A WALK ON TYPE SPACE
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ABSTRACT. We introduce a family of random walks on the type space associated to a first-
order structure. We study some basic properties connected to stationary distributions as
well as provide a model theoretic perspective on the simple symmetric random walk on
the integers.

Methods from topological dynamics have been fundamental in shaping model theory and in
particular, the model theory of groups [6, 10, 11]. Over the past couple of years, ideas from
harmonic analysis and convolution dynamics have played an interesting role in this development
[3, 4, 5]. From one perspective, some of these recent results can be reinterpreted as statements
concerning a definable variant of convolution random walks on definable groups. Hence, we jump
to two conclusions:

(1) There is a natural progression to generalize this study and explore other random processes
on first-order structures, especially in relation to localized notions from neostability, e.g.,
generically stable types and fim measures.
(2) Ideas from the theory of random walks have the potential to positively impact model
theory akin to the influence that topological dynamics has already had on the field.
This note is primarily focused on a simple implementation of random walks on type spaces. We
remark that the more interesting variants, the generic variants of the random walks as well as
connections to generic stability will be studied in upcoming research.

1. PRELIMINARIES

Our notation is relatively standard. Throughout this note, £ is a first-order language and M
is an L-structure. We let L. (M) be the collection of L-formulas with parameters from M and
free variable(s) x. We will also work modulo logical equivalence, i.e., we identify two formulas in
L5(M) if and only if they define the same definable subset of M*. We always identify definable
sets with the formulas which define them.

Definition 1.1. In this note, a Keisler measure is a finitely additive probability measure on
La(M). We use M, (M) to denote the collection of Keisler measures. We also recall that there is
a one-to-one correspondence between Keisler measures and regular Borel probability measures on
the corresponding type space, Sy (M). In particular, if p is a Keisler measure, then there exists
a unique, regular, countably additive Borel probability measure i on Sz (M) such that for every
p(z) € La(M),
m(e(@)) = illp(2)]),

where [p(z)] = {p € Se(M) : p(x) € p}. We regularly identify Keisler measures with their
corresponding regular Borel probability measures without comment. We also remark that 9t, (M)
is a compact Hausdorff space under the induced topology from [0, 1]5= (M),

Definition 1.2. A Markov kernel is a Borel function from P : Sy(M) — M, (M).

A random walk on type space is given by two pieces of data: (1) An initial distribution, i.e., a
fixed Keisler measure g in M, (M), and (2) a Markov kernel P : S (M) — M, (M). One should
think of the Markov kernel as a rule which does the following: If I find myself standing on a type
p, then the probability that my next step satisfies the formula 0(x) is precisely P(p)(0(z)). We
now recall how to apply a Markov kernel to an arbitrary Keisler measure.

Proposition 1.3. Fiz a measure p in M (M) and a Markov kernel P : Sz (M) — Mz (M).
Then the Keisler measure P(u) given by

POOE) = [ Pi0@)nto),
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is well-defined, where Pq(0(x)) = P(q)(0(z)).

Proof. Note that ¢ — Py(0(x)) is the composition of a Borel function and a continuous function,
i.e.,, g — P(q) and A — A\(6(z)). Hence for each formula the map is Borel and the integral is well-
defined. It is straightfoward to check that P () is a Keisler measure via linearity of integration. [J

Definition 1.4 (Law). Formally speaking, if we are given a Markov kernel P : S, (M) — M, (M)
and an initial distribution p, we can construct the law associated to the Markov kernel and initial
distribution. This is the measure which corresponds to the random walk generated by these two
pieces of data. While we are not focused on this object in this note, we describe its construction
for the reader: The law is the measure Py, on [, Sz (M) where Py, := [];_, p; where po = p
and pi4+1 = P(p;). The probability that an event occurs is precisely its P,-measure.

2. L-CHAINS AND UNIFORM L-CHAINS

In this section, we introduce a natural family of Markov chains on first-order structures and
describe how to lift them to Markov kernels on the associated type space. There are two different
kinds of Markov kernels which we will discuss: L-chains and uniform L-chains. L-chains are
Markov kernels which are identified by some simple abstract property while uniform £-chains are
explicitly encoded in the language and lifted from the structure to the type space.

