Mean Stability and Bifurcation in Random Dynamical Systems of Polynomial Automorphisms on \mathbb{C}^2

Hiroki Sumi

Division of Mathematical and Information Sciences, Graduate School of Human and Environmental Studies, Kyoto University,

Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan E-mail: sumi@math.h.kyoto-u.ac.jp

http://www.math.h.kyoto-u.ac.jp/~sumi/index.html

March 14, 2025

Abstract

We consider random dynamical systems of polynomial automorphisms (complex generalized Hénon maps and their conjugate maps) of \mathbb{C}^2 . We show that a generic random dynamical system of polynomial automorphisms has "mean stablity" on \mathbb{C}^2 . Further, we show that if a system has mean stability, then (1) for each $z \in \mathbb{C}^2$ and for almost every sequence $\gamma = (\gamma_n)_{n=1}^{\infty}$ of maps, the maximal Lyapunov exponent of γ at z is negative, (2) there are only finitely many minimal sets of the system, (3) each minimal set is attracting, (4) for each $z \in \mathbb{C}^2$ and for almost every sequence γ of maps, the orbit $\{\gamma_n \cdots \gamma_1(z)\}_{n=1}^{\infty}$ tends to one of the minimal sets of the system. Note that none of (1)-(4) can hold for any deterministic iteration dynamical system of a single complex generalized Hénon map. To show the density of mean stable systems, we consider the bifurcation and stability of families of random dynamical systems of polynomial automorphisms of \mathbb{C}^2 . We observe many new phenomena in random dynamical systems of polynomial automorphisms of \mathbb{C}^2 and observe the mechanisms. We provide new strategies and methods to study higher-dimensional random holomorphic dynamical systems.

The results in this presentation are included in [S24].

Motivation.

- Nature has a lot of random (noise) terms. Thus it is natural and important to consider random dynamical systems.
- Holomorphic dynamical systems have been deeply investigated. The study
 of them helps us to investigate real dynamical systems.

- Combining the above two ideas, we consider random holomorphic dynamical systems.
- We want to find new phenomena (so called randomness-induced phenomena) in random dynamical systems which cannot hold in deterministic iteration dynamical systems of single maps.
- Other motivations: Random Newton's method (in which we can find roots of polynomials more easily than the deterministic methods, see S., 2021 ([S21], Comm. Math. Phys.)). The action of holomorphic automorphisms on complex manifolds. The action of mapping class groups of the Riemann surfaces on the character varieties, etc.

Definition 1.

(1) Let \mathbb{C}^2 be the 2-dimensional complex Euclidean space. Let $f: \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map, i.e., if we write f(x,y) = (g(x,y),h(x,y)), then g(x,y) and h(x,y) are polynomials of (x,y). We say that f is a polynomial automorphism on \mathbb{C}^2 if f is a holomorphic automorphism on \mathbb{C}^2 . Let $\mathrm{PA}(\mathbb{C}^2)$ be the space of all polynomial automorphisms on \mathbb{C}^2 .

Remark: if $f \in PA(\mathbb{C}^2)$ then $f^{-1} \in PA(\mathbb{C}^2)$.

Remark: [MNTT00]. If $f \in PA(\mathbb{C}^2)$ then f is conjugate by an element $g \in PA(\mathbb{C}^2)$ to one of the following maps:

- (a) an affine map $(x,y) \mapsto (ax+by+c, a'x+b'y+c'), ab'-a'b \neq 0.$
- (b) an elementary map $(x, y) \mapsto (ax + b, sy + p(x)), as \neq 0$, where p(x) is a polynomial of x.
- (c) a finite composition of some generalized Hénon maps

$$(x,y) \mapsto (y,p(y)-\delta x), \delta \neq 0,$$

where p(y) is a polynomial of y with $deg(p) \geq 2$.

