), and one of the representatives of €' is a
tuple of realizations of .

Proof. The method of proof is the same as the proof of [KL23, Proposition 2.3], but we use a Lascar
tuple b instead of a model M.
(=): We have
Auty(€) = Autpe(€) < &' [Autfy (T, e)] < H
and since ms;(H) is closed, v, ' (ms;(H)) is closed and thus {(b) : h € H} is type-definable over b. Hence
by [KL23, Proposition 2.2], H = Aut,..(€) for some ()-type-definable equivalence relation F.

We have bp € bdd(e) because [Aute(€) : H| = & is small since Autf;,(€,e) < H, and so there is
{fi € Aute(€) : i < K} such that Aute(€) = |, fi - H. Then for all g,h € Aut.(€),if g- H = h-H,
then h=!'g € H and hence g(br) = h(br).

(«<): Say € = cr where c is a tuple of realizations of ¥ and F' is an (-type-definable equivalence
relation. By Remark 2.3 and Remark 2.5, we may choose a Lascar tuple b which contains c¢. For
q(z) = tp(c/e), because e’ € bdd(e),

F'(21,22) = (q(21) A q(22) A F (21, 22)) V (ma(21) A =q(22))
is an e-invariant bounded equivalence relation on €l°. Since ¢ is a tuple in X(€), for any o € Autfy,(2, e),
o(c) =L ¢ and thus F'(o(c),c) by Fact 1.17(1). Note that cp = cps, so we have & Autf, (X, e)] <
H = Autpe(€), hence 7' [rs[H]] = H. Notice that H = {f € Aute(€) : f(c) F F(z,¢)}. Then
v, Hrs[H] = {p(z') € Sy(b) : F(z,¢) C p(z')} where z C 2" and |2| = |b]. Thus H is closed. O

Definition 2.7.
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(1) For H < Aut(€), = is an orbit equivalence relation such that for tuples b, c in €, b = ¢ if and
only if there is h € H such that h(b) = c.

(2) For H < Aut.(3), we will use the same notation = but it is confined to the tuples of realizations
of 3.

Remark 2.8. Let H < Aut(X) and ¢, d be tuples of realizations of ¥.
(1) If H = Autfy, (3, e), then ¢ = d if and only if ¢ =L d.
(2) If H = Autfixp (X, e), then ¢ = d if and only if ¢ =KP 4.
(3) If H = Autfg(X), then ¢ = d if and only if ¢ =5 d.

Proposition 2.9. Give the following topology on Aute(X): Its basic open sets are of the form Ocgq
where ¢ and d are tuples of finitely many realizations of ¥, and o € O, 4 if and only if o(c) = d. Then
mp - Aute () = Galy, (2, e) is continuous.

Proof. Tt can be proved in the same way as in [KL23, Proposition 3.1] using a Lascar tuple b. Let U be
an open subset of Galy,(¥, e) and [0] = o - Autfy,(X,e) € U. Then v, '[U] is open and so there is a basic
open set Vy(,) = {p € Sp(b) : ¢(x) € p} C v, ' [U] such that tp(a(b)/b) € V(). Let by be subtuple of b,
which is a tuple of finitely many realizations of ¥ and contains the finite tuple of b which corresponds to
@(x) in Vp(p). Then i ' [Vp)] = {7 € Aute(E) : 7(by) |= ()} contains . Note that the basic open
set Oy o(bo) = {7 € Aute(E) : 7(bo) = o(bo)} contains o and is contained in i '[Vi(y)]. Thus m, '[U] is
open. O

Proposition 2.10. Let H be a subgroup of Aute(X) containing Autfy, (X, e) such that my(H) is a closed
subgroup of Galy,(X,e). Then
(1) For any tuples ¢ and d of realizations of 2, ¢ = d if and only if for all corresponding subtuples
¢ and d' of ¢ and d, which are tuples of finitely many realizations of ¥, ¢ =7 d'.
(2) H = {0 € Aute(X) : o fires all the = -classes of any tuples of realizations of ¥}

= {0 € Auto(X) : o fizes all the =" -classes of any tuples of finitely many realizations of ¥}.