2.1. Basic defintions.
Definition 2.1. Let M be an L-structure. Then a Markov kernel P : S; (M) — M, (M) is called
an L-chain on Sz(M) if
(1) For each a € M?, P(tp(a/M)) € conv(M) where
n n
conv(M?®) = {Z“‘stp(ai/M) :n € N>y, 715 € [0, 1]727*1- =1,a; € 1\[”0} .
i=1 i=1
(2) P is continuous.
When M is unambiguous, we refer to P simply as an £-chain.
Definition 2.2. Let M be an L-structure. Then a Markov kernel P : S; (M) — M, (M) is called

a uniform L-chain on Sz (M) if there exists a single formula ¢(z,y1,...,yn) € Lz (M) where
|z| = |yi| for each i < n with the following properties:

(1) For each b € M*, there exists a unique @ € MY (up to permutation of indices) such that
M k= ¢(b,a). In other words, if M = ¢(b,a) and M = ¢(b,¢), then (ay (1), Ag(n)) =
(c1, ..., cn) for some o in Sym(n).
(2) For each g € Sz(M),if M < M’, b€ M’ and b |= q, then
P(q) = Av(a1, .-, an)|n-
where M’ |= (b, a1, ..., an).
Moreover, we say that the formula ¢ (z, ) witnesses the uniformity of P and will sometimes write
P as P¥. When M is unambiguous, we refer to P simply as a uniform £-chain.

Let us first establish that uniform £-chains are indeed L-chains.

Proposition 2.3. Let P be a uniform L-chain on Sz(M). Then P is an L-chain on Sz(M).

Proof. 1t suffices to show that the map P : Sz(M) — M5 (M) is continuous. Let o(z,y1,...,yn)

be a formula witnessing the uniformity of P. Let (p;)icr be a net of types in Sz (M) such that

lim;cr p; = p. It suffices to show that for any 6(x) € Lo (M), lim;cr Pp, (0(x)) = Pp(0(x)). Let

M < M',bEp,and M’ = p(b,a1,...,an). Then,

i <n: M 0@}
n

Po(6(2)) = Av(as, .., an) (0(a)) =

for some k < n. Now consider the formula,

k/n,

Po(z) = Vy1yn | p@y1,nyn) = |\ N\ 0w A N\ ~0(wi)
ACn i€A igA
|Al=k
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Notice that ¢p(xz) € p. Since [¢g(x)] is a open set, there exists some p; such that for all [ > j,
pr € [Yo(x)]. Now notice that if [ > j, we have that Py, (0(x)) = k/n and so we conclude that
lim;er P(pi) = P(p). i

The following is the quintessential example of how one usually comes across L-chains in the
wild. Given a formula ¢(z,y) which looks like an edge relation on a graph of bounded degree, one
can construct a corresponding uniform £-chain.

Example 2.4. Let M be an L-structure and ¢(z,y) be an Lqy(M) formula such that |z| = |y|
and for every b € M?, there exists some natural number d such that 0 < |¢(b, M¥)| < d. Then
consider the Markov kernel given by

1
P(p) = T A Z 5tp(a/M)7
o (b, M Sy

where M < M’, b € M’ and b = p. By a straightforward coding argument using d! many variables,
one see that P is a uniform L-chain.

The following is a non-example.

Example 2.5. Consider the structure M = (N; =) and the Markov kernel P given by tp(n/M) —
Otp(nt1/M)s P — Otp(o/n) Where p is the unique non-realized type. Then P is not an L-chain.

We now define two basic kinds of uniform L-chains. The definition of a mutually algebraic
formula originates from [8].

Definition 2.6. Suppose that P is a uniform £-chain on Sz (M) witnessed by ¢(z, 7).