(2) Let X^+ be the space of all maps $f:\mathbb{C}^2\to\mathbb{C}^2$ of the form

$$f(x,y) = (y + \alpha, p(y) - \delta x)$$

where $\alpha \in \mathbb{C}$, $\delta \in \mathbb{C} \setminus \{0\}$, and p(y) is a polynomial of y with $\deg(p) \geq 2$. Note that $X^+ \subset \operatorname{PA}(\mathbb{C}^2)$. We endow X^+ with the topology such that a sequence $\{f_j(x,y) = (y+\alpha_j,p_j(y)-\delta_jx)\}_{j=1}^{\infty}$ in X^+ converges to an element $f(x,y) = (y+\alpha,p(y)-\delta x)$ in X^+ if and only if

- (i) $\alpha_j \to \alpha \ (j \to \infty)$,
- (ii) $\delta_i \to \delta \ (j \to \infty)$,
- (iii) $deg(p_i) = deg(p)$ for each large number j and

(iv) the coefficients of p_j converge to the coefficients of p appropriately as $j \to \infty$.

Also, we set $X^- := \{ f^{-1} \in PA(\mathbb{C}^2) \mid f \in X^+ \}$ endowed with the topology similar to that of X^+ . Note that $X^- \cong X^+$ via $f^{-1} \leftrightarrow f$.

Remark. (i) If $f \in X^{\pm}$ then f is conjugate to a generalized Hénon map by an element $g \in \operatorname{PA}(\mathbb{C}^2)$. (ii) If $f \in X^+$ (resp. X^-) then f can be extended to a holomorphic self-map on $\mathbb{P}^2 \setminus \{[1:0:0]\}$ (resp. $\mathbb{P}^2 \setminus \{[0:1:0]\}$). (iii) For each $f \in X^+$ (resp. X^-), the point [0:1:0] (resp. [1:0:0]) is an attracting fixed point of f.

(3) Let $\mathfrak{M}_1(X^{\pm})$ be the space of all Borel probability measures on X^{\pm} . Also, we set

$$\mathfrak{M}_{1,c}(X^{\pm}) := \{ \tau \in \mathfrak{M}_1(X^{\pm}) \mid \text{ supp } \tau \text{ is a compact subset of } X^{\pm} \}.$$

We endow $\mathfrak{M}_{1,c}(X^{\pm})$ with a topology \mathcal{O} which satisfies that

 $\tau_n \to \tau$ as $n \to \infty$ if and only if

- (a) for each bounded continuous function $\varphi: X^{\pm} \to \mathbb{C}$, we have $\int \varphi \, d\tau_n \to \int \varphi \, d\tau$ as $n \to \infty$, and
- (b) supp $\tau_n \to \text{supp } \tau$ as $n \to \infty$ with respect to the Hausdorff metric in the space of all non-empty compact subsets of X^{\pm} .

For each $\tau \in \mathfrak{M}_{1,c}(X^+)$, we consider i.i.d. random dynamical system on $\mathbb{P}^2 \setminus \{[1:0:0]\}$ such that at every step we choose a map $f \in X^+$ according to τ . This defines a Markov process whose state space is $\mathbb{P}^2 \setminus \{[1:0:0]\}$ and whose transition probability p(z,A) from a point $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$ to a Borel subset A of $\mathbb{P}^2 \setminus \{[1:0:0]\}$ satisfies

$$p(z, A) = \tau(\{f \in X^+ \mid f(z) \in A\}).$$

(4) For each $\tau \in \mathfrak{M}_{1,c}(X^{\pm})$, let

$$G_{\tau} := \{ \gamma_n \circ \cdots \circ \gamma_1 \mid n \in \mathbb{N}, \gamma_j \in \operatorname{supp} \tau(\forall j) \}.$$

This is a semigroup with the semigroup operation being the functional composition. (It is important to study the dynamics of G_{τ} .)

