Definable C^r imbedding theorem Masato Fujita, Japan Coast Guard Academy and Tomohiro Kawakami, Wakayama University #### 概要 We introduce the zero set property of a definably complete expansion of an ordered field $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$. A definable \mathcal{C}^r manifold X is definably \mathcal{C}^r imbeddable into some F^n if and only if X is definably normal when the definably complete expansion of an ordered field has the zero set property. ### 1 Introduction We introduce the results of an ongoing work by the authors in this paper. Let $0 \le r < \infty$. We abbreviate 'definable \mathcal{C}^r ' to ' \mathcal{D}^r '. We discuss about \mathcal{D}^r imbeddablity of \mathcal{D}^r manifolds. We briefly review the previous works on \mathcal{D}^r imbeddablity of \mathcal{D}^r manifolds. In the o-minimal setting, it was proven that every \mathcal{D}^r manifold is \mathcal{D}^r imbeddable into some F^n in [1], [2] and [5]. The reference [1] only treats the case in which the manifold is definably compact. The other two treat more general case, but there are gaps in their proofs^{*1}. The authors treated the definably complete locally o-minimal case in [4] and proved a \mathcal{D}^r imbedding theorem in it. The early versions of [4] also have a gap of the same kind though it was fixed in the current version. Department of Liberal Arts, Japan Coast Guard Academy, 5-1 Wakaba-cho, Kure, Hiroshima 737-8512, Department of Mathematics, Wakayama University, Wakayama 640-8510, Japan ^{*1} In the proof of [5, Proposition 2.2], it was proven that the closure of V_i in X_{k-1} is contained in U_i , where X_{k-1} is a subset of the manifold X. However, it needs to be proven that the closure of V_i in X is contained in U_i in that part of the proof. As to [2, Lemma 4.6], the proof that ψ_i is of class \mathcal{C}^r at points in $\partial(\phi_i^{-1}(V_i)) \cap \partial(\phi_i^{-1}(W_i))$ is missing. ## 2 Our results Recall some definitions. - **Definition 2.1.** (1) The structure \mathcal{F} is definably complete if for any non-empty definable subset A of F, sup A and inf A exist in $\{F \cup \pm \infty\}$ [6]. - (2) A definably complete structure $\mathcal{F} = (F, <, ...)$ is d-minimal if for every m and definable subset A of F^{m+1} , there exists an $N \in \mathbb{N}$ such that for every $x \in F^m$, the set $\{y \in F | (x, y) \in A\}$ has non-empty interior or a union of at most N discrete sets [3, 7]. Let $\mathcal{F} = (F, <, +, \cdot, 0, 1, \dots)$ be a definably complete expansion of an ordered field and $1 \leq r < \infty$. **Definition 2.2.** (1) A pair $(M, \{\phi_i : U_i \to V_i\}_{i \in I})$ of a topological space and finite family of homeomorphims is a definable C^r manifold or a \mathcal{D}^r manifold if - $\{U_i\}_{i\in I}$ is a finite open cover of M, - U_i' is a \mathcal{D}^r submanifold of F^{m_i} for any $i \in I$ and, - the composition $(\varphi_j|_{U_i \cap U_j}) \circ (\varphi_i|_{U_i \cap U_j})^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ is a \mathcal{D}^r diffeomorphism whenever $U_i \cap U_j \neq \emptyset$. Here, the notation $\varphi_i|_{U_i\cap U_j}$ denotes the restriction of φ_i to $U_i\cap U_j$. The family $\{\varphi_i: U_i \to U_i'\}_{i\in I}$ is called a \mathcal{D}^r atlas on M. We often write M instead of $(M, \{\varphi_i: U_i \to U_i'\}_{i\in I})$ for short. Note that a \mathcal{D}^r submanifold is naturally a \mathcal{D}^r manifold. - (2) A definable subset Z of X is a k-dimensional \mathcal{D}^r submanifold of X if each point $x \in Z$ there exist an open box U_x of x in X and a \mathcal{D}^r diffeomorphism ϕ_x from U_x to some open box V_x of F^d such that $\phi_x(x) = 0$ and $U_x \cap Y = \phi_x^{-1}(F^k \cap V_x)$, where F^k denotes $\{(x_1, \ldots, x_k, 0, \ldots, 0) | x_1, \ldots, x_k \in F\}$. - (3) Let X and Y be \mathcal{D}^r manifolds with \mathcal{D}^r charts $\{\phi_i : U_i \to V_i\}_{i \in A}$ and $\{\psi_j : U'_j \to V'_j\}_{j \in B}$, respectively. A continuous map $f : X \to Y$ is a \mathcal{D}^r map if for any $i \in A$ and $j \in B$, the image $\phi_i(f^{-1}(V'_j) \cap U_i)$ is definable and open in F^n and the map $\psi_j \circ f \circ \phi_i^{-1} : \phi_i(f^{-1}(V_j) \cap U_i) \to F^m$ is a \mathcal{D}^r map. - (4) Let X and Y be \mathcal{D}^r manifolds. We say that X is \mathcal{D}^r diffeomorphic to Y if there exist \mathcal{D}^r maps $f: X \to Y$ and $h: Y \to X$ such that $f \circ h = \mathrm{id}$ and $h \circ f = \mathrm{id}$. (5) A \mathcal{D}^r manifold M is definably normal if for any definable closed subset C and definably open subset U of M with $C \subseteq U$, there exists a definable open subset V of M such that $C \subseteq V \subseteq cl_M(V) \subseteq U$. **Definition 2.3.** A definably complete expansion of an ordered field $\mathcal{F} = (F, < ,+,\cdot,0,1,\ldots)$ has the zero set property if for any positive r>0, and any definable closed subset A of F^n , there exists a \mathcal{D}^r function $f:F^n\to F$ such that $f^{-1}(0)=A$. **Theorem 2.4** ([8]). A d-minimal expansion of an ordered field has the zero set property. By Theorem 2.4, d-minimal structures are examples of having the zero set property. The following are our results. **Theorem 2.5.** Let $\mathcal{F} = (F, <, +, \cdot, 0, 1, ...)$ be a definably complete expansion of an ordered field having the zero set property. Every definably normal \mathcal{D}^r manifold is definably imbeddable into some F^n , and its image is a \mathcal{D}^r submanifold of F^n . A \mathcal{D}^r submanifold of F^n is definably normal, we have the following theorem: **Theorem 2.6.** Let $\mathcal{F} = (F, <, +, \cdot, 0, 1, \ldots)$ be a definably complete expansion of an ordered field having the zero set property. Every definably \mathcal{D}^r manifold X is definably imbeddable into some F^n , and its image is a \mathcal{D}^r submanifold of F^n if and only if X is definably normal. We briefly sketch an outline of the proof of Theorem 2.5. The proof is almost the same as that of [2, Theorem 1.3]. In [2], the structure is assumed to be o-minimal, but the proof in [2] is almost valid even when the structure is a definably complete expansion of an ordered field having the zero set property. We show a 'partition of unity' lemma in the course of the proof. Let $\{\varphi_i : U_i \to U_i'\}_{1 \leq i \leq k}$ be \mathcal{D}^r at lases of a definably normal \mathcal{D}^r manifold M. We construct \mathcal{D}^r functions $\psi_i : M \to F$ so that $\sup(\psi_i) \subseteq U_i$ and $M = \bigcup_{i=1}^k \{\psi_i > 0\}$ by induction on i. Set $$V_i = \bigcup_{j=1}^{i-1} \psi_j^{-1}((0,\infty)) \cup \bigcup_{j=i+1}^k U_j.$$ Since M is definably normal, we can take a definable open subset B_i of M such that $M \setminus V_i \subseteq B_i \subseteq \operatorname{cl}_M(B_i) \subseteq U_i$. We construct ψ_i so that $\psi_i > 0$ on $M \setminus V_i$ and $\operatorname{supp}(\psi_i) \subseteq \operatorname{cl}_M(B_i)$ in a standard way. The inclusion $\operatorname{supp}(\psi_i) \subseteq \operatorname{cl}_M(B_i) \subseteq U_i$ guarantees that the function ψ_i is of class \mathcal{C}^r at the boundary of U_i because it is zero at the boundary. ## 参考文献 - [1] A. Berarducci and M. Otero, *Intersection theory for o-minimal manifolds*, Ann. Pure Appl. Logic, **107** (2001), 87-119. - [2] A. Fischer, Smooth functions in o-minimal structures, Adv. Math. 218, (2008), 496–514. - [3] A. Fornasiero, *D-minimal structures version 20*, preprint (2021), arXiv:2107.04293. - [4] M. Fujita and T. Kawakami, Approximation and zero set of definable functions in a definably complete locally o-minimal structure, arXiv:2301.02464, (2023). - [5] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. 42, (2005), 165-167. - [6] C. Miller, Expansions of dense linear orders with the intermediate value property, J. Symbolic Logic, 66, (2001), 1783-1790. - [7] C. Miller, Tameness in expansions of the real field, Logic Colloquium '01, 281–316, Lect. Notes Log., 20, Assoc. Symbol. Logic, Urbana, IL, (2005). - [8] C. Miller and A. Thamrongthanyalak, *D-minimal expansions of the real field have the zero set property*, Proc. Amer. Math. Soc. **146**, (2018), 5169–5179.