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We summarize recent results on dimension theory and decomposition into
(quasi-)special submanifolds in definably complete locally o-minimal struc-

tures.

1 Introduction

Locally o-minimal structures are defined by localizing the definition of o-minimal
structures. An expansion of a dense linear order without endpoints M = (M, <,...)
is locally o-minimal if, for every definable subset X of M and for every point a € M,
there exists an open interval I containing the point a such that X N[ is the union of
finitely many points and open intervals. Locally o-minimal structures are investigated
in, for instance, [22, 3, 11]. The expansion M is definably complete if any definable
subset X of M has the supremum and infimum in M U {+oo} [14]. This paper treats
dimension theory and decomposition into special submanifolds in definably complete
locally o-minimal structures.

We first discuss on dimension theory in Section 2. We review the following four

definitions of dimension in o-minimal structures. We do not rephrase the definition
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and basic properties of o-minimal structures here. They are found in van den Dires’s
book [2].

(1) van den Dries proposed an alternative definition of dimension by giving axioms
to be satisfied by a dimension function [1]. For a definable set X of M™, we
set dim X > d if and only if 7(X) has a nonempty interior for some coordinate
projection 7 : M™ — M¢?, where M is the universe of the structure. This
dimension map satisfies van den Dries’s requirements.

(2) Pillay proposed the notion of first-order topological structures and defined an
ordinal-valued dimension in [16]. An o-minimal structure is a first-order topo-
logical structure.

(3) The universe of an o-minimal structure together with the definable closure
operation forms a pregeometry. It is demonstrated in [19]. The notion of rank
on a pregeometry [17, 12] gives an alternative definition of dimension of a set
definable in an o-minimal structure.

(4) When a structure admits a definable cell decomposition such as an o-minimal

structure, an alternative definition of dimension is proposed such as in [2].

The above four definitions of dimension coincide in the o-minimal case [13].

We return to the definably complete locally o-minimal case. The equivalence of
(1) through (4) above holds also in definably complete locally o-minimal structures
by slightly changing their statements. It has been proven in the author and his
collaborators’ works [4, 5, 7, 9, 10]. Section 2 summarizes the results on dimension in
these works.

We first introduce the often-used definition of dimension, called ‘topological dimen-
sion’, and introduce that it satisfies van den Dries’s requirements in Section 2.1. It
follows from the results in [7, 10]. In [7], the author proved many dimension formulas
under the assumption that definably complete locally o-minimal structures satisfy
the technical property called property (a). In addition, he demonstrated that mod-
els of DCTC [20] and DCULOAS [5] satisfy property (a). Finally, Komine proved
that property (a) holds for any definably complete locally o-minimal structure in [10].
Other definitions of dimension are introduced in Section 2.2. The equivalence of (1)
through (3) is demonstrated in [9]. They are discussed in Section 2.2.1 and Section

2.2.2. In the author’s early works on locally o-minimal structures [4, 5], he employed
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other definition of dimension, which is also topological. The equivalence of (1) with
(4) is demonstrated in the series of papers [4, 7, 10] and discussed in Section 2.2.3.
Finally, Section 2.3 summarizes the equivalence of these definitions.

We discuss on decomposition into (quasi-)special submanifolds in Section 3. De-
composition into quasi-special submanifold was proven in [7].*} Decomposition into
special submanifold was given in [8] under the extra assumption that the structure is
an expansion of an ordered group. Miller and Fornasiero proved decomposition theo-
rem similar to ours in [3, 15].*2 Miller’s special manifold assumes that the underlying
space is the set of reals, and Fornasiero proved decompositions into multi-cells under
the assumption that the structure is an expansion of an ordered field. The author
demonstrated that these notions coincide with our definition of special manifolds. We
compare these definitions in Section 3.1 and introduce the decomposition theorem in
Section 3.2.

2 Dimension theory
2.1 van den Dries's requirements and topological dimension

We first recall van den Dries’s requirements on dimension function.

Definition 2.1. Consider a structure M = (M, ...). Let D be the set of all definable
sets and Z>o :=={n € Z | n > 0}. A map dim : D — Z>o U {—00} satisfies van den

Dries’s requirements if the following conditions are satisfied [1]:

(1) dim(S) = —o0 & S =0; dim({z}) =0 for all z € M and dim M = 1.

(2) dim(S; U S3) = max{dim Sy, dim S} for any definable subsets of M™.

(3) dimS? = dim S for any definable set S C M"™ and any permutation ¢ of
{1,...,n}. Here, S7 = {(251),- -+ To(n)) € M™ | (x1,....2,) € S}.