- (5) Let Λ be an open subset of \mathbb{P}^2 . We say that an element $\tau \in \mathfrak{M}_{1,c}(X^{\pm})$ is mean stable on Λ if each $f \in \operatorname{supp} \tau$ is defined on Λ and $f(\Lambda) \subset \Lambda$ and there exist an $n \in \mathbb{N}$, an $m \in \mathbb{N}$, non-empty open subsets U_1, \ldots, U_m of Λ , a non-empty compact subset K of $\bigcup_{j=1}^m U_j$, and a constant c with 0 < c < 1 such that the following (a) and (b) hold.
 - (a) For each $(\gamma_1, \ldots, \gamma_n) \in (\text{supp } \tau)^n$, we have

$$\gamma_n \circ \cdots \circ \gamma_1(\cup_{j=1}^m U_j) \subset K.$$

Moreover, for each j = 1, ..., m, for all $x, y \in U_j$ and for each $(\gamma_1, ..., \gamma_n) \in (\text{supp } \tau)^n$, we have

$$d(\gamma_n \circ \cdots \circ \gamma_1(x), \gamma_n \circ \cdots \circ \gamma_1(y)) \le cd(x, y),$$

where d denotes the distance induced by the Fubini-Study metric on \mathbb{P}^2 .

- (b) For each $z \in \Lambda$, there exists an element $f_z \in G_\tau$ such that $f_z(z) \in \bigcup_{j=1}^m U_j$.
- (6) Let \mathcal{MS} be the set of all $\tau \in \mathfrak{M}_{1,c}(X^+)$ satisfying that
 - (i) τ is mean stable on $\mathbb{P}^2 \setminus \{[1:0:0]\}$ and
 - (ii) τ^{-1} is mean stable on $\mathbb{P}^2 \setminus \{[0:1:0]\}$, where τ^{-1} is the element of $\mathfrak{M}_{1,c}(X^-)$ such that $\tau^{-1}(A) = \tau(\{f \in X^+ \mid f^{-1} \in A\})$ for each Borel subset A of X^- .

Remark 2. \mathcal{MS} is open in $(\mathfrak{M}_{1,c}(X^+), \mathcal{O})$.

Theorem 3 ([S24]). \mathcal{MS} is open and dense in $\mathfrak{M}_{1,c}(X^+)$. Moreover, for each $\tau \in \mathcal{MS}$, we have all of the following (1)–(5).

- (1) There exists a constant c_{τ} with $c_{\tau} < 0$ such that the following holds.
 - For each $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$, there exists a Borel subset $B_{\tau,z}^+$ of $(X^+)^{\mathbb{Z}}$ with $(\bigotimes_{n=-\infty}^{\infty} \tau)(B_{\tau,z}^+) = 1$ such that for each $\gamma = (\gamma_j)_{j \in \mathbb{Z}} \in B_{\tau,z}^+$, we have $\lim_{n \to \infty} \frac{1}{n} \log \|D(\gamma_{n-1} \circ \cdots \circ \gamma_0)_z\| \le c_{\tau} < 0.$

Also, for each $z \in \mathbb{P}^2 \setminus \{[0:1:0]\}$, there exists a Borel subset $B_{\tau,z}^-$ of $(X^+)^{\mathbb{Z}}$ with $(\otimes_{n=-\infty}^{\infty} \tau)(B_{\tau,z}^-) = 1$ such that for each $\gamma = (\gamma_j)_{j \in \mathbb{Z}} \in B_{\tau,z}^-$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log \|D(\gamma_{-n}^{-1} \circ \cdots \circ \gamma_{-1}^{-1})_z\| \le c_\tau < 0.$$

Here, for each rational map f on \mathbb{P}^2 and for each $z \in \mathbb{P}^2$ where f is defined, we denote by $||Df_z||$ the norm of the differential of f at z w.r.t. the Fubiny-Study metric in \mathbb{P}^2 .