(1) We say that P is mutually algebraic if o(z, §) is mutually algebraic, i.e., there exists some
natural number d such that for any i < n and any a; € MY¢, we have that

[p(M®, MY, ... a;, ..., MY™)| < d,

as well as for every b € M, |p(b, MY1,...,MYn)| < d. However, we remark that this
second condition is already satisfied by the definition of a uniform L-chain.

(2) We say that P is strongly injective if = @(b, a1, ..., an) A@(e, c1,...,cn) and {a1,...,an} N
{c1,..;cn} # 0, then b =e.

Proposition 2.7. Let P be a uniform L-chain on Sz(M).

(1) If f is an injective definable function from M® to itself, then PT(*)=Y s strongly injective.
(2) If P is strongly injective, then P is mutually algebaic.

Proof. We prove the statements.
(1) Clear.
(2) Suppose that the uniformity of P is witnessed by ¢(z,y1, ..., yn) and M |= ¢(b, a1, ..., an).
Then for any i < n, notice

oM™, MYY, oy @iy ey MUY = [{ip(b MY, ..y oy MY
< [Sym(n - 1)].

If no such b exists for a particular a;, then the size of the solution set is 0 and hence also
bounded. O

2.2. Stationary distributions. We recall the definition of stationary distributions and unique
ergodicity in this context and prove a few general properties. In general, the definition of uniquely
ergodic slightly varies from text to text, and so our definition is consistent with the one given in [1].
Stationary distributions are fixed points of Markov kernels and provide fundamental information
about the associated random walk.

Definition 2.8. Suppose that P : Sy (M) — M, (M) is a Markov kernel. Then a stationary
distribution for P is a Keisler measure p in 9t (M) such that P(u) = p. Moreover, we say that
P is uniquely ergodic if it admits a unique stationary distribution.

Remark 2.9. It is a direct consequence of Markov-Kakutani fixed point theorem that any £-chain
admits a stationary distribution. In particular, the map P : 9y (M) — M, (M) is continuous and
affine and thus admits a fixed point.
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Furthermore, if P is a uniform L-chain witnessed by a formula ¢(z, ) which is mutually
algebraic, then P admits a non-realized stationary distribution, i.e., P(u) = wp and supp(u) N
{tp(a/M) : a € M} = @. This again follows directly from the Markov-Kakutani fixed point
theorem, but now applied to P|x : X — X where X = My (M)\ U enr{p: pu(z = a) > 0}.

Lemma 2.10. Suppose that P is a uniform L-chain on Sy(M) and v is P-stationary. Suppose
that uniformity is witnessed by p(x,y). For any definable set D(x), we let

n
Dy (x) == JwIyr, ... yn (D(w) Ap(w, 1, yn) A\ @ = yi> :
i=1

Then,
(1) For any D(x), v(D(x)) < v(Dy(x)).
(2) If P is strongly injective, then for any D(z), v(D(z)) = v(Dy(x)).

Proof. We first prove claim (1). Notice

V(Dw(w)):P(V)(Dw(l')):/ M)P,,(de))du

x

= [ Pt [ Py(D, ()
[D(z)] [=D(=)]

)
[D(=)]

— V(D)) + /[ iy P (D@ 2 D).

1dv + / Pp(Dy(x))dv
[=D(2)]

We justify equation (). Suppose that p € [D(z)]. Then if b = p, and M < M’ = p(b, a1, ...,an),
then M’ |= Dy (a;). Therefore, for any p € [D(z)],

Pp(Dy(x)) = Av(ar, ..., an)(Dy(2)) = L.
To prove claim (2), notice that if P is strongly injective, then for every p € [~D(z)], Pp(Dy(x)) =
0. Hence > is replaced with = in the final term. O

The next proposition shows that if P is an uniquely ergodic uniform L-chain, and g is the
unique stationary distribution, then the sets of p-positive measure are in some sense generic, i.e.,
a variant of finitely many translations cover the space.