(4) Let T be a definable subset of M"*! and T, = {y € M | (z,y) € T} for any
x € M"™. Set T(i) = {x € M"™ | dim(7}) = i} for i = 0,1. Then, T'(i) are

*1 Tt was proven under the assumption that the structure enjoys property (a). But the assumption
is not necessary by Komine [10].

*2 Miller considered more general structures called d-minimal structures [15]. Miller’s proof in
[15] has a gap, and the gap was filled in [21] when there exists a definable bijection between
bounded and unbounded intervals.



definable and dim({(z,y) € T |z € T(i)}) = dimT'(i) + i for i = 0, 1.
In [7], we employ the following definition of dimension.

Definition 2.2 (Dimension). Consider an expansion of a densely linearly order with-
out endpoints M = (M, <,...). Let X be a nonempty definable subset of M™. We
consider that MP° is a singleton with the trivial topology. The dimension of X is
the maximal nonnegative integer d such that 7(X) has a nonempty interior for some

coordinate projection 7 : M™ — M?. We set dim(X) = —oo when X is an empty set.

Theorem 2.3. When the structure is definably complete and locally o-minimal, the

dimension function defined in Definition 2.2 satisfies van den Dries’s requirements.

Proof. Tt follows from [10, Proposition 2.8]. O

When the structure satisfies van den Dries’s requirements, the following assertions
hold [1, Corollary 1.5]:

(1) Let f: X — M™ be a definable map. We have dim(f(X)) < dim X.
(2) Let ¢ : X — Y be a definable surjective map whose fibers are equi-dimensional;
that is, the dimensions of the fibers ¢ ~!(y) are constant. We have dim X =

dimY + dim ¢~ 1(y) for all y € Y.

The following properties of dimension does not necessarily follow from van den

Dries’s requirements.

Proposition 2.4. Consider a definably complete locally o-minimal structure M =

(M,<,...). The following assertions hold:

(1) Let f : X — M™ be a definable map. The notation D(f) denotes the set of
points at which the map f is discontinuous. The inequality dim(D(f)) < dim X
holds true.

(2) Let X be a definable set. The notation 0X denotes the frontier of X defined
by 0X = X \ X. We have dim(0X) < dim X.

Proof. See [10, Proposition 2.8(7), (8)]. O



2.2 Other definitions of dimension

We recalled a topological definition of dimension in Definition 2.2. We introduce

other definitions of dimension.

2.2.1 Pillay's first-order topological structure
We first recall Pillay’s definition. Pillay defined a first-order topological structure

and the dimension rank for definable sets.

Definition 2.5. Let £ be a language and M = (M,...) be an L-structure. The
structure M is called a first-order topological structure if there exists an L-formula
¢(z,7) such that the family {¢(z,a) | @ C M} is a basis for a topology on M.
When M is an expansion of a dense linear order, then M is a first-order topological
structure.

Recall that a set is constructible if it is a finite boolean combination of open sets.
We consider the case in which any definable set is constructible such as the case in
which the structure is a definably complete locally o-minimal structure [7, Corollary
3.10]. For a definable set X, an ordinary valued dimension rank D(X) is defined as

follows:

(1) If X is nonempty, then D(X) > 0. Otherwise, set D(X) = —oc.

(2) If D(X) > « for all a < §, where ¢ is limit, then D(X) > 4.

(3) D(X) > a + 1 if there exists a definable closed subset Y of X such that Y has
an empty interior in X and D(Y) > a.

We put D(X) = aif D(X) > aand D(X) ? a+1. Weset D(X) = oo when D(X) > «

for all a.

2.2.2 Pregeometry
The notion of a pregeometry is a central notion of geometric stability theory [18].
It is found in [18, Chapter 2] and [23, Appendix C].

Definition 2.6 (Pregeometry). Consider a set S and a map cl : P(S) — P(S), where



P(S) denotes the power set of S. The pair (S, cl) is a (combinatorial) pregeometry if

the following conditions are satisfied for any subset A of S:

(i) A Ccl(A);

(i) cl(el(A)) = cI(A);

(iii) For any a,b € S, if a € cl(AU{b}) \ cl(A), then b € cl(A U {a});

(iv) For any a € cl(A), there exists a finite subset Y of A such that a € cl(Y).

The condition (iii) is called the exchange property.

Consider a pregeometry (5, cl). Let A and B be subsets of S. The set A is cl-
independent over B if, for any a € A, we have a & cl((A\{a})UB). A subset Ay of A
is a cl-basis for A over B if A is contained in cl(AgU B) and Ay is cl-independent over
B. FEach basis for A over B has the same cardinality (See Lemma 2.7(1)) and it is
denoted by rk®(A/B). We simply denote it by rk(A/B) when the closure operation

cl is clear from the context.
The following result is well-known:

Lemma 2.7. Consider a pregeometry (S,cl). The symbols A, B and C denote arbi-

trary subsets of S. The following assertions hold true.