(2) For each $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$, there exists a Borel subset $C_{\tau,z}^+$ of $(X^+)^{\mathbb{Z}}$ with $(\otimes_{n=-\infty}^{\infty} \tau)(C_{\tau,z}^+) = 1$ such that for each $\gamma = (\gamma_j)_{j \in \mathbb{Z}} \in C_{\tau,z}^+$, there exists a number $r^+ = r^+(\tau, z, \gamma) > 0$ satisfying that

$$diam(\gamma_{n-1} \circ \cdots \circ \gamma_0(B(z, r^+))) \to 0 \text{ as } n \to \infty$$

exponentially fast, and for each $z \in \mathbb{P}^2 \setminus \{[0:1:0]\}$, there exists a Borel subset $C_{\tau,z}^-$ of $(X^+)^{\mathbb{Z}}$ with $(\otimes_{n=-\infty}^{\infty}\tau)(C_{\tau,z}^-)=1$ such that for each $\gamma=(\gamma_j)_{j\in\mathbb{Z}}\in C_{\tau,z}^-$, there exists a number $r^-=r^-(\tau,z,\gamma)>0$ satisfying that

$$diam(\gamma_{-n}^{-1} \circ \cdots \circ \gamma_{-1}^{-1}(B(z, r^{-}))) \to 0 \text{ as } n \to \infty$$

exponentially fast, where B(z,r) denotes the ball with center z and radius r with respect to the distance d induced by the Fubini-Study metric on \mathbb{P}^2 , and for each subset A of \mathbb{P}^2 , we set $diamA := \sup_{x,y \in A} d(x,y)$.

(3)

(a) Let $Min(\tau)$ be the set of all minimal sets of τ in $\mathbb{P}^2 \setminus \{[1:0:0]\}$.

$$1 \le \sharp \operatorname{Min}(\tau) < \infty.$$

Here, a non-empty compact subset L of $\mathbb{P}^2 \setminus \{[1:0:0]\}$ is said to be a minimal set of τ if $L = \bigcup_{h \in G_\tau} \{h(z)\}$ for each $z \in L$.

- (b) For $\forall z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$, for $(\otimes_{n=-\infty}^{\infty} \tau)$ -a.e. $(\gamma_j)_{j \in \mathbb{Z}} \in (X^+)^{\mathbb{Z}}$, we have $d(\gamma_{n-1} \circ \cdots \circ \gamma_0(z), \cup_{L \in \operatorname{Min}(\tau)} L) \to 0$ as $n \to \infty$.
- (4) For each $L \in \text{Min}(\tau)$, let $T_{L,\tau} : \mathbb{P}^2 \setminus \{[1:0:0]\} \to [0,1]$ be the function of probability of tending to L, i.e., for each $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$, we set

$$T_{L,\tau}(z) := (\bigotimes_{n=1}^{\infty} \tau)(\{(\gamma_j)_{j\in\mathbb{N}} \in (X^+)^{\mathbb{N}} \mid d(\gamma_n \cdots \gamma_1(z), L) \to 0 \ (n \to \infty)\}).$$

Then, $T_{L,\tau}$ is locally Hölder continuous on $\mathbb{P}^2 \setminus \{[1:0:0]\}$. Also, $T_{L,\tau}$ is constant on each connected component of $F(G_{\tau})$. Here, $F(G_{\tau})$ denotes the set of points $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$ for which there exists a neighborhood U of z such that $\{h: U \to \mathbb{P}^2 \setminus \{[1:0:0]\}\}_{h \in G_{\tau}}$ is equicontinuous on U. (We call $F(G_{\tau})$ the Fatou set of semigroup G_{τ} .)

(5) For each $\gamma = (\gamma_j)_{j \in \mathbb{Z}} \in (X^+)^{\mathbb{Z}}$, let F_{γ}^+ be the set of elements

$$z\in\mathbb{P}^2\setminus\{[1:0:0]\}$$

for which there exists a neighborhood U of z in $\mathbb{P}^2 \setminus \{[1:0:0]\}$ such that $\{\gamma_n \circ \cdots \circ \gamma_0 : U \to \mathbb{P}^2\}_{n=0}^{\infty}$ is equicontinuous on U. Similarly, let F_{γ}^- be the set of elements

$$z \in \mathbb{P}^2 \setminus \{[0:1:0]\}$$

for which there exists a neighborhood U of z in $\mathbb{P}^2 \setminus \{[0:1:0]\}$ such that $\{\gamma_{-n}^{-1} \circ \cdots \circ \gamma_{-1}^{-1}: U \to \mathbb{P}^2\}_{n=1}^{\infty}$ is equicontinuous on U. Also, let

