A note on ω -categorical stable theories

Koichiro Ikeda * Faculty of Business Administration, Hosei University

Hrushovski constructed ω -categorical strictly stable structures to refute Lachlan's conjecture.

Theorem 0.1 ([1], 1988) If $\alpha \in (1/2, 2/3)$ and index $(\alpha) = \infty$, then the $\mathbf{H}_{f_{\alpha}}$ -generic graph is ω -categorical and strictly stable.

 $\mathbf{H}_{f_{\alpha}}$ is a class of finite graphs controlled by a function $f_{\alpha}: \omega \to \mathbf{R}$, which is called Hrushovski's class. However, Hrushovski's class $\mathbf{H}_{f_{\alpha}}$ contains something unnecessary to construct a counterexample of Lachlan's conjecture. In this short note, we introduce $\mathbf{K}_{\alpha}(\subset \mathbf{H}_{f_{\alpha}})$ as the class of finite graphs generated by an edge graph, and prove the following proposition.

Proposition 0.2 (I.) If $\alpha \in (0,1)$ and index $(\alpha) = \infty$, then the \mathbf{K}_{α} -generic graph is ω -categorical and strictly stable.

1 Preliminaries

In this note, graphs means undirected simple graphs. Let A, B, C, \cdots be finite graphs. For α with $0 < \alpha < 1$, we define a predimension of A by $\delta_{\alpha}(A) = |A| - \alpha |R^A|$. We often abbreviate $\delta_{\alpha}(*)$ to $\delta(*)$. Let denote $\delta(B/A) = \delta(B \cup A) - \delta(A)$. A is said to be closed in B (in symbol, $A \leq B$), if $\delta(X/A) \geq 0$ for any $X \subset B - A$. For $A \subset B$, let denote the closure of A in B as $\operatorname{cl}_B(A) = \bigcap \{C : A \subset C \leq B\}$.

Let A, B, be finite graphs with $A = B \cap C$. Then the free amalgam B and C over A is defined by $B \oplus_A C = (B \cup C, R^B \cup R^C)$. Let K be a class

^{*}The author is supported by Grants-in-Aid for Scientific Research (No.20K03725). This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

of finite graphs closed under substructures. Then **K** is said to have the free amalgamation property (for short, FAP), if whenever $A \leq B, C \in \mathbf{K}$ then $B \oplus_A C \in \mathbf{K}$. A countable graph M is said to be **K**-generic, if it satisfies the following conditions.

- 1. $A \subset_{\text{fin}} M \text{ implies } A \in \mathbf{K},$
- 2. if $A \leq B \in \mathbf{K}$ and $A \leq M$, then there exists some $B' \cong_A B$ with $B' \leq M$,
- 3. $A \subset_{\text{fin}} M$ implies that $\operatorname{cl}_M(A)$ is finite.

If **K** has the amalgamation property, there exists a **K**-generic graph M. Moreover, by the back-and-forth argument, any **K**-generic graph is isomorphic to M.

2 Proposition

An edge graph means the graph ab with R(a, b). Let \mathbf{K}_{α} be the class of finite graphs which is generated from an edge graph by FAP. For example, any finite tree is in \mathbf{K}_{α} , and a triangle is not in \mathbf{K}_{α} . Moreover, it can be seen that if $1/2 < \alpha \le 2/3$ then a square and a pentagon are not in \mathbf{K}_{α} , but a hexagon is in \mathbf{K}_{α} .

For each $i \in \omega - \{0\}$, let $s_{\alpha}(i) = \min\{(n - m\alpha)/n : n \leq i, n - m\alpha \geq 0\}$ and $s_{\alpha}(0) = 1$. For instance, when $\alpha = 4/7$, it can be seen that $s_{\alpha}(1) = 3/7, s_{\alpha}(2) = 2/7, s_{\alpha}(3) = 1/7, s_{\alpha}(4) = 0$. Then we can define Hrushovski's control function $f_{\alpha} : \omega \to \mathbf{R}$ by $f_{\alpha}(0) = 0$ and $f_{\alpha}(n+1) = \sum_{i \leq n} s_{\alpha}(i)$ for each $n \in \omega$. Let $\operatorname{index}(\alpha) = \sum_{i \in \omega} s_{\alpha}(i)$.