Proposition 2.11. Suppose that P is an uniquely ergodic uniform L-chain, witnessed by the
formula o(x,§) where § = (y1,...,yn) and the stationary distribution p. Then for any definable
set D(x), we define D~ (x) where

D7 (@) = 3g(e(x,9) A \/ D) and D™ (x) = (D7) (x).
i=1
We let D°(z) = D(z). If u(D(x)) > O then there ewists some natural number d such that
Uito[D 7 (2)] = So(M).

Proof. If U2 o[D7%(z)] = Sz(M), then the statement holds from compactness. If not, then
K := N2 ,[=D~*(x)] is a non-empty closed subset of S;(M). If p € K, then supp(Pp) C K and
so Pk : K — K. Indeed, suppose there exists ¢ € supp(Pp) N K°. Then D—F(z) € ¢ for some
k > 0. Notice that

n
M = Vv (e, g) A\ D7 (i)] = D* ().
i=1
Thus, D~*~1(2) € p — a contradiction. Therefore P|x induces a continuous affine map from
M(K) - M(K). By Markov-Kakutani, we have a stationary distribution v which concentrates
on K. Notice that K N [D(z)] = 0 and so v # u — this contradiction the assumption that P is
uniquely ergodic. O

Finally, we make a comment about the totally transcendental setting. For simplicity, we restrict
to a countable language. We use RM (—) to denote the Morley Rank.
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Fact 2.12. Suppose that T is totally transcendental, M < M’ |="T. Let a,b € M’, and suppose
that b € acl(Ma). Then the Morley rank of tp(b/M) is less than or equal to the Morley rank of
acl(a/M).

Proposition 2.13. Assume that T it totally transcendental with rank o and M < M’ |= T.
Suppose that P is a mutually algebraic uniform L-chain witnessed by p(x,y). Then there exists
a stationary distribution v such that for every q € supp(v), RM(q) = a.

Proof. We first show that if RM(p) = «, then P(p) concentrates on types of maximal rank.
Suppose that RM(0(z)) < o and let b = p and M’ |= ¢(b, a1, ...,an). Then

P(p)(0(2)) = Av(a1, ..., an)(0(2)) = D dip(a, /ar) (0(2)) = 0.
i=1

Indeed, notice that for each i < n, we have that b € acl(Ma;) since p(z,y) is mutually algebraic,
i.e., consider 3y(p(x,y1, ..., i, ...,yn)). By Fact 2.12, RM (tp(a;/M)) > RM (tp(b/M)) = o and
so O(x) & tp(a; /M) which implies that the sum is 0. Now, the collection of types of maximal
rank, say gen, is a compact subset (even finite) of Sz (M). We can consider the Markov kernel
Q : gen — gen via Q(q) = P|gen(q). The corresponding extension of Q to M(gen) — M(gen) is
continuous and affine and so by the Markov-Kakutani fixed point theorem, it admits a stationary
distribution, say v. The measure v is also a stationary for P since

PWO@) = [ P@O@)) = [ P(p)(60(2))dv ()
q€s ) g€supp(v)

x

= / Q(q)(0(x))dr(q) = Q) (0(x)) = v(8(x)). g
g€supp(v)

3. SIMPLE SYMMETRIC RANDOM WALK ON THE INTEGERS

In this section, we consider the simple symmetric random walk on the integers. This random
walk can be encoded many different ways in the model theoretic context and may have different
properties depending on the encoding. We provide two examples where the encoding is uniquely
ergodic (one which is interesting, one which is not) and an example where the encoding is not
uniquely ergodic. In this section, the L£-chains are described using the trick from Example 2.4.
We begin with a trivial encoding.

Lemma 3.1. Suppose that M is strongly minimal and P is an L-chain on Sz (M) such that the
discrete random walk (M, P|ar) is irreducible but not positive recurrent. Then the Markov kernel
P admits a unique stationary distribution, namely the Dirac measure concentrating on the unique
non-realized type.