(i) Two cl-bases for A over B have the same cardinality.
(1i) We have rk(A/B) < rk(A/C) when C is a subset of B.
(iii) When B C C and rk(A/B) =1k(A/C), a cl-basis for A over B is a cl-basis for
A over C.

Definition 2.8. Let £ be a language and M = (M.,...) be an L-structure. Let
cl: P(M) — P(M) be a closure operation such that the pair (M, cl) is a pregeometry.
Consider subsets A and S of M and M", respectively. We define

kS, (S/A) = max{rk®({a1,....an}/A) | (a1,...,a,) € S}.

Let £ be a language and 1" be its theory. Consider a model M = (M,...) of T and
a monster model M of 7. The universe of M is denoted by the same symbol M for
simplicity. Assume that there exists a closure operation cl : P(M) — P (M) such that

the pair (M, cl) is a pregeometry. Let A be a subset of M and S be a definable set.



We set
kS (S/A) = 1k (SM/A).

We simply denote it by rk(S/A) when T" and cl are clear from the context.

It is known that the universe of an o-minimal structure together with the definable
closure operation forms a pregeometry in [19]. The definable operation does not nec-
essarily yield a pregeometry when the structure is not o-minimal. We need to develop

an alternative closure operation for definably complete locally o-minimal structures.

Definition 2.9 (Discrete closure). Let £ be a language containing a binary predicate
<. Consider a definably complete locally o-minimal L-structure M = (M, <,...).
The discrete closure discly((A) of a subset A of M is the set of points z in M having
an L(A)-formula ¢(t) such that

(a) the set p(M) :={t € M | M = ¢(t)} contains the point z and

(b) it is discrete and closed.

Theorem 2.10. Let L be a language containing the binary predicate <. Consider
a definably complete locally o-minimal L-structure M = (M,<,...). The pair
(M, disclrq) is a pregeometry.

Proof. See [9, Theorem 3.2]. O

2.2.3  When locally definable cell decomposition is admitted
We recall the definition of cells.

Definition 2.11 (Definable cell decomposition). Consider a densely linearly ordered
structure M = (M, <,...). Let (i1,...,i,) be a sequence of zeros and ones of length

n. (i1,...,in)-cells are definable subsets of M™ defined inductively as follows:

e A (0)-cell is a point in M and a (1)-cell is an open interval in M.

e An (iy,...,1,,0)-cell is the graph of a continuous definable function defined on
an (i1,...,i,)-cell. An (i1,..., iy, 1)-cell is a definable set of the form {(z,y) €
Cx M| f(z) <y < g(x)}, where C is an (iy,...,i,)-cell and f and g are

definable continuous functions defined on C' with f < g.



A cell is an (iy,...,iy,)-cell for some sequence (iy,...,i,) of zeros and ones. An open
cell isa (1,1,...,1)-cell.

We inductively define a definable cell decomposition of an open box B C M". For
n = 1, a definable cell decomposition of B is a partition B = |J;-, C; into finite
cells. For n > 1, a definable cell decomposition of B is a partition B = [J;*, C; into
finite cells such that m(B) = [J;~, 7(C;) is a definable cell decomposition of w(B),
where 7 : M™ — M"™ ! is the projection forgetting the last coordinate. Consider a
finite family {A)} ea of definable subsets of B. A definable cell decomposition of B
partitioning {Ax}xea is a definable cell decomposition of B such that the definable
sets A, are unions of cells for all A € A.

We call the structure M admits local definable cell decomposition if, for any positive
integer n, any finite family { Ay} e of definable subsets of M™ and any point a € M™,
there exists an open box B containing the point a such that there exists a definable

cell decomposition of B partitioning {B N Ax}xea-

A definably complete uniformly locally o-minimal structure of the second kind ad-

mits local definable cell decomposition.

Definition 2.12. A locally o-minimal structure M = (M, <,...) is a uniformly locally
o-minimal structure of the second kind if, for any positive integer n, any definable set
X C M™ a€ M and b € M™, there exist an open interval I containing the point a
and an open box B containing b such that the definable sets X, N I are finite unions

of points and open intervals for all y € B.

Theorem 2.13. A definably complete locally o-minimal structure admits local defin-
able cell decomposition if and only if it is a uniformly locally o-minimal structure of

the second kind.

