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Abstract

We consider random dynamical systems of polynomial automorphisms
(complex generalized Hénon maps and their conjugate maps) of C?. We
show that a generic random dynamical system of polynomial automor-
phisms has “mean stablity” on C?. Further, we show that if a system
has mean stability, then (1) for each z € C? and for almost every se-
quence v = (Yn)n=1 of maps, the maximal Lyapunov exponent of vy at z
is negative, (2) there are only finitely many minimal sets of the system,
(3) each minimal set is attracting, (4) for each z € C? and for almost
every sequence «y of maps, the orbit {7y, - --v1(2)}n=1 tends to one of the
minimal sets of the system. Note that none of (1)—(4) can hold for any
deterministic iteration dynamical system of a single complex generalized
Hénon map. To show the density of mean stable systems, we consider
the bifurcation and stability of families of random dynamical systems of
polynomial automorphisms of C2. We observe many new phenomena in
random dynamical systems of polynomial automorphisms of C? and ob-
serve the mechanisms. We provide new strategies and methods to study
higher-dimensional random holomorphic dynamical systems.

The results in this presentation are included in [S24].

Motivation.

e Nature has a lot of random (noise) terms. Thus it is natural and important
to consider random dynamical systems.

e Holomorphic dynamical systems have been deeply investigated. The study
of them helps us to investigate real dynamical systems.



Combining the above two ideas, we consider random holomorphic dynam-
ical systems.

We want to find new phenomena (so called randomness-induced phenom-
ena) in random dynamical systems which cannot hold in deterministic
iteration dynamical systems of single maps.

Other motivations: Random Newton’s method (in which we can find roots
of polynomials more easily than the deterministic methods, see S., 2021
([S21], Comm. Math. Phys.)). The action of holomorphic automorphisms
on complex manifolds. The action of mapping class groups of the Riemann
surfaces on the character varieties, etc.

Definition 1.

Let C2? be the 2-dimensional complex Euclidean space. Let f : C2 — C?
be a polynomial map, i.e., if we write f(z,y) = (g9(z,y), h(z,y)), then
g(z,y) and h(z,y) are polynomials of (z,y). We say that f is a polynomial
automorphism on C? if f is a holomorphic automorphism on C?. Let
PA(C?) be the space of all polynomial automorphisms on C2.

Remark: if f € PA(C?) then f~! € PA(C?).
Remark: [MNTTO00]. If f € PA(C?) then f is conjugate by an element
g € PA(C?) to one of the following maps:

(a) an affine map (x,y) — (ax + by + ¢, a’z + by + ), ab’ —a’b # 0.

(b) an elementary map (z,y) — (ax + b, sy + p(x)),as # 0,
where p(z) is a polynomial of x.

(c) a finite composition of some generalized Hénon maps

(I7y) = (yap(y) - 5$>75 7£ 07

where p(y) is a polynomial of y with deg(p) > 2.

Let X+ be the space of all maps f : C2 — C? of the form
f(@,y) = (y + o, ply) — ox)

where a € C,0 € C\ {0}, and p(y) is a polynomial of y with deg(p) > 2.
Note that XT C PA(C?). We endow X+ with the topology such that

a sequence {f;(z,y) = (y + a;,p;(y) — 9;x)}32; in X+ converges to an

element f(z,y) = (y + o, p(y) — dz) in X if and only if
(i) aj = a(j = o),
(i) &5 — 6 (j — o),

(ili) deg(p;) = deg(p) for each large number j and



(iv) the coefficients of p; converge to the coefficients of p appropriately
as j — oo.

Also, we set X~ := {f~! € PA(C?) | f € X} endowed with the topology
similar to that of X*. Note that X~ = X* via f~! < f.

Remark. (i) If f € X* then f is conjugate to a generalized Hénon map by
an element g € PA(C?). (ii) If f € X+ (resp. X~) then f can be extended
to a holomorphic self-map on P2\ {[1: 0: 0]} (resp. P2\ {[0:1:0]}). (iii)
For each f € X (resp. X ), the point [0:1: 0] (resp. [1:0:0]) is an
attracting fixed point of f.

Let 9% (XT) be the space of all Borel probabiliy measures on X*. Also,
we set

My (XE) := {7 € M (XF) | supp7 is a compact subset of XT}.

We endow My (X*) with a topology O which satisfies that

Tn, — T as n — oo if and only if

(a) for each bounded continuous function ¢ : X* — C, we have [ ¢ dr, —
[ pdr as n — oo, and

(b) supp 7, — suppT as n — oo with respect to the Hausdorff metric in
the space of all non-empty compact subsets of X*.