Proof. Since the walk is not positive recurrent, there does not exist a stationary distribution
concentrating on realized points (See e.g. [9, Theorem 6.4.3]). By Proposition 2.13 (or Remark
2.9), there exists a stationary distribution concentrating on {p} where p is the unique non-realized
type. Hence 0, is a stationary distribution. Finally, suppose that p = ru1 + spu2 where r +s =1,
r,s € (0,1), o = dp and p1 concentrates on M. Then

P(rpo + sp1) = rpo + sP(p1) = p1 = P(pa)-

But since (M, P|ys) is not positive recurrent, g1 cannot be stationary, and hence p1 does not
exist. O

Proposition 3.2. Consider the structure M = (Z;S) and the formula ¢(z,y) = (x = S(y) V
S(y) = x). Then the associated uniform L-chain on Sy (M) is uniquely ergodic.

Proof. The walk (M, P|ys) is the standard simple random walk on the integers. It is irreducible,
recurrent (due to Pdya in 1921), but not positive recurrent. Since the structure is also strongly
minimal, Lemma 3.1 applies. O

We now consider a more interesting encoding which takes the group structure of Z into account.
Again, our Markov kernel is uniquely ergodic, but now the unique stationary distribution is non-
trivial. The following elementary fact about harmonic functions on Z is used. We remark that this
is an instance of classical non-trivial theorems concerning random walks on the integers/abelian
groups [2, 7].
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Fact 3.3. Consider the measure A\ = %51 + %5_1 on Z. There are no non-constant bounded
A-harmonic functions. In other words, there are no non-constant bounded functions f : Z — R
such that for any k € Z,

Fk) = /tEZ Flk+ D).

Notice that term on the right hand side nicely reduces to %f(k -1+ %f(k + 1) because of the
definition of A.

Proposition 3.4. Consider the structure M = (Z;+,0,1) and the formula ¢(x,y) = (x =
y+1Vy=uax+1). Then the associated uniform L-chain P on Sy (M) is uniquely ergodic.

Proof. We recall that every definable subset of Z is eventually periodic, i.e., if A C Z is definable,
then A is a disjoint union of cosets of subgroups of Z, plus or minus finitely many points. We let
the formula,
Dp(x+k):=3y(ly+..+y=x—k).
\W—I
n—times
We claim that there exists a unique measure yu € M, (M) such that for every n > 2 and k& > 0,

p(Dale +8) = .

Notice that the condition above forces the measure of any finite subset of Z to be 0. We first

prove that p is P-stationary. By above, it suffices to show that (Pu)(Dn(x +k)) = u(Dn(x +k))
for all n > 2, k > 0. Notice

(POl + ) = [ ooy PP+ KD
pESy
1

1
= —XD,, (z+k—1) T XD, (z+k+1) 3
/peSI(M) 2 Dy (z+k—1) 2 Dy (z+k+1)

%M(Dn(.r +k—1)+ %/L(Dn(ﬂ'f +k+1))
1

n

By uniqueness, P (p) = p. We now show that p is the unique stationary measure. Suppose that v
is another. Since v # p, there exists some ns > 2 and ks« > 0 such that v(Dn, (x + k«)) 7# 1/nx.
We claim that the function f, : Z — R via f, (k) = v(Dn, (z + k)) must be non-constant bounded
A-harmonic function where A\ = %61 + %5_1. This contradict Fact 3.3. O

Finally, we observe that if we add all subsets of Z, the resulting Markov kernel is no longer
uniquely ergodic. There are many distinct stationary distributions.

Proposition 3.5. Consider the language £ = {+,0,1,{A(2)} acp(z)} and let M be the natural
interpretation of the symbols on Z. Consider the sequence of measures v, where

HO <) < n = (AGDH

n

va(A@)) =

Given an ultrafilter D on w, we let vp = limp vy,. We claim that vp is P-stationary where
P="P¢ and p(x,y) := (x =y+1Vy=ax+1). Using this construction, and choosing ultrafilters
appropriately, one can derive that P is not uniquely ergodic.

Proof. Notice

PODIA@) = [ PEIAE)D = gro(A 1)+ prp(Al 1)

@

= Svp(AW) + 3vp(A)) = vp(A()).
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