Proof. See [4, Corollary 4.1]. O

In [4], the author proposed two definitions of dimension. These definitions are also

employed in [5].

Definition 2.14. [4, Definition 5.1] Consider a densely linearly ordered structure
M = (M,<,...). A definable set X C M" is of dim’(X) > m if there exists an

open box B C M™ and a definable continuous injective map f : B — X which is



homeomorphic onto its image. A definable set X € M™ is of dim’(X) = m if it is of
dim’(X) > m and it is not of dim’(X) > m + 1. The empty set is defined to be of

dimension —oc.

Definition 2.15. [4, Definition 5.3] Consider a locally o-minimal structure M =
(M, <,...) which admits local definable cell decomposition. Let X C M™ be a defin-
able set. We define dim”(X) as follows:

dim” (X) = max{i; +--- + i, | X contains an (iy,...,i,)-cell}.

The notation ;, . ;, denotes the projection from M" to M9, where d =iy +-- - +ip,
forgetting all the j-th coordinates with i; = 0. Then m(X) has a nonempty interior.
This definition is employed as the definition of sets definable in o-minimal structures
in [2].

2.3 Equivalence of definitions

We have recalled five definitions of dimension. As it is announced in Section 1, they

all coincide.

Theorem 2.16. Let L be a language containing a binary predicate < and T be a
definably complete locally o-minimal L-theory. Let M = (M,...) be a model of T.
Let A be a subset of M and X be a subset of M™ definable over A. We have

dim X = D(X) = rk#*(X/A) = dim’ X.

In addition, if M is a uniformly locally o-minimal structure of the second kind, we

have
dim X = dim” X.

Proof. The equality dim X = D(X) is given in [9, Proposition 4.3]. The equality
dim X = rk7°(X/A) is given in [9, Theorem 3.5]. The equality dim X = dim’ X
is found in [10, Proposition 2.8(9)]. The equality dim’ X = dim” X is found in [4,
Theorem 5.4]. O



3 Decomposition into special submanifolds
3.1 Definitions
We first introduce our definition of special manifolds.

Definition 3.1. Consider an expansion of a dense linear order without endpoints
M= (M,<,...). Let m: M™ — M¢ be a coordinate projection, where n is a positive
integer and d is a non-negative integer with d < n. We consider that M is a singleton
equipped with the trivial topology and the projection m : M™ — M?Y is the trivial

map when d = 0. Let 7 be the unique permutation of {1,...,n} such that

(a) 7(i) <7(j) for 1 <i < j<mnwhen 7(i) >d and 7(j) > d.
(b) The composition m o T is the projection onto the first d coordinates, where

T :M™ — M" is the map defined by 7(z1,...,2,) = (Tr1), -+, Tr(n))-

Set

fib(X,m,z) ={y e M" | (z,y) €7 1(X)}
for z € ©(X). Note that fib(X,7,z) = {y € M" ¢ | (z,y4) € X} when 7 is the
projection onto the first d coordinates.

When 7 is the coordinate projection onto the first d coordinate, a definable subset
X of M™ is a w-special submanifold if, for any x € M¢?, there exist an open box U
in M? containing the point = and a family {Vy}yeib(x,x,2) of mutually disjoint open
boxes in M™ indexed by the set fib(X, 7, x) such that

(1) 7(Vy) =U for all y € ib(X, 7, z);
(2) X N7 Y(U) is contained in Uy efib(x,x,2) Vys and
(3) V,NX is the graph of a continuous map defined on U for each y € fib(X, 7, x).

We do not require that the union Uyeﬁb( X,m,z) Vy Is definable.

When 7 is not the coordinate projection onto the first d coordinate, we say that a
definable subset X of M™ is w-special submanifold if 7~1(X) is m o 7-special subman-
ifold. We omit the prefix m when it is clear from the context.

Note that a discrete, closed definable subset of M™ is always a m-special submani-

fold, where m : M™ — MY is the trivial map.
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We next define quasi-special submanifolds.

Definition 3.2. Consider an expansion of a densely linearly order without endpoints
M= (M,<,...). Let 7 : M™ — M% be a coordinate projection. A definable subset is
a m-quasi-special submanifold or simply a quasi-special submanifold if, for every point
r € m(X), we can take an open box U in M? containing the point = and a family
{Vy }yeib(x,x,z) of mutually disjoint open boxes in M"™ indexed by the set fib(X, m, x)
satisfying the conditions (1) and (3) in Definition 3.1.