$$J_{\gamma}^{\pm} := \mathbb{P}^2 \setminus F_{\gamma}^{\pm}.$$

Then there exists a Borel subset D_{τ} of $(X^+)^{\mathbb{Z}}$ with $(\otimes_{n=-\infty}^{\infty} \tau)(D_{\tau}) = 1$ such that for each $\gamma \in D_{\tau}$, we have

$$Leb_4(J_{\gamma}^{\pm}) = 0,$$

where Leb₄ denotes the 4-dimensional Lebesgue measure on \mathbb{P}^2 .

Remark 4. None of statements (1)(2)(3)(4) in Theorem 3 can hold for deterministic dynamics of a single $f \in X^{\pm}$.

To prove the density of \mathcal{MS} in $\mathfrak{M}_{1,c}(X^+)$ in Theorem 3, we need the following.

Theorem 5 ([S24]). Let $\{\tau_t\}_{t\in[0,1]}$ be a family of elements of $\mathfrak{M}_{1,c}(X^+)$ such that all of the following (1)(2)(3) hold.

- (1) $t \in [0,1] \mapsto \tau_t \in \mathfrak{M}_{1,c}(X^+)$ is continuous w.r.t the topology \mathcal{O} .
- (2) If $t_1, t_2 \in [0, 1]$ and $t_1 < t_2$, then $supp \tau_{t_1} \subset int(supp \tau_{t_2})$. Here, int denotes the set of interior points with respect to the topology in X^+ .
- (3) $int(supp \tau_0) \neq \emptyset$.

Let $B := \{t \in [0,1] \mid \tau_t \text{ is not mean stable on } \mathbb{P}^2 \setminus \{[1:0:0]\}\}$. Then

$$\sharp B \leq \sharp \operatorname{Min}(\tau_0) - 1 < \infty$$

and $C := \{t \in [0,1] \mid s \mapsto \sharp \operatorname{Min}(\tau_s) \text{ is constant in a neighborhood of } t\}$ satisfies $C = [0,1] \setminus B.$

We give the rough ideas of the proof of Theorem 5 as follows.

- (i) Under the assumptions of Theorem 5, by Zorn's lemma, we can show that if $t_1, t_2 \in [0, 1], t_1 < t_2$ then $1 \le \sharp \operatorname{Min}(\tau_{t_2}) \le \sharp \operatorname{Min}(\tau_{t_1})$.
- (ii) Moreover, we can easily show that $\sharp Min(\tau_0) < \infty$.
- (iii) It follows that $\sharp([0,1]\setminus C)\leq \sharp \operatorname{Min}(\tau_0)-1<\infty$.
- (iv) (Key) We can show that if $t_0 \in C$, then any $L \in \text{Min}(\tau_{t_0})$ is "attracting" for τ_{t_0} , by using the "Carathéodory distance". It follows that if $t_0 \in C$ then τ_{t_0} is mean stable on $\mathbb{P}^2 \setminus \{[0:1:0]\}$.
- (v) By (iv), $C \subset [0,1] \setminus B$. Also it is easy to see $[0,1] \setminus B \subset C$. Thus $C = [0,1] \setminus B$.
- (vi) Combining (iii) and (v), we obtain $\sharp B \leq \sharp \operatorname{Min}(\tau_0) 1 < \infty$.

We give the rough ideas of the proof of the density of \mathcal{MS} in $\mathfrak{M}_{1,c}(X^+)$ in Theorem 3 as follows.

