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1 Introduction

The aim of this article is to describe how the rationality of Poincaré series of
expansions of the p-adic fields is related to their stability-theoretic properties.
Especially, we are going to introduce the result by the author that there exist
NIP expansions of the p-adic fields without the rationality of Poincaré series.

Notation 1.1. For a p-adic integer a = Y .~ a;p* and a number n > 0, we let
a mod p™ denote Z?:_Ol a;p', which is in Z/p"Z.

Definition 1.2. Let S C Zj'. We define the Poincaré series Ps(T') of S by the
following:

Ny = |{(z1 mod p", ..., 2p mod p") € (Z/p"Z)™ | T € S},

Ps(T) = i N, T".
n=0

In 1984, Denef showed the following prominent result.

Theorem 1.3 ([2]). For any S C Zj' definable in the p-adic field structure
(Qp;+,), Ps(T) is a rational function of T.

We call this property the rationality of Poincaré series. If we expand
(Qp; +,-) by adding some relation or function, then the expanded structure
may have more definable sets. While some expansions still have the rationality
of the Poincaré series of their definable sets, there also exist expansions with-
out the rationality of Poincaré series. Our interest is how we can characterize
the rationality by stability-theoretic properties. Previous researches tell us the
following facts:

e All of the dp-minimal expansions of the p-adic fields, such as the struc-
ture expanded by all the analytic functions on a compact set, have the
rationality of Poincaré series. In fact, Simon and Walsberg[10] shows that



they are all P-minimal, and Kovacsics and Leenknegt[4] shows that all of
the P-minimal expansions have the rationality of Poincaré series.

e There is an NIP but not strongly dependent expansion of the p-adic fields
having the rationality of Poincaré series. Indeed, Denef[3] proves the ra-
tionality of Poincaré series of (Q,; +, -, p%), where p” = {p* | z € Z}. the
NIP of this structure was shown by Mariaule[6]. For the lack of strong
dependence, see my master thesis[7, Section 3.6].

e If an expansion of the p-adic fields defines Z, then it does not have the
N
rationality of Poincaré series, because it defines p* = {p” | r € 2V}, whose
Poincaré series is not a rational function.

Despite our original expectation that all of the NIP expansions had the
rationality of Poincaré series, we found a counterexample.

Theorem 1.4 (O.). There is an NIP (but not strongly dependent) expansion
of the p-adic fields without the rationality of Poincaré series.

This is our main result. In the rest of this article, we will sketch the proof
of this theorem.

2 Presburger Arithmetic augmented by an al-
most sparse sequence

Let R be an infinite subset of the positive integers. We suppose that 1 € R
though it is not an essential assumption at all. We enumerate all the elements
of R by the increasing sequence (r,,)n,ecn. We define two functions S, S~! on R
in the following way: S(rn) = rnt1, S~ (rny1) = T, and S™1(rg) = 70.
Definition 2.1. We call a term of the form A(z) = Y ;"  2:S%(z), where
z; € Z, an operator on R. If n = 0, then we call it an operator without negative
indices.

Notation 2.2. We write A(x) >4 0 if all but finite number of elements from
R meets A(r) > 0. We also use similar notations A(x) <qe 0 and A(z) =4 0.
We believe that the meaning of those notations is clear.

Definition 2.3. We say that R is almost sparse when the following two condi-
tions hold:

e For any operator without negative indices A(x), either A(z) >4 0, A(z) <qe
0, or A(z) =4 0 holds.

e For any operator without negative indices A(z) with A(x) >4e 0, there
exists a number A > 0 such that A(S2(x)) — 2z >4 0.



Almost sparse sequences include (2™),cn, (n!)nen, and the Fibonacci se-
quence. However, (n)nen and (2" + n)pen are not almost sparse.

The following theorem by Lambotte is one of the main ingredients for the
proof of our main theorem.

Theorem 2.4 ([5]). If R is almost sparse, then the structure (Z;+,<,R) has
NIP.

To sketch the proof, we will only mention some crucial lemmas for this
theorem.

Notation 2.5. We define three functions Ag, S, S~! of Z in the following man-
ner:

x (x<0)’
S(w):{su) (x€R)

)\R(x):{max{reRhgx} (x>0)

r  (¢¢R)’

L[5 @eR)
) { (r¢ R)

The next lemma is a modified version of Point’s quantifier elimination result
([8, Section 3]). Point gave quantifier elimination imposing an additional con-
dition (eventual periodicity modulo n) on R. The statement of this lemma is
weaker than quantifier elimination, but does not need such an extra condition.