Figure 1: $s_{\alpha}(i)$ and $f_{\alpha}(n)$ in the case of $\alpha = 4/7$

Remark 2.1 1. If α is rational, then index(α) is finite. 2. $\{\alpha \in (0,1) : \text{index}(\alpha) = \infty\}$ is dense.

Proof. For 1, if α is rational, then it is clear that there is some i with $s_{\alpha}(j) = 0$ for any $j \geq i$. Hence $\operatorname{index}(\alpha)$ is finite. 2 is proved by the Baire category theorem. For $n \in \omega$, let $O_n = \{\alpha \in (0,1) : \operatorname{index}(\alpha) > n\}$. Claim 1: O_n is open.

Proof. Take any $\alpha \in O_n$. Since $\operatorname{index}(\alpha) > n$, we can take $k \in \omega$ with $\sum_{i=1}^k s_{\alpha}(i) > n$. For any β sufficiently close to α , $s_{\beta}(i)$ is nearly equal to $s_{\alpha}(i)$ for each $i \leq k$. Then $\sum_{i=1}^k s_{\beta}(i) > n$, and then $\beta \in O_n$. Claim 2: O_n is dense.

Proof. Take any rational $p/q \in (0,1)$. Take $k \in \omega$ with $\sum_{i=1}^{k} (1/i) > 2nq$. Let $\alpha = p/q + 1/2kq^2$. By the definition of $s_{\alpha}(i)$, we can take $m_i, l_i \in \omega$ with $s_{\alpha}(i) = 1 - (l_i/m_i)\alpha$ where $m_i \leq i$. Note that $l_i \leq m_i q/p \leq kq/p \leq kq$. Then $s_{\alpha}(i) = 1 - (p/q + 1/2kq^2)(l_i/m_i) = \{(qm_i - pl_i)/q - l_i/2kq^2\}/m_i \geq (1/q - l_i/2kq^2)/i \geq (1/q - 1/2q)/i = 1/2qi$. So $\sum_{i=1}^{k} s_{\alpha}(i) \geq \sum_{i=1}^{k} (1/2qi) > 2nq/2q = n$. Hence $\alpha \in O_n$.

By Claim 1 and 2, $\{\alpha \in (0,1) : index(\alpha) = \infty\}$ is dense.

Let $\mathbf{H}_{f_{\alpha}} = \{A : \delta(A') \geq f_{\alpha}(|A'|) \text{ for any } A' \subset A\}$ be Hrushovski's class.

Lemma 2.2 $\mathbf{H}_{f_{\alpha}}$ has FAP.

Proof. Take A, B, C with $A \leq B, C \in H_{f_{\alpha}}$. We can assume that $\delta(B/A) \leq \delta(C/A)$. By the definition of $s_{\alpha}(i)$, we have $(\delta(B) - \delta(A))/|B - A| \geq s_{\alpha}(|B|)$. So we have $\delta(B \oplus_A C) \geq f_{\alpha}(|B \oplus_A C|)$. By the similar argument, it can be checked that if $X \subset B \oplus_A C$ then $\delta(X) \geq f_{\alpha}(|X|)$. Hence $B \oplus_A C \in \mathbf{H}_{f_{\alpha}}$.

Since \mathbf{K}_{α} has FAP, there exists the \mathbf{K}_{α} -generic graph M_{α} .

Lemma 2.3 If index(α) = ∞ , then M_{α} is ω -categorical.

Proof. Since $\mathbf{H}_{f_{\alpha}}$ has FAP, we have $\mathbf{K}_{\alpha} \subset \mathbf{H}_{f_{\alpha}}$. Since $\operatorname{index}(\alpha) = \infty$, f_{α} is unbounded. Then the statement that a finite set A is closed can be expressed by the first order formula. So, if $M(\equiv M_{\alpha})$ is countable then M is generic. By the back-forth method, we have $M \cong M_{\alpha}$.