For each 7 € My (X T), we consider i.i.d. random dynamical system on
P2\ {[1: 0: 0]} such that at every step we choose a map f € XT according
to 7. This defines a Markov process whose state space is P2\ {[1:0: 0]}
and whose transition probability p(z, A) from a point z € P2\ {[1:0: 0]}
to a Borel subset A of P2\ {[1:0:0]} satisfies

Pz, A) =7({f € XT | f(2) € A}).

For each 7 € ml,c(Xi)7 let
GT = {’Y’n O e O’Yl | n e N,h/_j S SuppT(v])}

This is a semigroup with the semigroup operation being the functional
composition. (It is important to study the dynamics of G;.)

Let A be an open subset of P2. We say that an element 7 € My (X )
is mean stable on A if each f € supp7 is defined on A and f(A) C A
and there exist an n € N, an m € N, non-empty open subsets Uy, ...,Up,
of A, a non-empty compact subset K of U7 ,U;, and a constant ¢ with
0 < ¢ < 1 such that the following (a) and (b) hold.

(a) For each (v1,...,7,) € (supp7)”, we have
o om (UL Uj) C K.

Moreover, for each j =1,...,m, for all z,y € U; and
for each (y1,...,7n) € (supp 7)™, we have



d(yno---om(x),mo---om(y)) < cd(z,y),

where d denotes the distance induced by the Fubini-Study metric on
P2
(b) For each z € A, there exists an element f, € G, such that f,(z) €
um . U;.
J=1%7

(6) Let MS be the set of all 7 € M (X T) satisfying that
(i) 7 is mean stable on P2\ {[1:0:0]} and

(ii) 77! is mean stable on P2\ {[0 : 1 : 0]}, where 7~! is the element
of My (X ™) such that 771(A) = 7({f € X | f~ € A}) for each
Borel subset A of X .

Remark 2. MS is open in (M, (X T),0).

Theorem 3 ([S24]). MS is open and dense in My (XT).
Moreover, for each T € MS, we have all of the following (1)—(5).

(1) There exists a constant ¢, with ¢, < 0 such that the following holds.

— For each z € P\{[1: 0: 0]}, there exists a Borel subset B}, of (X*)*
with (5% 7)(Bf,) = 1 such that for each v = (v;)jez € B, we
have 1

limsup = log [ D(7_1 0+~ 070)s|| < &< 0.

n—oo N

Also, for each z € P2\ {[0: 1: 0]}, there exists a Borel subset B, of

(X2 with (@52 7)(B;.) = 1 such that for each v = (v;)jez €

B~ ,, we have

T,27

1
limsup ~log | D(yZ, 0 -~ 0771): | < ¢,< 0.

n—oo N

Here, for each rational map f on P? and for each z € P? where f is
defined, we denote by |Df,| the norm of the differential of f at z
w.r.t. the Fubiny-Study metric in P2.

(2) For each z € P2\ {[1: 0: 0]}, there exists a Borel subset C_ of (XT)%
with (29 _o7)(Cf,) = 1 such that for each v = (v;)jez € C},, there
exists a number r™ = rt(7,2,7) > 0 satifying that

diam(yp—10---0(B(z,7T))) = 0 asn — oo

exponentially fast, and for each z € P2\ {[0 : 1 : 0]}, there exists a
Borel subset C-, of (X )% with (252 _ 7)(C5,) = 1 such that for each
v = (v4)jez € Cr, there exists a number r~ = v~ (7,2,7) > 0 satifying
that

diam(y_}L o oy 1(B(z,r7))) = 0 as n — oo

exponentially fast, where B(z,r) denotes the ball with center z and radius
r with respect to the distance d induced by the Fubini-Study metric on P?,
and for each subset A of P?, we set diamA := sup, e (7, y).



3)

(a) Let Min(7) be the set of all minimal sets of T in P2\ {[1: 0 : 0]}.
Then
1 < Min(7)<oo0.

Here, a non-empty compact subset L of P2\ {[1:0: 0]} is said to be
a minimal set of T if L = Upeq.{h(2)} for each z € L.

(b) ForVz € B2\ {[L:0: 0]}, for (232 _o7)-a.e. (1)sez € (XF)%,

we have d(Yn—10---07(2), UreMin(r)L) = 0 asn — oco.

(4) For each L € Min(1), let T, : P2\ {[1:0:0]} — [0,1] be the function of
probability of tending to L, i.e., for each z € P?\ {[1:0: 0]}, we set
Tpr(2) = (@2 m){(9)jen € (XY [ d(yn -+ 71(2), L) = 0 (n — 00)}).