- (i) Let $\zeta \in \mathfrak{M}_{1,c}(X^+)$ and let U be an open neighborhood of ζ in $\mathfrak{M}_{1,c}(X^+)$.
- (ii) Then, there exists an element $\zeta_0 \in U$ with $\sharp \operatorname{supp} \zeta_0 < \infty$.
- (iii) By enlarging the support of ζ_0 , we can construct a family $\{\tau_t\}_{t\in[0,1]}$ of elements in U such that $\{\tau_t\}_{t\in[0,1]}$ satisfies the conditions (1)(2)(3) in Theorem 5.
- (iv) Then, by Theorem 5, there exists a t > 0 such that $\tau_t \in U \cap \mathcal{MS}$. This argument shows the density of \mathcal{MS} in $\mathfrak{M}_{1,c}(X^+)$.

Summary

- (1) We introduce the notion of mean stability in i.i.d. random (holomorphic) 2-dimensional dynamical systems.
- (2) We can see that a generic random dynamical system of polynomial automorphisms on \mathbb{C}^2 having some conditions, is mean stable.
- (3) If a random holomorphic dynamical system on $\mathbb{P}^2 \setminus \{[1:0:0]\}$ is mean stable then for each $z \in \mathbb{P}^2 \setminus \{[1:0:0]\}$, for a.e. orbit starting with z, the maximal Lyapunov exponent is negative.
- (4) Note that the statement of (3) cannot hold for deterministic dynamics of a single polynomial automorphism f on \mathbb{C}^2 which is conjugate to a generalized Hénon map by a polynomial automorphism.
- (5) In the proof of the density of elements τ in $\mathfrak{M}_{1,c}(X^+)$ which are mean stable on $\mathbb{P}^2 \setminus \{[1:0:0]\}$, we consider a family $\{\tau_t\}$ in $\mathfrak{M}_{1,c}(X^+)$ and we analyse the bifurcation.

We see many randomness-induced phenomena (phenomena in random dynamical systems which cannot hold for iteration dynamics of single maps). In this talk, we have seen randomness-induced order.

Many kinds of maps in one random dynamical system automatically cooperate together to make the chaoticity weaker. We call such phenomena

Cooperation Principle.

Even if a random dynamical system has a randomness-induced order, the system still can have some complexity. We have to investigate the

gradation between chaos and order

in random dynamical systems.

References

- [FS91] J. E. Fornaess and N. Sibony, Random iterations of rational functions, Ergodic Theory Dynam. Systems, 11(1991), 687–708.
- [HM96] A. Hinkkanen and G. J. Martin, *The Dynamics of Semigroups of Rational Functions I*, Proc. London Math. Soc. (3)**73**(1996), 358-384.
- [JS17] J. Jaerisch and H. Sumi, Pointwise Hölder exponents of the complex analogues of the Takagi function in random complex dynamics, Adv. Math. 313 (2017) 839–874.

- [Ma88] R. Mañé, The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems (Valparaiso, 1986) (Lecture Notes in Mathematics vol 1331) (Berlin: Springer) pp 86-117, 1988.
- [MNTT00] S. Morosawa, Y. Nishimura, M. Taniguchi, T. Ueda, *Holomorphic Dynamics*, Cambridge studies in advanced mathematics 66, Cambridge University Press, 2000.
- [S11] H. Sumi, Random complex dynamics and semigroups of holomorphic maps, Proc. London Math. Soc., (2011), 102 (1), 50–112.
- [S13] H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, Adv. Math. 245 (2013) 137–181.
- [S21] H. Sumi, Negativity of Lyapunov Exponents and Convergence of Generic Random Polynomial Dynamical Systems and Random Relaxed Newton's Methods, Comm. Math. Phys. **384**, 1513–1583 (2021).
- [S24] H. Sumi, Random Dynamical Systems of Polynomial Automorphisms on \mathbb{C}^2 , preprint 2024, https://arxiv.org/abs/2408.03577. The results in this presentation are included in this preprint.
- [SW19] H. Sumi, T. Watanabe, Non-i.i.d. random holomorphic dynamical systems and the probability of tending to infinity, Nonlinearity **32** (2019), 3742–3771.
- [SW22] H. Sumi and T. Watanabe, Non-i.i.d. random holomorphic dynamical systems and the generic dichotomy, Nonlinearity 35 (2022), no. 4, 1857-1875. See also https://arxiv.org/abs/2101.08968.