Let M be a generic structure and \mathcal{M} a big model of $\operatorname{Th}(M)$. For finite $A, B \subset \mathcal{M}$, let $d_{\mathcal{M}}(A) = \delta(\operatorname{cl}_{\mathcal{M}}(A))$ and let $d_{\mathcal{M}}(B/A) = d_{\mathcal{M}}(BA) - d_{\mathcal{M}}(A)$.

We sometimes abbreviate $\operatorname{cl}_{\mathcal{M}}(*)$ and $d_{\mathcal{M}}(*)$ to $\operatorname{cl}(*)$ and d(*) respectively. For infinite C, let $d(B/C) = \inf\{d(B/C_0) : C_0 \subset_{\operatorname{fin}} C\}$.

Fact 2.4 Let M be a saturated K-generic structure. Then

- 1. Th(M) is stable;
- 2. For $A \leq B \leq M$, $\operatorname{tp}(e/B)$ does not fork over A if and only if d(e/B) = d(e/A) and $\operatorname{cl}(eA) \cap B = A$.

Theorem 2.5 ([2], 2005) Suppose that $\alpha \in (0,1)$ is irrational, any finite tree is in **K** and **K**-generic M is saturated. Then M is strictly stable.

Outline of the proof. By Fact 2.4.1, if M is saturated then $\operatorname{Th}(M)$ is stable. So, it is enough to show that $\operatorname{Th}(M)$ is not superstable. For finite A, B with $A \cap B = \emptyset$, (B, A) is said to be biminimal, if $\delta(B/A) < 0$, $\delta(X/A) \ge 0$ for any nonempty proper $X \subset B$, and $\delta(B/Y) \ge 0$ for any proper $Y \subset A$. Take any $\epsilon \in (0, \alpha)$. Since α is irrational, it can be seen that there are $a, b \in \omega$ with $0 > a - b\alpha > -\epsilon$. Using this, we can construct a finite tree eBC satisfying (i) (C, eB) is biminimal; (ii) $0 > \delta(C/eB) > -\epsilon$; (iii) eB has no relations. Take a sequence $(\epsilon_i)_{i \in \omega}$ with $\alpha > \epsilon_0 > \epsilon_1 > \cdots > 0$ and $\sum_{i=1}^{\infty} \epsilon_i \le 1$. For each ϵ_i , let eB_iC_i be a finite tree. Amalgamating eB_iC_i 's, we can construct a countable tree $D = \bigcup_{i \in \omega} eB_iC_i$ satisfying that $B_i^* \le eB_i^*C_i^* \le D$ and there are no relations between B_iC_i and B_jC_j for $i \ne j$, where $B_i^* = \bigcup_{j \le i} B_j$ and $C_i^* = \bigcup_{j \le i} C_j$. Since any finite tree belongs to \mathbf{K} , we can assume that

Figure 2: $D = \bigcup_{i \in \omega} eB_iC_i$

 $D \leq M$. Then it can be seen that we have $d(e/B_{i+1}^*) = d(e/B_i^*) - \epsilon_{i+1}$ for

each $i \in \omega$. Especially, $d(e/B_{i+1}^*) < d(e/B_i^*)$. By Fact 2.4.2, $\operatorname{tp}(e/B_{i+1}^*)$ is a forking extension of $\operatorname{tp}(e/B_i^*)$. It follows that $\operatorname{Th}(M)$ is not superstable.

Lemma 2.6 If index(α) = ∞ , then M_{α} is strictly stable.

Proof. Since index(α) = ∞ , α is irrational. It is clear that any finite tree is in \mathbf{K}_{α} . By Lemma 2.3, M_{α} is ω -categorical, so in particular, it is saturated. By Theorem 2.5, M_{α} is strictly stable.

By Lemma 2.3 and Lemma 2.6, we have Proposition 0.2.

References

- [1] E. Hrushovski, A stable ω -categorical pseudoplane, preprint, 1988
- [2] K. Ikeda, A remark on the stability of saturated generic graphs, J. Math. Soc. Japan 57, 2005