Then, Ty, , is locally Hélder continuous on P2\ {[1 : 0 : 0]}. Also, Ty, .
is constant on each connected component of F(G,). Here, F(G;) denotes
the set of points z € P2\ {[1: 0: 0]} for which there exists a neighborhood
U of z such that {h : U — P2\ {[1:0:0]}}neq, is equicontinuous on U.
(We call F(G.) the Fatou set of semigroup G.)

(5) For each v = (v;)jez € (X1)Z, let Ff be the set of elements
ze P\ {[1:0:0]}

for which there exists a neighborhood U of z in P2\ {[1:0: 0]}
such that {y, o---o0vy : U — P2}°°  is equicontinuous on U. Similarly,
let ., be the set of elements

ze P\ {[0:1:0]}

for which there exists a neighborhood U of z in P2\ {[0: 1: 0]} such that
{y=ro-ioqTt i U — P2}, is equicontinuous on U. Also, let

+ . p2 +
JE = P2\ FF.

Then there exists a Borel subset D, of (X1)% with (@%__7)(D,) = 1
such that for each v € D., we have

Leby(J3) =0,
where Leby denotes the 4-dimensional Lebesque measure on P2,

Remark 4. None of statements (1)(2)(3)(4) in Theorem 3 can hold
for deterministic dynamics of a single f € X*.

To prove the density of MS in 9 (X ) in Theorem 3,
we need the following.



Theorem 5 ([S24]). Let {7 }icj0,1) be a family of elements of My (X )
such that all of the following (1)(2)(3) hold.

(1) t€[0,1] — 7 € My (XT) is continuous w.r.t the topology O.

(2) Ifty,t2 € 0,1] and t1 < ta, then suppTy, C int(suppT,). Here, int denotes
the set of interior points with respect to the topology in X ™.

(3) int(suppTo) # 0.
Let B :={t € [0,1] | 7¢ is not mean stable on P>\ {[1:0:0]}}. Then
B < #Min(1p) — 1 < 00
and C := {t € [0,1] | s — #Min(7s) is constant in a neighborhood of t} satisfies
C =10,1]\ B.
We give the rough ideas of the proof of Theorem 5 as follows.

(i) Under the assumptions of Theorem 5, by Zorn’s lemma, we can show that
if t1,t2 € [0,1],¢1 < to then 1 < tMin(7,) < tMin(7, ).

(ii) Moreover, we can easily show that tMin(7p) < co.
(iii) It follows that #([0,1]\ C) < Min(rp) — 1 < 0.

(iv) (Key) We can show that if ¢y € C, then any L € Min(r,) is “attracting”
for 7;,, by using the “Carathéodory distance”.
It follows that if to € C then 74, is mean stable on P2\ {[0:1: 0]}.

]\ B. Also it is easy to see [0,1]\ B C C.

(v) By (iv), C C [0,1
=10,1]\ B.

Thus C = [0,

(vi) Combining (iii) and (v), we obtain §B < tMin(7y) — 1 < 0.

We give the rough ideas of the proof of the density of MS in 9 (X T) in
Theorem 3 as follows.

(i) Let ¢ € My (X T) and let U be an open neighborhood of ¢ in My (X T).
(ii) Then, there exists an element (o € U with fsupp {p < 0.

(iii) By enlarging the support of (y, we can construct a family {7;}¢cjo,1) of
elements in U such that {7;},c[o,1) satisfies the conditions (1)(2)(3) in
Theorem 5.

(iv) Then, by Theorem 5, there exists a ¢t > 0 such that 7, € U N MS. This
argument shows the density of MS in 9 (X ).



Summary

(1)

(2)

3)

We

We introduce the notion of mean stability in i.i.d. random (holomorphic)
2-dimensional dynamical systems.

We can see that a generic random dynamical system of polynomial auto-
morphisms on C? having some conditions, is mean stable.

If a random holomorphic dynamical system on P2\ {[1: 0 : 0]} is mean
stable then for each z € P2\ {[1:0: 0]}, for a.e. orbit starting with z, the
maximal Lyapunov exponent is negative.

Note that the statement of (3) cannot hold for deterministic dynamics
of a single polynomial automorphism f on C? which is conjugate to a
generalized Hénon map by a polynomial automorphism.

In the proof of the density of elements 7 in 9; (X ) which are mean
stable on P2\ {[1:0: 0]}, we consider a family {r;} in 9 .(XT) and we
analyse the bifurcation.

see many randomness-induced phenomena (phenomena in random dynam-

ical systems which cannot hold for iteration dynamics of single maps). In this

talk,

we have seen randomness-induced order.

Many kinds of maps in one random dynamical sytstem automatically coop-
erate together to make the chaoticity weaker. We call such phenomena

Cooperation Principle.

Even if a random dynamical system has a randomness-induced order, the system
still can have some complexity. We have to investigate the

gradation between chaos and order

in random dynamical systems.
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