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Abstract

It is well-known that every o-minima theory has a prime model
and it is unique up to isomorphism. We give sufficient conditions for
uniqueness of prime models in definably complete locally o-minimal
theories.

1 Introduction

We are interested in definably complete locally o-minimal structures and its
theories. Pillay and Steinhorn showed the following:

Theorem 1 ([1]). Every o-minimal thoery has prime model over any sets,
that are unique up to isomorphism.

In this note, we give a condition for uniqueness of prime models in defin-
able complete locally o-minimal theories. This condition is related to form
of definable sets.
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2 Preliminaries

First, we define o-minimality, definable completeness and local o-minimality.
Let a structure M = (M, <, - --) be expansion of a linear ordered set without
endpoints.

Definition 2. M is o-minimal structure if every definable subset of M is a
finite union of points and open intervals. M is locally o-minimal structure if
for any points a € M and definable subset A of M, there is an open interval
I containing a such that AN is a finite union of points and open intervals.
M is definably complete if every definable subset of M has supremum and
infimum in M U {—o00, +00}.

Example 3. Dense linear ordered sets without endpoints, real closed fields
and (R,0,1,4+,—,-, exp(—)) are o-minimal. (R, <,0,+,sin(—)) is not o-
minimal structure since discrete infinite subset Z = {z € R | sin(zw) = 0} is
definable. But it is definably complete locally o-minimal structure.

In definably complete locally o-minimal structure, an analogy of mono-
tonicity theorem holds as following (it is called strong local monotonicity
theorem).

Theorem 4 (strong local monotonicity theorem, [2]). Let I be a A-interval
and f : I — M be a A-definable function. Then there exists a mutually
disjoint A-definable partition I = X;U X, U X, UX_ satisfying the following
conditions:

(1) the A-definable set X4 is discrete and closed;
(2) the A-definable set X. is open and f is locally constant on X.;

(8) the A-definable set X is open and f is locally strictly increasing and
continuous on X ;

(4) the A-definable set X _ is open and f is locally strictly decreasing and
continuous on X_.

In this note, we assume a language £ contains < and an interpretation
of < is linear ordering without endpoints in L-structures.

Definition 5. L-theory T is o-minimal (resp. definably complete locally o-
minimal) if every model of T is o-minimal (resp. definably complete locally
o-minimal) structure.



Remark 6. If M is o-minimal, its complete theory Th(M) is o-minimal by
uniform finiteness theorem. On the other hand, definable completeness and
local o-minimality are represented by L-sentences. Therefore, if M is defin-
ably complete locally o-minimal, its complete theoery Th(M) is definably
complete locally o-minimal.

In this note, we assume L-theory T is complete and work in monster
model M. On existence and uniqueness of prime models, the following fact
is important.

Fact 7 ([1][4]). Let a complete theory T be given.

(1) Let A C M |=T. Any model M that is constructible over A also is
prime over A.

(2) Suppose that for any subset A of a model M of T and any formula ¢
having parameters A, there is a complete formula with parameters from
A which, relative to Th(M, a)eca, implies . Then, for any A C M,
there is a model M of T that is constructible over A. (it is enough to
consider when ¢ has just one free variable)

(8) Let AC M |=T. Then any two models that are constructible over A
are isomorphic over A.

3 Main theorem

In this section, let T be a definably complete locally o-minimal theory. By
using strong local monotonicity theorem (Theorem 4), We can show the
following theorem with a similar argument to o-minimal case. (cf.[1])

Theorem 8. If dcl(() is nonempty, then T has prime model over emptyset
and it 18 unique up to isomorphism. Moreover, T has prime model over
nonempty A and it is unique up to isomorphism.

We showed the following theorem that is related to complete formulas.

Theorem 9. We assume that T has a complete formula. Then, T has a
prime model over O and it is unique up to isomorphism.

The following is the main theorem.



Theorem 10. We assume that there is a prime model M of T such that it
has a discrete definable subset X of M without parameters which isomorphic
ton X Z as orderd sets for some positive integer n. Then prime models of T
are 1somorphic.

sketch of proof. For convenience, we assume n = 2.

We take L-formula ¢(v) which define X. Since X is isomorphic to Z L Z
as ordered sets, we get decomposition X = Xy U X; where X, corresponds
to first part of Z LU Z and X corresponds to second part of Z LI Z.

We take a element a € X, from first part. Let A be a constructible
model over a and X’ = ¢(N'). Then we get decomposition X' = X U X|
where each X! isomorphic to Z. Since M is prime, we get an elementary
embbeding j : M — N. So we get decomposition X' = j(X,) U j(X7).
Then j(Xo) = X and j(X;) = X]. In N, S™(a) = j(a) for some integer
m where S is successor function in X’. Since j(a) is definable over a, N is
prime over j(a). Then M is prime over a. By uniqueness of prime models
over nonemptyset, M and N are isomorphic. O
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