Proof. (1): Suppose that for all corresponding subtuples ¢ and d’ of ¢ and d, which are tuples of finitely
many realizations of 32, ¢/ = d’. Note that, by Proposition 2.6, H' := 75" [m,[H]] = Autere(€) for some
hyperimaginary e’ € bdd(e) such that one of its representatives is a tuple of realizations of ¥. Then
by commutativity of diagram in Remark 2.4, H = £[H'] = Auteo(X) and so ¢ = d if and only if
tp(c/e’e) = tp(d/e’e). Since tp(c’/e’'e) = tp(d’/e’e) for all corresponding subtuples ¢’ and d’ of ¢ and d,
which are tuples of finitely many realizations of X, by compactness, we have that tp(c/e’e) = tp(d/e’e)
and so ¢ = d.
(2): We show that

H D {0 € Auto(X) : o fixes all the = —classes of any tuples of finitely many realizations of ¥}

Let o be an element on the right. For any subtuple &’ of b, which is a tuple of finitely many realizations
of ¥, v = ¢(V'), and so by (1), b = o(b). Thus there is 7 € H such that 7(b) = o(b) and 7710 (b) = b.
We have

o€ Auty(X) < Autfy (3, e) < H,
and conclude that 0 € TH = H. (|
Definition 2.11.

a ,e) 1s the topological closure of the trivial subgroup ot Galg, (X, e).
1) Galf (2 is th logical cl f the trivial sub f Galp, (2
(2) Gal) (%, e) is the connected component containing the identity in Galy (%, e).

Note that Gal{ (X, e) and Gal? (¥, e) are closed normal subgroups.
Lemma 2.12. Autfxp (%, e)/ Autfy (3, e) and Autfs(3, e)/ Autfy, (3, e) are closed in Galp, (%, e).
Proof. We have
vy ' s[Autficp (3, )/ Autfy (3, €)] = {tp(£(b)/b) : b =¢" f(b)}.
By Fact 1.17(2) and the proof of Remark 1.13, =K is type-definable and there is an e-invariant partial

e
type I'(z,y) over b such that {tp(f(b)/b) : b =KP f(b)} = {p(z) € Sp(b) := I'(z,b)}, implying that
Autfkp (X, e)/ Autfr, (X, e) is closed. The proof for Autfs(X, e)/ Autfy, (X, e) is exactly the same; replace

KP by S. O
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Proposition 2.13.
(1) Let H =7, *(Gal{ (%, e)) < Aute(X). Then ¢ = d if and only if c =K d.
(2) Let H =7, ' (Gal} (%)) < Aute(X). Then ¢ = d if and only if ¢ =5 d.

Proof. (1): By Proposition 2.6, we know that 7' [Gal{ (3, e)] = Aute(€) for €' € bdd(e). Thus by
commutativity of diagram in Remark 2.4, H = ¢(Auteo(€)) = Autee(X) and so ¢ = d if and only if
¢ =ere d. By Fact 1.17(2), ¢ =57 d if and only if ¢ =paq(e) d, and €’ € bdd(e), thus ¢ =5 d implies
c=Hd.

By Lemma 2.12, Gal{ (X, e) < Autfxp(Z,e)/ Autf,(3,e). We already have proved that ¢ =5F d
implies ¢ =7 d, and ¢ =A"xr(e) ¢ if and only if ¢ =K¥ d by Remark 2.8, so it follows that ¢ = d if
and only if ¢ =P d.

(2): Tt can be proved using Fact 1.17(3) and the fact that in a topological group, the connected
component containing the identity is the intersection of all closed normal subgroups of finite indices. [

Theorem 2.14.
(1) Gal{ (X, e) = Autfkp(X, e)/ Autf, (%, e).
(2) Gal) (2, e) = Autfs(X, e)/ Autfy, (X, e).

Proof. (1): Let Hy = 7, '[Gal{ (¥, e)] and H, = Autfgp(¥,e). By Remark 2.8 and Proposition 2.13,
=M and =2 are the same equivalence relations on the tuples of realizations of ¥(¢&). Then by Corollary
2.10, H; = Hs.

(2): By exactly the same proof as (1), by letting H; = m, ![Gal} (%, e)] and Hs = Autfs(%, e). O
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