A quasi-special submanifold is not necessarily a special submanifold.
Ezample 3.3. Consider the ordered field of reals (R, <,0,1,+,-). The set
{(2,0) |2 € R} U{(z,1/2) | 2 > 0}

is definable and a quasi-special submanifold, but it is not a special submanifold. We
can not take an open box U and a family of open boxes {V, },cab(x,r o) satisfying the
condition (2) in Definition 3.1 at « = 0.

Miller gave another definition of special submanifolds when the underlying space is
the set of reals R.

Definition 3.4 ([15]). We consider an expansion of the ordered set of reals (R, <).
Let 7 : R® — R? be a coordinate projection. A d-dimensional submanifold X of R”
(in the usual sense) is m-special if, for each z € 7(X), there exists an open box U
in R? containing the point z such that each connected component C of X N7 ~1(U)

projects homeomorphically onto U.

Note that there are no connected definable sets other than singletons in some or-
dered structure whose universe is not R such as the set of algebraic real numbers R,q.

Definition 3.4 does not make sense in such a structure.

Proposition 3.5. Consider an expansion of the ordered set of reals (R,<). Let
7 : R* = R? be a coordinate projection. A definable subset of R™ is a m-special
submanifold in the sense of Definition 3.4 if it is a mw-special submanifold in the sense
of Definition 3.1. The opposite implication holds true when the structure is locally

o-manimal.
Proof. See [8, Proposition 3.10]. O
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Fornasiero gave another definition of special manifolds in [3]. He called them multi-

cells in his paper.

Definition 3.6. Let F = (F,<,+,0,-,1,...) be an expansion of an ordered commu-
tative field. Let X be a definable subset of F™ of dimension d and 7 : F™ — F9 be a
coordinate projection. Take the permutation 7 of {1,...,n} satisfying the conditions
(a) and (b) in Definition 3.1. The notation 7 denotes the map defined in Definition
3.1.

A point (a,b) € M™ is (X, m)-normal if there exist a definable neighborhood A of
a in M? and a definable neighborhood B of b in M™% such that either A x B is
disjoint from 771(X) or (A x B)N7 1(X) is the graph of a definable continuous map
A= B.

We first consider the case in which 771(X) € F9 x (0,1)" . A point a € F? is
(X, m)-bad if it is the projection of a non-(X, 7)-normal point; otherwise, the point a
is called (X, 7)-good.

Consider the case in which X does not satisfy the previous condition. Let ¢ : F' —

(0,1) be a definable homeomorphism. Consider the map
P :id? xgnd: Fdx Frod o Fd o (0,1)7 4

We say that a is (X, 7)-good if it is (¥(7 (X)), 7 o 7)-good. We define (X, )-bad
points etc. similarly.

The definable set X is a w-multi-cell if every point of 7(X) is (X, 7)-good.

Proposition 3.7. Let F = (F,<,+,0,-,1,...) be a definably complete locally o-
minimal expansion of an ordered field. Let m : F™ — F? be a coordinate projection.
A definable set is a m-special submanifold in the sense of Definition 3.1 if and only if

it 1s a m-multi-cell.

Proof. See [8, Proposition 3.13]. O

3.2 Decomposition theorem

We recall the definition of decomposition into (quasi-)special submanifolds.
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Definition 3.8. Consider an expansion of a densely linearly order without endpoints
M = (M,<,...). Let {X;}™, be a finite family of definable subsets of M™. A
decomposition of M™ into (quasi-)special submanifolds partitioning {X;}1", is a finite

family of (quasi-)special submanifolds {C;}Y_; such that

® UiV:1Ci:an
e C;NCj =0 when ¢ # j and

e cither C; has an empty intersection with X; or it is contained in X

for any 1 <4 <m and 1 < j < N. A decomposition {C;}¥; of M™ into (quasi-
)special submanifolds satisfies the frontier condition if the closure of any special man-

ifold cl(C}) is the union of a subfamily of the decomposition.
We finally give decomposition theorem:.

Theorem 3.9. Consider a definably complete locally o-minimal expansion of an dense
linear order without endpoints M = (M, <,...). Let {X;}™, be a finite family of de-
finable subsets of M™. There exists a decomposition {C;}_; of M™ into quasi-special
submanifolds partitioning {X;}1™ | and satisfying the frontier condition. Furthermore,
the number N of quasi-special submanifolds is not greater than the number uniquely
determined only by m and n.

We can replace the word ‘quasi-special’ by ‘special” when M is an expansion of an

ordered group M = (M, <,0,4+,...).
Proof. See [10, Proposition 2.11] and [8, Theorem 3.19]. O

When the structure enjoys stronger property called almost o-minimality, a better
decomposition theorem than Theorem 3.9 is available, which is called decomposition

into multi-cells.*® We do not treat it in this paper. See [6] for more information.
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