Lemma 2.6. Let U be a monster model extending (Z;+,<,R). Define T as the
set of partial functions f:U — U which satisfies the following:

e Dom(f) is small and closed under 0,1,+,—, \g, S, S~*.
o fis a {+, <, R}-partial embedding.
o [ is a {4+, <}-partial elementary embedding.

° f|D0m(f)ﬂRu is a partial elementary embedding of the structure (RY;<
, (- =n Dn>2,0<i<n), where - =, 1 is the set {T ERY|UE3z(nz =71 — z)}

Then, T forms a back-and-forth system. In particular, any f € T is a {+, <, R}-
partial elementary embedding.

In addition to this lemma, we need to prepare the “term separation” lemma
below. It is basically the same as one given by Lambotte[5, Lemma 5.6.3].

Lemma 2.7. Let U be a monster model extending (Z;+, <, R). Suppose that:
o (a;)icr CU is indiscernible over ¢ € U.

ebcll.



e t(x,7) is a {+, —,)\R,S,S_l}-term.

Then, there exist a final segment Iy of I, @ € U, e € U, and a D-definable
function u(z,zZw) such that:

e (ai)icr, is indiscernible over cc'.

e t(a;,b) = u(a;,ec) + e for alli € Iy.

We could take advantage of these two lemmas to show that the NIP of
Presburger arithmetic ([1]) and that of colored orders ([9, Proposition A.2])
implies that of (Z;+, <, R), the desired result.

3 The main result

Again, let R be an almost sparse sequence. We consider two subsets of Q,:
o p" ={p° |2 €Z}.
o pf'={p"|reR}
We can easily show the claim below.

Lemma 3.1. The Poincaré series of p is not a rational function.

Hence, it is sufficient to prove the following theorem to show the main result,
i.e., Theorem 1.4.

Theorem 3.2. (Q;+,,p%, p?) has NIP.

The outline of the proof is similar to that of Theorem 2.4 as we are going to
see.

Notation 3.3. We let 7 : Q, — p” denote the function given by m(z) = pr(®)
for  # 0 and 7(0) = 0.

Next, note that (p%;-,v(-) < v(-)) & (Z;+, <), where v(-) < v(-) is the set of
pairs (z,y) € (p%)? such that v,(z) < vp(y).

Notation 3.4. We define three functions Ag, S, S~! on Q, so that (p%;-,v(-) <
v(-), A\r, S, 871) =2 (Z; +,<,ARr, S, S7!) and that Ag(x) = S(z) = S~ !(z) =«
for x ¢ p”.

We need to construct a back-and-forth system and prepare the “term sepa-
ration” result again.

Lemma 3.5. Let U be a monster model extending (Qp; +, 2, p®). Define T
as the set of partial functions f : U — U which satisfies the following:

e Dom(f) is small and closed under 0,1,+,—,-, ~*, 7, A, 9,571

e fisa {—i—, -,pZ}—partial elementary embedding.



* flpom(f)n(pzu s a partial elementary embedding of the structure ((p™)%; -, v(-) <
o0, ().

Then, I forms a back-and-forth system. In particular, any f € Z is a {—i—, - p?, pR}-
partial elementary embedding.

Lemma 3.6. Let U be a monster model extending (Qp; +, %, p®). Suppose
that:

o (a;)ier CU is indiscernible over ¢ € U with cf(I) > Rg, where cf(I) is the
minimal cardinal among those of cofinal subsets of I.

ebcld.
o i(z,7) is a {—!—,—,-,_1,77,)\3,5, S‘l}—term.

Then, there exist a final segment Iy of I, ry and s; for 1 <1 < n, O-definable
functions oq(x,zw) and Bi(z,zw) for 1 <1 <n, and @ € U such that:

e (a;)ier, is indiscernible over cc'.
+ o) - i)
v o sibi(ai,ed)

These two lemmas lead to the fact that the NIP of (Z;+, <, R) and that of
(Qp; +, -, p*) implies that of (Q,; +, -, p%, p®). Recall that the former is the result
by Lambotte (Theorem 2.4). The latter has also been proved by Mariaule[6].
Thus, Theorem 3.2 follows, and so does the main result of this note.

forallic Iy.
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